Correcting the bias in the estimation of a dynamic ordered probit with fixed effects of self-assessed health status

Publication type

Research Paper

Series Number

09-40

Series

Universidad Carlos Iii de Madrid: Departamento de Economia: Economics Working Papers

Authors

Publication date

June 1, 2009

Abstract:

This paper considers the estimation of a dynamic ordered probit with fixed effects, with an application to self-assessed health status. The estimation of nonlinear panel data models with fixed effects by MLE is known to be biased when T is not very large. The problem is specially severe in our model because of the dynamics and because it contains two fixed effects: one in the linear index equation, interpreted as unobserved health status, and another one in the cut points, interpreted as heterogeneity in reporting behavior. The contributions of this paper are twofold. Firstly this paper contributes to the recent literature on bias correction in nonlinear panel data models by applying and studying the finite sample properties of two of the existing proposals to the ordered probit case. The most direct and easily applicable correction to our model is not the best one and still has important biases in our sample sizes. Secondly, we contribute to the literature that study the determinants of Self-Assesed Health measures by applying the previous analysis on estimation methods to the British Household Panel Survey.

Subject

Link

- http://e-archivo.uc3m.es/bitstream/10016/5210/1/09-40-21.pdf

Notes

working paper

#513096

News

Latest findings, new research

Publications search

Search all research by subject and author

Podcasts

Researchers discuss their findings and what they mean for society

Projects

Background and context, methods and data, aims and outputs

Events

Conferences, seminars and workshops

Survey methodology

Specialist research, practice and study

Taking the long view

ISER's annual report

Themes

Key research themes and areas of interest