Skip to content

Conference Paper Monday Afternoon Seminar Series

Statistical Issues in Life-Course Epidemiology


Publication date

23 Jan 2006


There is growing recognition that the risk of many diseases in later life, such as type 2 diabetes or breast cancer, is affected by adult as well as early-life variables, including those operating prior to conception and during the prenatal period. Most of these risk factors are correlated because of common biologic and/or social pathways, while some are intrinsically ordered over time. The study of how they jointly influence later ('distal') disease outcomes is referred to as life course epidemiology. This area of research raises several issues relevant to the current debate on causal inference in epidemiology. The authors give a brief overview of the main analytical and practical problems and consider a range of modeling approaches, their differences determined by the degree with which associations present (or presumed) among the correlated explanatory variables are explicitly acknowledged. Standard multiple regression (i.e., conditional) models are compared with joint models where more than one outcome is specified. Issues arising from measurement error and missing data are addressed. Examples from two cohorts in the United Kingdom are used to illustrate alternative modeling strategies. The authors conclude that more than one analytical approach should be adopted to gain more insight into the underlying mechanisms.


Research home

Research home


Latest findings, new research

Publications search

Search all research by subject and author


Researchers discuss their findings and what they mean for society


Background and context, methods and data, aims and outputs


Conferences, seminars and workshops

Survey methodology

Specialist research, practice and study

Taking the long view

ISER's annual report


Key research themes and areas of interest