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Non-Technical Summary 
 
There is a large epidemiological research literature examining the predictive power of personal 
characteristics, socio-economic status (SES) and current health state, on future health outcomes. 
Although this literature is driven by, and clearly focused on, a concern for welfare at the 
individual level, the associated implications for the monetary costs to wider society are often 
neglected or left implicit. In this paper, we add to a small but growing body of research on the 
individual-level determinants of healthcare demand and costs. 
 
Health care costs have risen faster than economic growth in all OECD countries and this is 
projected to continue as a result of new medical technology, rising expectations and the 
increasing needs of the ageing population. In this policy setting, it is important for policymakers 
to be able to identify the sections of the population where costs are high and rising, to establish 
priorities for resource planning and preventative policy. 
 
Using data from Understanding Society, our working sample is 2,314 adults who, at baseline in 
2010/11, reported no history of diagnosed long-lasting health conditions and for whom a set of 
objective health measures (nurse-collected and blood-based biomarkers) were observed. Five 
years later, their utilisation of GP and hospital outpatient and inpatient services was observed. 
We develop econometric techniques appropriate for the purpose of our analysis and a statistical 
method of combining NHS episode cost data with Understanding Society data. This allows us to 
estimate the impact of differences in personal characteristics and socio-economic status (SES) on 
cost outcomes.  
 
We find that a biomarkers summary measure, capturing several dimensions of physical health, is 
a powerful predictor of realised costs: among the group of individuals with excess allostatic load 
at baseline, we estimate that a reduction to achieve more normal biomarker levels reduces GP, 
outpatient and inpatient cost outcomes by around 18%. In addition to the expected strong effect 
of ageing on cost, we also find a large gender difference: on average women experience costs at 
least 20% higher than comparable men, because of their greater utilisation of GP and outpatient 
services. There is a strong SES gradient in healthcare costs: the average impact of moving from 
no educational qualifications to intermediate or from intermediate to degree level is 
approximately 16%. Income differences, on the other hand, have negligible impact on future 
costs. 
 
The predictive power of personal characteristics and biomarker-based health measures gives a 
possible basis for sophisticated tailoring preventive interventions. A measure similar to our 
allostatic load proxy could be constructed from information gathered in the NHS England Health 
Check introduced in 2009, which offers quinquennial check-ups including blood tests. There are 
concerns about low take-up, which is a potential obstacle for any such preventive measure. 
However, the NHS Health Check is available to all adults aged 40-74 and thus targeted only on 
age in a simple way and our findings suggest that more tailored targeting could identify better 
the population groups with highest potential future healthcare needs and costs. Of course, for 
this to be worthwhile there needs to be an effective follow-up intervention that can be used to 
reduce those future health needs and costs.  
 
Another potential policy application of our findings is in refining the design of capitation 
payment systems by reorienting the capitation formula to match more closely patient level 
morbidity data and other demographic and SES characteristics. This offers the prospect of 
improved allocation of resources as well as health outcomes by reducing incentives for health 
providers to “cream skim” the patient population by selecting patient groups with lower expected 
future healthcare costs. 
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1 Introduction

There is a large epidemiological research literature examining the predictive power of per-

sonal characteristics, socio-economic status (SES) and current health state, on future health

outcomes. Although this literature is driven by, and clearly focused on, a concern for welfare

at the individual level, the associated implications for the monetary costs to wider society

are often neglected or left implicit. But costs are important and the link between the im-

pacts of an individual’s characteristics on his or her health outcome and on social cost is

not necessarily simple. In this paper, we add to a small but growing body of research on

the individual-level determinants of healthcare demand and costs (Brilleman et al., 2014;

Doorslaer et al., 2004; Bago d’Uva and Jones, 2009; Sari, 2009; Sturm, 2002; Traczynski and

Udalova, 2018).

Health care costs have risen faster than economic growth in all OECD countries and this

is projected to continue as a result of new medical technology, rising expectations and the

increasing needs of the ageing population (OECD, 2015). In Britain, the National Health

Service (NHS) spends about 10% of UK GDP on health care, which is broadly in line with

other European counties. That proportion has doubled since the establishment of the NHS

in 1948 (Charlesworth and Bloor, 2018). However, the NHS has below the OECD average

number of doctors, nurses and hospital beds per head and its performance on some health

outcomes (for example, survival rates for breast and cervical cancer or health-care amendable

mortality) is below the average among comparable countries (Barber et al., 2017). In this

policy setting, it is important for policymakers to be able to identify the sections of the

population where costs are high and rising, to establish priorities for resource planning and

preventative policy.

Administrative data on healthcare utilisation have been used to describe the associations

of demographic characteristics and morbidity with utilisation (Cawley and Meyerhoefer,

2012; Brilleman et al., 2014; Carreras et al., 2018). But research aiming to inform the
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development of forward-looking policy to control costs cannot be done solely on the basis of

records accumulated by the health care system, since they do not contain information on the

full range of personal and SES characteristics, and do not have good coverage of individuals

with latent health conditions that have not yet reached the stage of diagnosis.1

An ideal approach would be to use data from a nationally representative longitudinal

survey with administrative data from NHS records matched to survey respondents to add

detail on the amounts and types of treatment received by each respondent. However, there

are also difficulties here. First, the UK has no national-scale individual-level administrative

datasets on general practitioner (GP) and community health service delivery. Second, al-

though comprehensive hospital episodes (HES) data exist in the UK, there are barriers to

data linkage which currently prevent matching to suitable longitudinal surveys. Those bar-

riers arise both from legal and ethical data security restrictions and also practical difficulties

of data quality.2 A third disadvantage is that matching to survey data requires informed

consent from respondents, which is achievable for fewer than 70% of respondents in surveys

like the Understanding Society household panel (also known as the UK Household Longitu-

dinal Study; UKHLS) used in this study.3 Conditioning the analysis on informed consent

thus introduces a further possible source of bias so even when (if) a matched UKHLS-HES

dataset becomes available, there will still be a case for alternative approaches to contribute

to a robust research consensus. A final difficulty is that there exists no individual-specific

data on treatment costs, so even with a matched dataset, it would be necessary to estimate

cost rather than observe it directly.

The alternative to matched HES data is self-reported information on utilisation of health-

care resources, in response to survey questions asking for counts of numbers of medical con-

1The extensive population databases assembled for some Scandinavian countries come closest to this ideal,
but still lack some critical information, especially pre-diagnostic states of ill-health.

2At present, HES data for England have been matched to the Biobank dataset, which is unrepresentative
and lacking important socioeconomic contextual data, and to the Millenium Cohort Study, which is limited
to a single birth cohort.

3Consent rates fall much lower than this when interviewing is conducted online with no interviewer present
to establish a relationship of trust, see Jäckle et al. (2018).
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sultations within a reference period. In the case of the UKHLS, these counts are reported

as the numbers of GP, outpatient and day patient (OP) consultations within the preceding

year, and the number of days spent as a hospital inpatient (IP) over the same period. There

is a potential problem of recall error, mainly in the form of under-reporting, but compar-

isons with macro-level administrative data (section 2.2 and Appendix 1) suggest that such

error is moderate in size. In the UKHLS and many other surveys, consultation counts are

reported in grouped rather than exact form. In section 3, we develop a new method of

modelling such data econometrically using an interval negative binomial specification. Our

econometric modelling operates in a 5-year-ahead predictive framework using waves 2 and 7

of the UKHLS, and gives us estimates of the impacts on resource utilisation five years later

of baseline indicators of health risks (measured by biomarkers), demographic characteristics,

and SES, which are discussed in section 4.

