Double machine learning for static panel models with fixed effects

Publication type

Journal Article

Authors

Publication date

April 25, 2025

Summary:

Recent advances in causal inference have seen the development of methods which make use of the predictive power of machine learning algorithms. In this paper, we develop novel double machine learning (DML) procedures for panel data in which these algorithms are used to approximate high-dimensional and nonlinear nuisance functions of the covariates. Our new procedures are extensions of the well-known correlated random effects, within-group and first-difference estimators from linear to nonlinear panel models, specifically, Robinson (1988)’s partially linear regression model with fixed effects and unspecified nonlinear confounding. Our simulation study assesses the performance of these procedures using different machine learning algorithms. We use our procedures to re-estimate the impact of minimum wage on voting behaviour in the UK. From our results, we recommend the use of first-differencing because it imposes the fewest constraints on the distribution of the fixed effects, and an ensemble learning strategy to ensure optimum estimator accuracy.

Published in

The Econometrics Journal

DOI

https://doi.org/10.1093/ectj/utaf011

ISSN

13684221

Subjects

Notes

Open Access

© The Author(s) 2025. Published by Oxford University Press on behalf of Royal Economic Society.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Online Early

#588602

News

Latest findings, new research

Publications search

Search all research by subject and author

Podcasts

Researchers discuss their findings and what they mean for society

Projects

Background and context, methods and data, aims and outputs

Events

Conferences, seminars and workshops

Survey methodology

Specialist research, practice and study

Taking the long view

ISER's annual report

Themes

Key research themes and areas of interest