Publication type
Journal Article
Authors
Publication date
October 28, 2020
Summary:
How people connect with one another is a fundamental question in the social sciences, and the resulting social networks can have a profound impact on our daily lives. Blau offered a powerful explanation: people connect with one another based on their positions in a social space. Yet a principled measure of social distance, allowing comparison within and between societies, remains elusive. We use the connectivity kernel of conditionally independent edge models to develop a family of segregation statistics with desirable properties: they offer an intuitive and universal characteristic scale on social space (facilitating comparison across datasets and societies), are applicable to multivariate and mixed node attributes, and capture segregation at the level of individuals, pairs of individuals and society as a whole. We show that the segregation statistics can induce a metric on Blau space (a space spanned by the attributes of the members of society) and provide maps of two societies. Under a Bayesian paradigm, we infer the parameters of the connectivity kernel from 11 ego-network datasets collected in four surveys in the UK and USA. The importance of different dimensions of Blau space is similar across time and location, suggesting a macroscopically stable social fabric. Physical separation and age differences have the most significant impact on segregation within friendship networks with implications for intergenerational mixing and isolation in later stages of life.
Published in
Journal of the Royal Society Interface
DOI
https://doi.org/10.1098/rsif.2020.0638
ISSN
17425689
Subjects
Notes
Not held in Hilary Doughty Research Library - bibliographic reference only
Online Early
Related Publications
-
Friendship factors
Till Hoffmann, Nick S. Jones,Media - 20201106
#526405