A key feature of our empirical modelling is the use of biomarkers to measure the base-

line health state, which is a core predictor of subsequent healthcare utilisation and costs.

Biomarkers are more objective than conventional self-assessed health and have the poten-

tial to act as indicators of health problems prior to the symptomatic and diagnostic stages

of disease (Goldman et al., 2006; Geronimus et al., 2006; Turner et al., 2016). We use a

measure of cumulative biological risk factors, often called allostatic load, which combines

biomarkers relevant to different biological systems (Davillas and Pudney, 2017; Howard and

Sparks, 2016; Seeman et al., 2004). Section 2.1 of the paper details its construction. We

focus on individuals who appeared, from a clinical point of view, to be healthy at baseline, so

we excluded from our analysis those who reported any past or recent diagnosed long-lasting

health condition.

A final step is needed to generate estimates of resource costs, in the absence of survey

information on the type of disorder and treatment involved in reported contacts with the

health service (section 5). We attach average unit costs to the GP and OP consultation

counts, but develop a more sophisticated method of statistical assignment of treatment types
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and corresponding costs to the predictions of the IP utilisation model. This approach exploits

reported information on hospital stay duration, age and gender to tailor the probabilities

of each treatment type to the survey individual. We find large predictive impacts of age,

gender, SES and health measured at baseline.

There are potential policy implications of our results. They can be used to indicate

priority areas for interventions with such as screening programmes and health education

initiatives to control future treatment costs among individuals who have not yet reached the

stage of diagnosis. They are also relevant to the design of capitation fee systems, used in

the UK and elsewhere to pay providers prospectively for treatment of patients to whom they

agree to provide health care. There is a need to tailor capitation payments closely to expected

future healthcare costs to reduce incentives for providers to engage in “cream-skimming”

behaviour. Currently, most capitation payments are not based on patient-level data, apart

from age and gender, neglecting other potentially important patient-level characteristics

(Brilleman et al., 2014; Shepherd, 2017).

2 Data: the Understanding Society panel (UKHLS)

The UKHLS is a longitudinal, nationally representative study of the UK, designed as a two-

stage stratified random sample of the general population. We use the Great Britain (GB)

subsample, excluding the Northern Ireland component of the UKHLS which does not provide

biomarker data. As part of wave 2 (2010-2011), nurse-measured and non-fasted blood-based

biomarkers were collected, giving a potential pool of 6,337 survey respondents with valid

data on all the nurse-collected and blood-based biomarkers used in our analysis. From

those, 4,759 individuals had non-missing data on SES and demographic covariates at baseline

(wave 2) and were successfully followed up at wave 7, when healthcare utilisation measures are

collected. Our focus is on individuals who appeared (from the viewpoint of clinical diagnosis)

to be healthy at baseline, so we further excluded from our analysis those who reported any
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past diagnosis of a long-lasting health condition (asthma, chronic bronchitis, congestive

heart failure, coronary heart disease, heart attack or myocardial infarction, stroke, cancer

or malignancy, diabetes, high blood pressure, arthritis and liver condition), or a hospital

inpatient stay with a newly diagnosed health condition (UKHLS wave 2). This allows us to

follow a set of 2,314 respondents in apparently good health at baseline, up to five years later

(UKHLS wave 7).

2.1 A multi-system measure of health risks at baseline

Allostatic load was developed as a measure of biological risk arising from the cumulated

effects of chronic exposure to physical, psychosocial and environmental stressors that may

lead to physiological dysregulation and increased risk of manifest diseases (Howard and

Sparks, 2016; Seeman et al., 2004). Allostatic load is a multisystem risk score, sensitive to

morbidities that may be yet undiagnosed (Geronimus et al., 2006; Turner et al., 2016).

A large set of physical measurements and blood-based biomarkers, spanning multiple

dimensions of health, were collected by trained nurses at UKHLS wave 2. Our index combines

markers for adiposity, blood pressure, heart rate, lung function, inflammation, blood sugar

levels, cholesterol levels, liver function and steroid hormone.4

We use waist-to-height ratio to measure adiposity and resting heart rate (HR), systolic

blood pressure (SBP) and high-density lipoprotein cholesterol (HDL) to measure cardio-

vascular health.5 Lung function is measured, using a spirometer, as forced vital capacity

(FVC), the total amount of air forcibly blown out after a full inspiration; higher FVC values

indicate better lung functioning. C-reactive protein (CRP) is our inflammatory biomarker,

4Some authors include cortisol, in addition to the stress-related hormone DHEAS, to capture primary
responses to stress. However, cortisol is excluded here because of time-of-day and other measurement diffi-
culties in the UKHLS context. Similar constructions to ours have been used extensively in previous studies
(Davillas and Pudney, 2017; Howard and Sparks, 2016; Vie et al., 2014).

5SBP is the maximum pressure in an artery at the moment when the heart is pumping blood; it is
generally considered more relevant to health risks than diastolic blood pressure (Haider et al., 2003). Low
HDL cholesterol levels are associated with increased cardiovascular risks, while low HR and SBP indicate
lower risks.
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which rises as part of the immune response to infection and is associated with general chronic

or systemic inflammation.6 Glycated haemoglobin (HbA1c) is our blood sugar biomarker,

and is a validated diagnostic test for diabetes. Albumin is used to proxy liver functioning,

with low albumin levels suggesting impaired liver function. We also use dihydroepiandros-

terone suphate (DHEAS), a steroid hormone in the body, in our composite index of health.

DHEAS is one of the primary mechanisms through which psychosocial stressors may affect

health, with low levels associated with cardiovascular risk and all-cause mortality (Vie et al.,

2014). We calculated a composite risk score measure to proxy allostatic load after converting

HDL, Albumin and DHEAS to negative values to reflect ill-health rather than good health,

and then transforming each biomarker into a z-score and summing to produce the composite

measure.7

2.2 Health care utilisation measures

Retrospective information on the number of GP consultations, attendance at a hospital or

clinic as an out-patient or day patient (OP), and in-patient (IP) days in the preceding 12

months were also collected at UKHLS wave 7. The numbers of GP and OP consultations

were collected as five-category variables: 0, 1-2, 3-5, 6-10, more than 10. Respondents were

asked how many days they spent in a hospital or clinic as an IP in the preceding 12 months.

To ensure that our health care utilisation measures are not contaminated by any pregnancy-

related visits, we excluded women who reported any in-patient days for childbirth during

this period (about 0.5 per cent of our sample), so our cost analysis excludes services related

to childbirth.

There are clear distributional differences between age groups, with GP and OP consul-

6We exclude CRP values over 10mg/L because such values may reflect acute rather than systemic inflam-
matory processes (Pearson et al., 2003).

7When used singly in econometric models, each of these biomarkers has a statistically significant coef-
ficient, but their strong intercorrelations make it impossible to estimate robust models involving all nine
biomarkers jointly as covariates.
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tations being more evident for those at older ages (Appendix Figures A1 and A2). Figure

1 shows gender differences in the distributions of GP and OP consultations, indicating that

women tend to seek care from GP or OP consultations more frequently than men.

