Bayesian interrupted time series for evaluating policy change on mental well-being: an application to England’s welfare reform

Publication type

Journal Article

Authors

Publication date

June 27, 2023

Summary:

Factors contributing to social inequalities are also associated with negative mental health outcomes leading to disparities in mental well-being. We propose a Bayesian hierarchical model which can evaluate the impact of policies on population well-being, accounting for spatial/temporal dependencies. Building on an interrupted time series framework, our approach can evaluate how different profiles of individuals are affected in different ways, whilst accounting for their uncertainty. We apply the framework to assess the impact of the United Kingdoms welfare reform, which took place throughout the 2010s, on mental well-being using data from the UK Household Longitudinal Study. The additional depth of knowledge is essential for effective evaluation of current policy and implementation of future policy.

Published in

arXiv

DOI

https://doi.org/10.48550/arXiv.2306.15525

Subjects


Related Publications

#567951

News

Latest findings, new research

Publications search

Search all research by subject and author

Podcasts

Researchers discuss their findings and what they mean for society

Projects

Background and context, methods and data, aims and outputs

Events

Conferences, seminars and workshops

Survey methodology

Specialist research, practice and study

Taking the long view

ISER's annual report

Themes

Key research themes and areas of interest