Skip to content

Journal Article

A bidirectional Mendelian randomization study to evaluate the causal role of reduced blood vitamin D levels with type 2 diabetes risk in South Asians and Europeans

Authors

Publication date

27 Jul 2021

Summary

Context:
Multiple observational studies have reported an inverse relationship between 25-hydroxyvitamin D concentrations (25(OH)D) and type 2 diabetes (T2D). However, the results of short- and long-term interventional trials concerning the relationship between 25(OH)D and T2D risk have been inconsistent.
Objectives and methods:
To evaluate the causal role of reduced blood 25(OH)D in T2D, here we have performed a bidirectional Mendelian randomization study using 59,890 individuals (5,862 T2D cases and 54,028 controls) from European and Asian Indian ancestries. We used six known SNPs, including three T2D SNPs and three vitamin D pathway SNPs, as a genetic instrument to evaluate the causality and direction of the association between T2D and circulating 25(OH)D concentration.
Results:
Results of the combined meta-analysis of eight participating studies showed that a composite score of three T2D SNPs would significantly increase T2D risk by an odds ratio (OR) of 1.24, p = 1.82 × 10–32; Z score 11.86, which, however, had no significant association with 25(OH)D status (Beta -0.02nmol/L ± SE 0.01nmol/L; p = 0.83; Z score -0.21). Likewise, the genetically instrumented composite score of 25(OH)D lowering alleles significantly decreased 25(OH)D concentrations (-2.1nmol/L ± SE 0.1nmol/L, p = 7.92 × 10–78; Z score -18.68) but was not associated with increased risk for T2D (OR 1.00, p = 0.12; Z score 1.54). However, using 25(OH)D synthesis SNP (DHCR7; rs12785878) as an individual genetic instrument, a per allele reduction of 25(OH)D concentration (-4.2nmol/L ± SE 0.3nmol/L) was predicted to increase T2D risk by 5%, p = 0.004; Z score 2.84. This effect, however, was not seen in other 25(OH)D SNPs (GC rs2282679, CYP2R1 rs12794714) when used as an individual instrument.
Conclusion:
Our new data on this bidirectional Mendelian randomization study suggests that genetically instrumented T2D risk does not cause changes in 25(OH)D levels. However, genetically regulated 25(OH)D deficiency due to vitamin D synthesis gene (DHCR7) may influence the risk of T2D.

Published in

Nutrition Journal

Volume

20:71

DOI

https://doi.org/10.1186/s12937-021-00725-1

ISSN

16

Subjects

Ethnic Groups, Health, Biology, and Genetics

Notes

Open Access; This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

#547024


Research home

Research home

News

Latest findings, new research

Publications search

Search all research by subject and author

Podcasts

Researchers discuss their findings and what they mean for society

Projects

Background and context, methods and data, aims and outputs

Events

Conferences, seminars and workshops

Survey methodology

Specialist research, practice and study

Taking the long view

ISER's annual report

Themes

Key research themes and areas of interest