Figure 1: Distribution of the numbers of GP and OP consultations in the preceding 12
months by gender

The GP, IP, and OP utilisation counts are retrospective self-reports of utilisation of health

services over the past year, so they are potentially subject to well-known biases in long-term

recall (Bound et al., 2001). To check this, we can compare the full wave 7 UKHLS data with

external sources of information (Hobbs et al., 2016; ISD Scotland, 2017; NHS Digital, 2017;

NHS Improvement, 2017). Appendix Tables A1 and A2 give comparisons of GP and OP

consultation data for England and Scotland and IP days for England only. These comparisons

are not straightforward, since the UKHLS GP and OP data are interpolated, there are minor

differences in timing, and the administrative data relate to the whole population whereas the

UKHLS is a sample from the household population only, subject to variations in response

rates across population groups.8

Overall, we find that the administrative GP consultation rates for England and Scotland

8The comparisons presented in the appendix use unweighted UKHLS data. Since the UKHLS response
weights are built up sequentially over waves, missing data causes progressive loss of information and, by wave
7 almost a quarter of individuals have zero weights. If we use the official weights, results are not changed in
any important way from those presented in Tables A1 and A2.

7



are reasonably close to mean counts interpolated9 from the UKHLS interval data (Table A1).

There is some evidence of moderate under-reporting in the UKHLS, with discrepancies larger

for women than men, for older than younger respondents and for the English rather than

Scottish subsample. For OP consultations (Table A2) we have no demographic breakdown

of the administrative data; the overall mean counts are reasonably close to the ratio of

aggregate consultations to relevant population size, for both England and Scotland (UKHLS

rates lower by 4% and 12% respectively). For IP utilization, we only have administrative data

for England. Unlike most of the comparisons for GP and OP consultations, the UKHLS mean

IP count is larger (by almost 10%) than the corresponding administrative estimate (Table

A2), but this is largely due to definitional differences – an IP episode completed within one

day is recorded as a zero-days duration in the HES data, but would generally be reported

by UKHLS respondents as a one-day episode. When linking costs to durations (section 5)

we allow for this by adding 1 to durations in the HES data.

These differences should be borne in mind when interpreting our results, but do not

seem large enough to greatly distort econometric results. The main cause for concern is the

possible under-reporting of GP consultations by older women, which would suggest that the

large demographic effects reported in Tables 2-4 may be underestimates.

2.3 Costs

Financial cost is the natural metric for distilling the three categories of resource use into a

single measure of burden on public healthcare resources. However, this is not straightforward

because the UKHLS interview gives no details of the types of treatment involved, nor is it

possible to match survey respondents to records of the public healthcare system.10 Instead,

9Interpolation is done here by fitting negative binomial distributions (with zero-inflation where appro-
priate) to the interval data, then calculating the expected value of the count conditional on the observed
interval.

10Consents for matching of UKHLS data to hospital episodes administrative data were obtained for a subset
of UKHLS respondents, but a usable matched dataset is not expected to be available for a considerable time.
Moreover, such a dataset would not cover GP consultations and would raise significant issues of non-consent
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we pursue a data combination strategy, exploiting average cost data published in varying

detail for the GP, OP and IP resource classes.11

For simplicity, we use reference costs and caseload composition figures from NHS England

for the whole of the UKHLS sample, including the relatively small Scottish and Welsh

subsamples (making up 5% and 2% of the analysis sample, respectively). Robustness checks

reported in section 6 confirm that results are not materially affected by restricting the sample

to respondents resident in England.

GPs are the gatekeepers to NHS healthcare services but they are self-employed contractors

rather than employees of the NHS and, consequently, financial data relating to GP services

are not available on the same detailed basis as for the rest of the NHS. We use the mean

unit cost per consultation estimated by Curtis and Burns (2017) as £66.20 per consultation,

comprising £37 for GP costs and £29.20 for associated prescription costs (on a net ingredient

cost basis).

NHS reference cost data for OP and IP activity in England give unit costs broken down

in great detail by type of treatment and compiled according to standard measurement con-

ventions (DOH, 2016). We use the national schedules of reference costs (NHS Improvement,

2017), providing data on average unit cost for each service submitted by the NHS providers

in 2016/17, a similar period to that covered by UKHLS wave 7. For OP cases, the average

unit cost and aggregate number of attendances in each treatment category relate to both

outpatient and day-case visits. After excluding paediatric categories which are not relevant

to UKHLS adult respondents, and any category with fewer than 50 cases in the year, we

are left with 1,355 treatment categories with an average caseload of 55,704 attendances per

category and a mean (caseload-weighted) unit cost of £163.32 per OP consultation.

For IP cases, reference costs relate to episodes of care, defined as “the time spent under

bias.
11GP, OP and IP costs are only part of the cost picture. The UKHLS questions do not cover resources

like community nursing, ambulance services, etc. Moreover published hospital reference costs exclude some
activities such as screening (DOH (2016), section 15).
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the care of one consultant”, are available as average unit cost by groups of patient events

that have been judged to consume a similar level of resource, known as Healthcare Resource

Groups (HRG), along with the aggregate number of HRG episodes (NHS Improvement,

2017). Elective and non-elective IP treatment are separated in the official activity and cost

data, and we treat them as distinct treatment types. Treatment categories are further sepa-

rated into elective (E), non-elective long stay (NEL) and non-elective short stay defined as 2

days or less (NES). In our analysis, we treat these types as separate categories, exploiting the

fact that caseload, unit cost and mean length of stay (but not other episode characteristics)

are broken down by type of episode (NHS Digital, 2017; NHS Improvement, 2017). After

excluding categories which cover paediatric cases, or involve fewer than 50 cases, or have

missing or invalid unit cost, mean stay data, we are left with 3,827 IP categories, with a

(caseload-weighted) mean stay length of 3.5 days, and a mean total of case-days of 9,184 per

category. The overall mean daily unit cost defined as the ratio of aggregate cost to aggregate

number of days IP treatment is £542 per day.

3 Grouped count data models of healthcare utilisation

Let Yi ≥ 0 be the ith observation on a dependent variable (the GP, OP or IP utilisation

count), which takes non-negative integer values, and X i a vector containing the explanatory

covariates. We allow for the possibility of zero-inflation: a double hurdle or mixture process,

where some individuals have a degenerate zero count with probability 1, while others have a

count drawn from a standard distribution. The probability of a degenerate zero is specified

as probit:12

Pr(degenerate 0∣X i) = Φ(X i1γ) (1)

where X i1 is a subvector of X i.

12We also estimated logit specifications which gave almost identical estimates.
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The distribution of Y among the non-degenerate population is g(y∣X i2), where X i2 is

another subvector of X i. The mixture distribution of Y is:

f(y∣X i) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

π(X i1γ) + (1 − π(X i1γ))g(0∣X i2) if y = 0

(1 − π(X i1γ))g(y∣X i2) if y > 0

(2)

Our observations are not necessarily on Yi itself but rather an interval within which Yi

lies. Consequently, we have a pair of observed dependent variables, [Li, Ui] with the property

that Li ≤ Yi ≤ Ui. For the GP and OP consultation counts, the observable limit pairs are in

the set {(0,0), (1,2), (3,5), (6,10), (11,∞)}; for the IP count we have exact observation, so

Li = Yi = Ui. The likelihood for individual i is the conditional probability of observing the

event Li ≤ Yi ≤ Ui:

Pr(Li ≤ Yi ≤ Ui∣X i) =
Ui

∑
y=Li

f(y∣X i) (3)

The model is completed by a specifying a parameterized functional form for the non-

degenerate component distribution g(.∣X i). We initially considered three alternative base

models, binomial, Poisson and negative binomial (NB). The NB specification gave by far

the best fit in every case (Pudney, 2018). It is derivable as a Poisson(λiν)-gamma(α−1, α)

mixture, where λi = eX i2β and lnα is treated as an unrestricted constant parameter. This

gives a distribution for y with mean λi and variance 1 + αλi.13 The ML estimator for is

implemented in a new Stata command intcount, documented in Pudney (2018).

