Skip to content

ISER Working Paper Series 2013-14

Regression analysis of country effects using multilevel data: a cautionary tale

Authors

Publication date

19 Aug 2013

Abstract

Cross-national differences in outcomes are often analysed using regression analysis of multilevel country datasets, examples of which include the ECHP, ESS, EU-SILC, EVS, ISSP, and SHARE. We review the regression methods applicable to this data structure, pointing out problems with the assessment of country-level factors that appear not to be widely appreciated, and illustrate our arguments using Monte-Carlo simulations and analysis of women’s employment probabilities and work hours using EU SILC data. With large sample sizes of individuals within each country but a small number of countries, analysts can reliably estimate individual-level effects within each country but estimates of parameters summarising country effects are likely to be unreliable. Multilevel (hierarchical) modelling methods are commonly used in this context but they are no panacea.

Paper download  


Related publications

  1. Regression analysis of country effects using multilevel data: a cautionary tale

    Mark L. Bryan and Stephen P. Jenkins

#521828


Research home

Research home

News

Latest findings, new research

Publications search

Search all research by subject and author

Podcasts

Researchers discuss their findings and what they mean for society

Projects

Background and context, methods and data, aims and outputs

Events

Conferences, seminars and workshops

Survey methodology

Specialist research, practice and study

Taking the long view

ISER's annual report

Themes

Key research themes and areas of interest