The importance of choosing the data set for tax-benefit analysis

Publication type

Research Paper

Series Number

2013-05

Series

University of Milan Department of Economics, Management and Quantitative Methods Working Papers

Authors

Publication date

March 15, 2013

Abstract:

Given the increased availability of survey income data, in this paper we analyse the pros and cons of alternative data sets for static tax-benefit microsimulation in Italy. We focus on all possible alternatives, namely using (a) SHIW or (b) IT-SILC data using a consistent net-to-gross microsimulation model, or (c) IT-SILC data using the gross incomes provided since 2007. Our results suggest that IT-SILC improves in the regional representativeness of the Italian population and does not perform worse than SHIW as for most demographic characteristics, SHIW provides more information regarding building and real estate incomes. Gross income variables simulated by using the net-to-gross module included in the TABEITA microsimulation model and calibrating for tax evasion provide a very precise fit with external statistics, improving on results which could be obtained using the same TABEITA model on SHIW data. Simulated IT-SILC gross income data fit external aggregate data even better than gross income data provided in IT-SILC, which tend to largely overestimate self-employment income. Finally, we suggest to match IT-SILC with SHIW to include in the former the information on building and real estate incomes that are contained

Subjects

Link

http://ideas.repec.org/p/mil/wpdepa/2013-05.html


Related Publications

Paper download  

#521498

News

Latest findings, new research

Publications search

Search all research by subject and author

Podcasts

Researchers discuss their findings and what they mean for society

Projects

Background and context, methods and data, aims and outputs

Events

Conferences, seminars and workshops

Survey methodology

Specialist research, practice and study

Taking the long view

ISER's annual report

Themes

Key research themes and areas of interest