4 Parameter estimates

The explanatory covariates X used in our healthcare utilization model represent individ-

ual characteristics that been shown to affect health outcomes either directly or indirectly

13In the terminology of Cameron and Trivedi (2013), this is the NB2 parameterization of the regression
model.
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(Davillas and Pudney, 2018; Carrieri and Jones, 2017; Doorslaer et al., 2004). They were

collected as part of the UKHLS wave 2 main survey, along with our biomarker measures. We

use two indicators of SES. Educational attainment is captured as a 3-category classification:

degree-equivalent, intermediate, and no/basic qualification. Household income is the sum

of the gross incomes of all household members but, to avoid spurious correlation arising

from the fact that disability resulting from ill-health creates eligibility for disability benefits

(Morciano et al., 2015), income from those sources is excluded. We allow for differences in

household composition by equivalising household income using the modified OECD equiva-

lence scale before using a log transformation to allow for the concavity of the health-income

association. A flexible quadratic function of age and gender is used to capture demographic

differences. Finally, we also allow for differences between the three nations of Great Britain

(England, Scotland and Wales), since NHS policy is determined on a national basis.

In implementing the NB models, we embed an important feature of the healthcare system

in the UK. GPs normally act as gatekeepers to the hospital system, so OP or IP episodes

are mostly preceded by GP consultations (Doorslaer et al., 2004; Brilleman et al., 2014).

For that reason, we model OP and IP utilisation counts conditional on the number of GP

consultations, with X extended to include categorical indicators of the number of GP con-

sultations. Parameter estimates for our preferred models are shown in Table 1 (columns 2,

4 and 6). Marginal OP and IP models, estimated without conditioning on the GP consul-

tation count, are also shown for comparison (columns 3 and 5). For the OP and IP counts,

the best-fitting model involves zero-inflation, distinguishing between individuals with zero

and non-zero GP consultation counts. The estimated impact of a zero GP count on the OP

and IP counts is almost completely sharp, with large negative intercept and large positive

coefficient. That implies negligible zero-inflation for the OP and IP counts if the GP count

is positive, and large probabilities of a degenerate zero (0.69 for the OP count and 0.98 for

the IP count) if the GP count is zero.14

14In practice the gatekeeper role of GPs is not completely sharp, since GP consultations leading to an
OP consultation or IP episode may not fall in the same 12-month recall period; also some emergency IP
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We used initially a larger set of covariates than that shown in Table 1, including addition-

ally urban/rural area type, marital status, housing tenure and household size, but coefficients

of those variables were statistically insignificant in all of the models, so the smaller set of

covariates listed in Table 1 was adopted. Inclusion of smoking and physical activity produced

no significant effects in any model after accounting for allostatic load, indicating that infor-

mation on unhealthy lifestyles at baseline has no additional predictive power for subsequent

health care utilization beyond what can be achieved using biomarkers.

cases may reach hospital without GP involvement. Consequently we have chosen to leave the model fully
parameterised rather than imposing a zero probability of zero-inflation when the GP count is zero. For zero-
inflated models of the GP count, the ML optimisation always led to corner solutions where the probability
of a degenerate zero count was essentially zero.
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Table 1: Estimated parameters for grouped negative binomial models of GP, OP and IP
utilisation: baseline demographic, SES and health state coefficients

OP model IP model
Parameter GP marginal conditional marginal conditional

Allostatic load 0.210*** 0.129** -0.030 0.555*** 0.219
(0.036) (0.053) (0.055) (0.162) (0.175)

§Age -0.053* 0.033 0.068 0.241 0.177
(0.030) (0.046) (0.045) (0.154) (0.137)

§Age2 0.017 0.018 0.002 -0.024 -0.051
(0.016) (0.026) (0.026) (0.081) (0.072)

Male -0.198*** -0.327*** -0.319*** -0.285 -0.493
(0.076) (0.121) (0.110) (0.397) (0.370)

§Age × male 0.146*** 0.187*** 0.119* -0.367* -0.165
(0.042) (0.069) (0.067) (0.209) (0.201)

§Age2× male -0.025 0.024 0.061* 0.182 0.247**
(0.025) (0.038) (0.037) (0.117) (0.111)

No qualifications 0.092 0.033 -0.016 0.744 1.481*
(0.092) (0.142) (0.137) (0.566) (0.718)

Intermediate qualifications 0.016 0.104 0.112 0.691** 0.745**
(0.065) (0.103) (0.096) (0.321) (0.290)

ln(income) -0.140*** -0.106* -0.002 -0.209 0.101
(0.045) (0.062) (0.059) (0.237) (0.206)

Wales 0.555*** 0.140 -0.365 -0.061 -1.062*
(0.192) (0.332) (0.249) (0.694) (0.590)

Scotland -0.018 -0.246 -0.311 0.278 -0.405
(0.135) (0.231) (0.198) (0.776) (0.680)

Intercept 1.793*** 1.001** 0.165 -0.270 -1.573
(0.351) (0.483) (0.481) (1.883) (1.670)

Impact of conditioning on GP consultation count
1-2 -0.237 -1.384*

(0.206) (0.794)
3-5 0.534*** -1.248

(0.206) (0.817)
6-10 0.952*** -0.203

(0.214) (0.860)
more than 10 1.977*** 1.640**

(0.270) (0.832)
ln(α) 0.012 1.099*** 0.683*** 3.895*** 3.307***

(0.056) (0.058) (0.080) (0.121) (0.150)
Zero-inflation parameters
Zero GP consultation count 16.677*** 13.424***

(0.320) (0.724)
Intercept -16.168*** -11.319***

(0.230) (0.560)
AIC 6067.9 4913.3 4480.0 1514.5 1445.4
BIC 6142.6 4988.0 4589.2 1589.2 1554.6
§ Age measured in decades from an origin of 50. Standard errors in parentheses. Sample size N = 2314.

Statistical significance: * = 10%, ** = 5%, *** = 1%.

Table 1 shows a strong predictive role of allostatic load for GP consultations, implying
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an expected increase of e0.21 − 1 = 23% in GP consultations five years after a 1-standard

deviation increase in allostatic load. In models for OP and IP that condition on the GP

count, there is no further statistically significant direct impact of allostatic load, so the effect

of allostatic load is primarily channeled through the increased engagement with primary

healthcare. The marginal models of OP and IP that do not condition on the GP count

have highly significant coefficients of 0.129 and 0.555, implying total five-year impacts of

a standard deviation increase in allostatic load as 14% for OP consultations and 74% for

IP days. The statistical dependence between the GP count and the OP and IP counts is

confirmed by the large significant coefficients for the GP variables in the conditional OP and

IP models, and the much higher AIC and BIC statistics for the models that do not condition

on GP visits.

The highly significant coefficients for the male gender dummy and its interaction with

age is consistent with the differences shown in Figures 1, A1 and A2, and they imply that

men tend to use health resources less than women, but that their use increases faster with

age. These results accord with recent research on demographic variations in primary health

care costs (Brilleman et al., 2014).

With respect to our SES variables, there is a highly significant gradient of future GP

consultations with respect to baseline household income, with an elasticity of -0.14. This

strong gradient in primary care demand explains why the negative income gradient in OP

consultation counts (with an elasticity of -0.11) is completely attenuated when we condition

the OP model on GP consultations. Educational attainment has no significant estimated

influence on the demand for primary and OP care, but it exerts a very large influence

on the demand for IP care, with expected IP days doubling as we go from degree-level

to intermediate attainment and doubling again if there are no qualifications.15 Since IP

treatment generally results from more serious conditions, this indicates that education, rather

than income, is the key SES influence on severity.

15Using the conditional model, e.745 and e1.481−.745 are both approximately 2.1).
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The nations of Great Britain have separate NHS organisation and funding arrangements,

and we also find a significant divergence between Wales and the rest of Great Britain. Re-

spondents resident in Wales have significantly higher engagement with the primary care

system but lower probability of passing onto the hospital system through OP or IP consul-

tations, with a net effect of no significant difference in overall access to OP or IP care in

the marginal models. This is intriguing but cannot be pursued further owing to the small

size of the Welsh biomarker subsample (2% of the whole GB sample). We find no significant

difference between England and Scotland in marginal or conditional models.

Statistical significance does not necessarily mean that estimated effects are large enough

to matter in practice. To quantify more fully the impacts of differences in baseline demo-

graphics, SES and allostatic load, we focus on a set of sub-groups defined by their baseline

characteristics, evaluate the predicted outcome five years later, and then calculate the im-

pact on that outcome that would be generated by a hypothetical change in the baseline

characteristics defining each group. We use the following sequential Monte Carlo simulation,

conditional on the baseline covariates, where r = 1 . . .250 indexes pseudo-random replication

sequences:

(i) Draw pseudo-random Y GP
ir from the conditional distribution Pr(Y GP

i ∣XGP
i ) derivable

from the fitted model for GP consultations.

(ii) Use Y GP
ir to construct the extended covariate vectors XOP

i and XIP
i . Then evaluate

Pr(Y OP
i ∣XOP

i ) and Pr(Y IP
i ∣XIP

i ) for each individual, using the fitted models for OP and

IP consultation counts, and draw pseudo-random Y OP
ir and Y IP

ir from those distributions.

(iii) Compute any desired summary measures (means, probabilities of positive counts, etc.)

of the distribution of Y GP , Y OP , Y IP from the R replications.

This procedure is repeated (reusing the same pseudo-random number sequences), after

perturbing the covariate values appropriately. Table 2 shows the simulated impacts of nine

types: a 1-standard deviation (1σ) reduction in allostatic load for all those who are more than
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1σ above the mean; increasing age by 10 years for all members of each of five baseline age

groups; changing gender for the two gender groups in turn; increasing educational attainment

by one category for each of the unqualified and intermediate groups; and a universal 10%

increase in equivalised income.

First, note that allostatic load is a strong predictor of future healthcare demand, with

potential for a substantial reduction in resource usage if effective interventions could be

targeted on those with high allostatic load. A 1σ deviation reduction among that group

is predicted to reduce GP and OP consultations by 19% and 12% respectively, and the

more costly IP resource by over 40%. This indicates that allostatic load is a hgihly effective

predictor, particularly for relatively serious conditions requiring hospital stays.

Demographic impacts are also large. Gender differences have implications ranging from

23% to 33% for GP and OP consultations. Smaller differences of 1-7% are evident for IP

resources, confirming that the main source of gender difference is the greater engagement with

the primary care and hospital outpatient system by women than men. Age is an extremely

important factor, particularly in the oldest over-75 group for IP treatments, where a uniform

10-year increase in age raises IP utilisation by over 250%.

After controlling for allostatic load and demographics, there remains a SES gradient in

healthcare utilisation. As measured by educational attainment, the gradient is only sta-

tistically significant for IP resources, but there the effect is large: a 1-category increase in

educational attainment reduces the expected IP day count by over 50%. Although the in-

come coefficient is significant at the 5% level in the GP count model, the magnitude of the

implied impact is small – a 10% increase in equivalised income is estimated to cut utilisation

only by about 1%.

17



Table 2: Estimated impacts of personal characteristics on expected resource utilization
counts

Base sample Mean % change Base % change
and base in mean proportion in positive
variation count count positive count

GP consultations
High allostatic load - 1σ 3.12 -18.9 0.75 -5.4
Age 16-29 + 10 years 1.94 -5.1 0.62 0.5
Age 30-44 + 10 years 2.01 -2.4 0.65 -0.1
Age 45-59 + 10 years 2.12 1.4 0.67 0.7
Age 60-74 + 10 years 2.51 4.1 0.70 1.1
75 and over + 10 years 2.97 5.2 0.74 1.1
Males → female 1.80 26.9 0.62 10.0
Females → male 2.45 -23.2 0.72 -9.1
No qualifications → intermediate 2.70 -7.4 0.72 -2.1
Intermediate → degree 2.13 -1.6 0.66 -0.5
All incomes + 10% 2.16 -1.3 0.67 -0.4

OP consultations
High allostatic load - 1σ 1.80 -12.4 0.46 -4.9
Age 16-29 + 10 years 1.03 -3.6 0.36 -1.0
Age 30-44 + 10 years 1.05 5.1 0.37 2.8
Age 45-59 + 10 years 1.18 16.7 0.39 6.9
Age 60-74 + 10 years 1.63 37.4 0.44 10.2
75 and over + 10 years 2.58 62.0 0.51 9.7
Males → female 1.04 32.3 0.35 17.5
Females → male 1.42 -28.5 0.42 -16.5
No qualifications → intermediate 1.53 7.1 0.43 2.5
Intermediate → degree 1.28 -11.6 0.40 -4.9
All incomes +10% 1.25 -1.0 0.39 -0.4

IP days
High allostatic load - 1σ 0.94 -43.5 0.07 -15.4
Age 16-29 + 10 years 0.21 -22.6 0.04 -7.7
Age 30-44 + 10 years 0.18 8.9 0.04 2.9
Age 45-59 + 10 years 0.27 17.8 0.04 9.0
Age 60-74 + 10 years 0.56 70.8 0.06 16.2
75 and over + 10 years 1.94 253.5 0.08 17.4
Males → female 0.32 -1.1 0.04 10.5
Females → male 0.35 -7.1 0.05 -10.8
No qualifications → intermediate 1.10 -57.8 0.07 -24.0
Intermediate → degree 0.29 -54.5 0.05 -28.4
All incomes +10% 0.34 -1.5 0.05 -0.3
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5 Impacts on costs

Our procedure for inferring costs necessarily differs between the GP, OP and IP resource

types because of differences in the detail available from NHS reference cost statistics. In

Britain, GPs are independent contractors to the NHS and there is consequently less detailed

administrative data relating to the treatment profile of their caseloads and the corresponding

costs than there is for hospital treatments. For GP consultations we have used a single

average unit cost figure of c̄GP = £66.20 per consultation (Curtis and Burns, 2017). To exploit

this unit cost figure, we assume that the unobserved true individual-specific average cost of

a GP consultation may vary between individuals, but is uncorrelated with the number of

consultations, conditional on personal characteristics, implying that the conditional expected

cost incurred for individual i is:

E (CGP
i ∣XGP

i ) = c̄GPE (Y GP
i ∣XGP

i ) (4)

For OP cases in each treatment category j, there is a unit cost c̄OP (j) and aggregate

number of treatment episodes nOP (j), from which category proportions can be constructed

as πOP (j) = nOP (j)/∑nOP . By the same reasoning as before, we arrive at a conclusion that

E (COP
i ∣XOP

ir ) = c̄OPE (Y OP
i ∣XOP

i ), where c̄OP = ∑j π
OP (j)c̄OP (j) and XOP

ir is the covariate

vector in the OP consultation model, constructed at replication r using Y GP
ir .

Table 3 gives the results for variations in personal characteristics. Expected GP costs are

particularly high for the group with high allostatic load, the over-75 age group and the group

with no educational qualifications. The largest proportional impacts are for gender, where

women incur roughly 25% higher costs than men, after controlling for other characteristics;

and for baseline allostatic load, where a 1σ reduction for the high-allostatic load group would

reduce GP costs by almost one-fifth. Mean OP costs are uniformly higher than GP costs

across the set of baseline population groups and are proportionately much more responsive
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to variations in most personal characteristics, especially gender and ageing within the older

population.

Table 3: Predicted mean impacts of personal characteristics on annual GP and OP costs

GP consultations OP consultations
Base sample and Mean base % change Mean base % change
hypothetical variation cost in cost cost in cost
High allostatic load - 1σ £207 -18.9 £295 -12.3
Age 16-29 + 10 years £128 -5.1 £168 -3.5
Age 30-44 + 10 years £133 -2.4 £173 5.2
Age 45-59 + 10 years £140 1.4 £194 16.8
Age 60-74 + 10 years £166 4.1 £266 37.2
75 and over + 10 years £197 5.2 £420 62.4
Males → female £119 26.9 £171 32.6
Females → male £162 -23.2 £231 -28.5
No qualifications → intermediate £179 -7.4 £251 7.1
Intermediate → degree £141 -1.6 £208 -11.6
All incomes + 10% £143 -1.3 £205 -1.0

For IP cases, we have much richer cost and caseload information (section 2.3). For each

treatment category, we observe caseload broken down by age group and (separately) by

gender. We also observe average unit cost and upper and upper and lower quartiles of unit

cost for normal length episodes. Treatment categories are further separated into elective (E),

non-elective long stay (NEL) and non-elective short stay defined as 2 days or less (NES). We

treat these types as separate categories, exploiting the fact that caseload, unit cost and mean

length of stay (but not other episode characteristics) are broken down by type of episode.

We follow NHS reporting practices which report episode unit costs for durations within

a specified limit (“trim point”) and a lower unit cost for “excess stays” – the part of any

episode beyond the trim point. So, for the jth treatment category, the episode-specific cost

function is:

cj(Y ) = θ1j min(Y,Tj) + θ2j max(0, Tj − Y ) (5)

where Tj is the trim point, θ1j is the per diem unit cost for “inlier” episodes completed within

the normal time and θ2j is the per diem unit cost for excess days.
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To incorporate the unit cost information, in each replication of the Monte Carlo simula-

tion outlined in section 4, we construct an individual-specific probability of each treatment

type, conditional on the simulated treatment duration and observed characteristics of each

individual. Those probabilities are then used to calculate the conditional expected treat-

ment cost, which is then averaged over the 250 Monte Carlo replications. The procedure is

necessarily complex and is set out in detail in Appendix 2.

The first panel of Table 4 summarises two alternative cost estimates. The first uses

only the simulated IP duration to tailor treatment type probabilities to individuals; the

second uses duration, age group and gender to tailor the treatment probabilities. Perhaps

surprisingly, the use of demographic information changes the simulated costs rather little.

The predictive power of allostatic load is again clear. The subgroup with allostatic load

more than 1σ above the mean are predicted to generate a mean total cost of just over

£320 five years later (compared to a mean prediction of approximately £175 for the whole

sample). If allostatic load were hypothetically reduced by 1σ for each member of this group,

the implications would be a reduction of almost a quarter in their future IP costs, so there

is clear scope for a hypothetical effectively-targeted intervention to reduce health care costs

significantly.

As anticipated, the influence of age on cost is very strong: simulated average IP cost for

people aged over 75 is approximately £450, over three times the per capita cost generated

by the 16-29 age group. Moreover, these costs increase steeply with further ageing: adding

10 years to the age of each person in the older group is predicted to increase their average

IP costs by over 50%. Gender differences in IP costs are modest – less than half the size of

corresponding differences in GP and OP costs (Table 3).

The SES gradient in IP costs differs from the gradients evident in GP and OP costs.

Although we again find no significant evidence of an income gradient, the cost differences

between classes defined by educational attainment are much larger. The simulated increase in
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IP costs caused by hypothetically raising attainment from the unqualified to the intermediate

level or from intermediate to degree level is around 35%.

The second panel of Table 4 combines the results for GP, OP and IP costs to give a

picture of the overall influences on total direct treatment costs and confirms the general

picture of major impacts of allostatic load, demographic differences and education-related

SES.

Table 4: Predicted mean impacts of personal characteristics on annual expected IP costs
and on total costs (GP+OP+IP)

Statistical allocation on ...
duration only duration+age+gender
Mean % Mean %

Base group and base change base change
hypothetical variation cost in cost cost in cost

Conditional mean IP costs
High allostatic load - 1σ £321 -23.2 £323 -23.4
Age 16-29 + 10 years £142 -17.4 £136 -15.9
Age 30-44 + 10 years £134 2.4 £125 7.9
Age 45-59 + 10 years £163 11.7 £162 16.3
Age 60-74 + 10 years £243 30.4 £258 28.3
75 and over + 10 years £450 55.6 £442 52.4
Males → female £160 10.0 £163 6.1
Females → male £187 -11.3 £182 -8.2
No qualifications → intermediate £354 -37.1 £358 -35.3
Intermediate → degree £179 -36.6 £175 -34.5
All incomes + 10% £175 -0.8 £174 -0.1

Conditional mean total (GP+OP+IP) costs
High allostatic load - 1σ £823 -18.2 £825 -18.3
Age 16-29 + 10 years £438 -8.5 £432 -7.9
Age 30-44 + 10 years £439 2.1 £430 3.6
Age 45-59 + 10 years £496 10.8 £495 12.2
Age 60-74 + 10 years £675 26.6 £690 25.9
75 and over + 10 years £1,067 49.0 £1,059 47.6
Males → female £450 23.1 £453 21.6
Females → male £581 -21.5 £576 -20.6
No qualifications → intermediate £784 -16.2 £788 -15.5
Intermediate → degree £529 -17.4 £524 -16.5
All incomes + 10% £523 -1.0 £522 -0.8
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6 Limitations and robustness

Our analysis has significant limitations, some of which are inherent in any research in this

area. Like any survey-based analysis, our estimates are subject to possible distortion from

various types of general and item non-response, particularly related to the biomarker data

used to measure baseline health objectively. Moreover, any attempt to attach costs to health-

care utilisation involves accounting and recording errors inherent in the available reference

cost data, which are in any case averages across groups of cases rather than true individual-

specific costs and exclude some elements of medical costs (such as most community health

services).

Our methodology of statistical cost allocation rests on assumptions that seem strong

at first sight, although we would argue that they are more innocent than they appear. In

estimating IP costs, we assume each individual’s reported number of days in hospital stem

from a single episode. This is certainly true for the majority of individuals. The expected

total cost over multiple episodes is the sum of the expected cost of each so multiple episodes

have no inherent impact on expected total cost. However, we use duration in our calculation

of the individual-specific probabilities of alternative disease/treatment types, so multiple

episodes do have a modest indirect impact via the quality of cost allocation. We also assume

that different patient characteristics (age, gender etc) are distributed independently across

patients conditional on condition/treatment type, which is is far less stringent than assuming

full independence. We have found that incorporating age and gender information into the

cost simulation makes rather little difference to the cost results in Table 4, which suggests

that any breaches of the conditional independence assumption may be of little importance.

The outcomes that we study are limited. We look at healthcare utilisation five years

after the baseline as a single snapshot, rather than a long-term sequence of outcomes, and

we can say nothing directly about the duration of those impacts on the public healthcare

system. Our cost analysis is a distributional analysis in the sense that it assigns cost to the
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individual whose ill-health generates the need for treatment. That analysis contributes to

our understanding of the processes leading to escalating health costs, but it does not tell us

about the distribution of the financial burden of those costs across the population, which

depends on the redistributive nature of the tax system used to fund public healthcare costs.

Two further limitations are amenable to simple robustness checks. First, we have used

English NHS reference costs to the whole sample, which includes individuals resident in

Wales and Scotland. We now investigate robustness by repeating the model estimation

and cost analysis on a sample restricted to English residents (93% of the full GB sample).

Second, in constructing our allostatic load health measure, we ignored the fact that someone

with biomarkers maintained at clinically low levels using medication may have an underlying

health state different to someone with similar biomarker levels maintained naturally. We now

repeat the analysis, excluding individuals who, at baseline, were taking statins or medication

for high blood pressure, cardiovascular conditions, diabetes or respiratory conditions. This

effectively tightens the criterion we used for limiting the sample to those apparently in good

health, and reduces the sample size by 9%. Table 5 summarises the result of re-running

the simulation of GP, OP and IP costs using the full and restricted samples in each case

(parameter estimates of the count data models are given in Appendix Tables A3 and A4).

The England-only results are very close to those obtained for the full GB sample, so our

earlier results are geographically robust for England – and also for Scotland and Wales if

the reference treatment unit costs for England are representative of NHS Scotland and NHS

Wales also.

The differences are larger when we restrict the sample to those not taking medications

at baseline. There are two aspects of these changes: the impact of restricting the sample

on the estimated parameters of the count data models; and the change in membership of

the population groups. Comparison of Tables 1 and A4 confirms that the impact on the

estimated model parameters is very slight, so the differences in Table 5 are primarily the
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result of changes in the size and composition of the population groups considered. The

presence of respondents who report no diagnosed conditions despite taking medications is

itself the result of two factors: under-reporting of diagnosed conditions and the prescribing

of medication without a formal diagnosis.16

As Table 5 shows, for most population groups the effect of the exclusion is to reduce the

expected average cost, by a large amount in some cases: 38% for people with no educational

qualifications, 17% for those with high baseline allostatic load and 13% for the oldest group.

In two important cases, the sample exclusion makes a major difference to the estimated

impact of changing the group’s defining characteristic. For those with no qualifications,

the impact of adding an intermediate-level qualification changes from -15% to +28%, which

indicates that taking prescribed medication can act as a strong indicator of the SES gradient

at low educational levels (see also Powdthavee (2010)). For the older group, the sample

exclusion greatly increases the estimated impact of ageing, with the impact of a 10-year

increase in age changing from 48% to 71%.17

16The latter is particularly common for statins which are often prescribed as a prophylactic measure rather
than treatment for a specific condition – 41% of those excluded because of medication were taking statins
only.

17The no-qualification, age 60-74 and over-75 groups had the greatest proportions of people on medication
at baseline: 21%, 22% and 37% respectively, compared to 9% for the sample as a whole.
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Table 5: Robustness checks: alternative estimates of total costs (GP+OP+IP)

Full sample England only No medication
Base sample Mean change Mean change Mean change
and base in mean base in mean base in mean
variation cost cost cost cost cost cost
High allostatic load - 1σ £825 -18.3% £832 -14.6% £689 -15.7%
Age 16-29 + 10 years £432 -7.9% £446 -8.5% £445 -12.5%
Age 30-44 + 10 years £430 3.6% £432 3.4% £399 3.4%
Age 45-59 + 10 years £495 12.2% £496 11.5% £444 17.6%
Age 60-74 + 10 years £690 25.9% £684 25.9% £606 39.9%
75 and over + 10 years £1,059 47.6% £1,079 44.2% £942 71.2%
Males → female £453 21.6% £399 25.2% £399 25.2%
Females → male £576 -20.6% £516 -23.4% £516 -23.4%
No qualifications → intermediate £788 -15.5% £765 -13.1% £487 28.2%
Intermediate → degree £524 -16.5% £528 -14.8% £518 -19.4%
All incomes +10% £522 -0.8% £524 -0.9% £465 -0.5%

7 Discussion and conclusions

In this paper we have adopted a forward-looking approach to explore the predictive power

of biomarkers and other personal characteristics on the utilisation of health services and

associated costs, five years later. To the best of our knowledge, it is the first analysis of its

kind. Using data from UKHLS on a group of individuals with no history of diagnosed health

conditions, we find that a biomarker-based approximation to allostatic load that reflects

pre-diagnosed and pre-symptomatic pathways (Goldman et al., 2006; Geronimus et al., 2006;

Turner et al., 2016; Seeman et al., 2004) is a powerful predictor of future burden for the GP

and hospital healthcare systems, both in terms of service utilisation and healthcare costs.

Our analysis also indicates the demographic and SES characteristics most strongly asso-

ciated with future treatment costs and this has highlighted some interesting aspects. There

is a large gender difference for GP and OP utilisation levels and costs of around 25% between

women and men. The finding of gender differences in primary healthcare utilisation is not

new (Wang et al., 2013). However, we have also found that the gender difference is negligible
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for IP costs, suggesting that GP and OP resources are driven more by demand and less by

clinicians’ assessment of need than is the case for more serious IP treatments. We offer no

judgements about whether men’s demand for primary care is too low and women’s too high

in any sense but, if attempts to encourage men to use primary care services to the same

extent as women (as recommended by WHO (2018)) were successful, our results suggest

that there would be a very large increase in healthcare costs as a consequence. That would

need to be incorporated into the resourcing of interventions targeted at men.

Another interesting feature of our estimates is the combination of a large education-

related gradient and quantitatively negligible gradient with respect to current income. This

suggests that the SES gradient in treatment costs might have its basis in long-run human

capital accumulation or social norms linked to social class, rather than current access to

economic resources. That would in turn suggest that redistributive policy would have quite

limited impact on treatment costs in the short to medium term, and that more far-reaching

social reform than simple income redistribution might be required to address the SES gradient

in healthcare need. This is consistent with some recent evidence relating to some specific

healthcare services (Terraneo, 2015; Labeit and Peinemann, 2017), but our finding of a large

difference between the impact of education on primary care and on hospital inpatient care

appears to be new.

The predictive power of personal characteristics and biomarker-based health measures

gives a possible basis for sophisticated tailoring preventive interventions. A measure similar

to our allostatic load proxy could be constructed from information gathered in the NHS

England Health Check introduced in 2009, which offers quinquennial check-ups including

blood tests. There are concerns about low low take-up (Robson et al., 2016), which is a

potential obstacle for any such preventive measure. However, the NHS Health Check is

available to all adults aged 40-74 and thus targeted only on age in a simple way and our

findings suggest that more tailored targeting could identify better the population groups with

highest potential future healthcare needs and costs. Of course, for this to be worthwhile,
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there needs to be an effective follow-up intervention that can be used to reduce those future

costs to the individuals themselves and wider society. The evidence so far on the ability of

the NHS Health Check to prompt change to reduce disease risks (Chang et al., 2016; Hinde

et al., 2017) is controversial, but it is possible that a more assertive and better-targeted

intervention might be cost-effective.

There is a continuing debate on capitation-based payments that are currently used to

allocate budgets to GPs, and its possible extension as the future payment system for two

models of care by NHS England (Brilleman et al., 2014; Shepherd, 2017). A potential policy

application of our findings is in refining the design of capitation payment systems by re-

orienting the capitation formula to match more closely patient level morbidity data and

other demographic and SES characteristics (Shepherd, 2017). This offers the prospect of

improved allocation of resources as well as health outcomes by reducing incentives for health

providers to “cream skim” the patient population by selecting patient groups with lower

expected future healthcare costs.

In addition to these substantive contributions, we have also made some new method-

ological developments. Our econometric procedure has extended the standard zero-inflated

negative binomial regression model to allow estimation from count data reported by sur-

vey respondents in interval form, rather than as exact counts. The accompanying software

(Pudney, 2018) makes this technique widely available.

We have also developed a simple simulation-based method of assigning costs to the ser-

vice utilisation levels predicted by our count data models. The matching of administrative

records such as HES data to survey data is often seen as an ideal solution to the diffi-

cult problem of analysing utilisation and costs at the individual level. However, suitable

matched datasets are not currently available and, in any case, low consent rates mean that

matching introduces additional assumptions which may be questionable.18 We argue that

18Alternative assumption-free partial identification methods of dealing with non-consent and missing data
typically yield rather uninformative results (Manski, 2003).
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other approaches resting on alternative assumptions should be used in parallel as part of

a robust research picture. For inpatient treatment episodes, we have developed a method

of statistical allocation of costs that assigns multiple treatment types, with corresponding

individual-specific probabilities to each survey respondent, using reported duration and de-

mographic characteristics to presonalise the assignment. This can be done for the whole

sample rather than the subgroup of respondents who consent to data matching.
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Appendix 1: Additional Figures and Tables

Figure A1: Distribution of the number of GP consultations in the preceding 12 months by
age

Figure A2: Distribution of the number of OP consultations in the preceding 12 months by
age

34



T
ab

le
A

1:
C

om
p
ar

is
on

of
G

P
u
ti

li
sa

ti
on

co
u
n
ts

in
U

K
H

L
S

w
it

h
ad

m
in

is
tr

at
iv

e
d
at

a

M
en

W
om

en
A

d
m

in
is

tr
at

iv
e

d
at

a
U

K
H

L
S

d
at

a
A

d
m

in
is

tr
at

iv
e

d
at

a
U

K
H

L
S

d
at

a
m

ea
n

m
ea

n
95

%
C

I
m

ea
n

m
ea

n
95

%
C

I
E
n
gl
an

d
A

ge
15

-2
4

1.
36

2
1.

33
9

1.
24

4;
1.

43
5

2.
96

5
2.

78
3

2.
63

2;
2.

93
5

A
ge

25
-4

4
1.

77
2

1.
68

8
1.

60
8;

1.
76

8
3.

53
5

3.
26

9
3.

15
6;

3.
38

3
A

ge
45

-6
4

2.
84

0
2.

63
9

2.
53

4;
2.

74
2

3.
97

6
3.

40
6

3.
29

4;
3.

51
8

A
ge

65
-7

4
4.

52
9

3.
52

3
3.

33
4;

3.
71

1
5.

03
4

3.
52

8
3.

35
3;

3.
70

3
A

ge
75

+
6.

24
5

4.
42

3
4.

14
6;

4.
70

0
6.

52
1

4.
33

6
4.

09
1;

4.
58

1
T

ot
al

(a
ge

15
+

)
2.

71
7

2.
45

1
2.

38
3;

2.
51

8
4.

04
5

3.
37

3
3.

30
9;

3.
43

6
S
co
tl
an

d
15

-2
4

1.
42

8
1.

44
5

1.
09

4;
1.

79
7

3.
22

8
2.

81
4

2.
29

2;
3.

33
5

25
-3

4
1.

61
2

1.
90

1
1.

25
2;

2.
55

0
3.

37
3

3.
25

9
2.

51
0;

4.
00

8
35

-4
4

1.
94

2
1.

54
0

1.
12

6;
1.

95
2

3.
41

8
3.

49
3

2.
86

3;
4.

12
3

45
-5

4
2.

20
7

2.
25

3
1.

80
9;

2.
69

8
3.

46
7

3.
13

5
2.

60
5;

3.
66

4
55

-6
4

2.
87

1
3.

10
2

2.
57

2;
3.

63
3

3.
73

1
3.

19
4

2.
74

7;
3.

64
3

65
-7

4
3.

71
9

3.
30

7
2.

70
3;

3.
91

3
4.

22
8

3.
60

0
3.

01
4;

4.
17

9
75

+
5.

32
9

4.
35

2
3.

36
1;

5.
34

4
5.

50
2

3.
61

3
2.

83
6;

4.
39

0
T

ot
al

(a
ge

15
+

)
2.

46
5

2.
58

5
2.

36
3;

2.
80

6
3.

76
8

3.
29

3
3.

06
7;

3.
51

8

T
h

e
ag

gr
eg

at
e

ad
m

in
is

tr
at

iv
e

d
at

a
b
y

ag
e

gr
o
u

p
s

a
n

d
g
en

d
er

fo
r

E
n

g
la

n
d

,
b

a
se

d
o
n

th
e

m
o
st

re
ce

n
t

d
a
ta

fr
o
m

th
e

C
li

n
ic

a
l

P
ra

ct
ic

e
R

es
ea

rc
h

D
at

al
in

k
(2

01
3-

20
14

p
er

io
d

),
ar

e
ex

tr
a
ct

ed
fr

o
m

H
o
b

b
s

et
a
l.

(2
0
1
6
).

T
h

es
e

ra
te

s
a
re

in
cr

ea
se

d
b
y

1
.3

p
er

ce
n
t

(a
n

a
n

n
u

a
li

se
d

in
cr

ea
se

b
as

ed
on

a
li

n
ea

r
tr

en
d

d
er

iv
ed

b
y

G
P

u
ti

li
sa

ti
o
n

d
a
ta

fo
r

th
e

2
0
0
7
/
2
0
0
8

to
2
0
1
3
/
1
4

p
er

io
d

)
to

p
ro

je
ct

th
e

co
rr

es
p

o
n

d
in

g
G

P
co

n
su

lt
at

io
n

s
ra

te
s

fo
r

th
e

20
16

/2
01

7
p

er
io

d
(t

o
b

e
co

m
p

a
ra

b
le

to
th

e
U

K
H

L
S

w
av

e
7

ti
m

e
p

er
io

d
).

T
h

e
G

P
co

n
su

lt
a
ti

o
n

ra
te

s
fo

r
S

co
tl

an
d

ar
e

ad
m

in
is

tr
at

iv
e

d
at

a
fo

r
20

17
(I

S
D

S
co

tl
a
n

d
,

2
0
1
7
).

U
K

H
L

S
m

ea
n

s
a
re

b
a
se

d
o
n

im
p

u
ta

ti
o
n

s
fr

o
m

g
ro

u
p

ed
N

B
m

o
d

el
s

es
ti

m
at

ed
se

p
ar

at
el

y
fo

r
E

n
gl

an
d

an
d

S
co

tl
an

d
u

si
n

g
th

e
U

K
H

L
S

w
av

e
7

d
a
ta

.

35



Table A2: Comparison of OP and IP utilisation counts in UKHLS with administrative data

Administrative data UKHLS mean 95% CI
Outpatient and day-patient cases

England (age 15+) 1.667 1.600 1.561; 1.638
Scotland (age 15+) 1.726 1.520 1.404; 1.636

Number of inpatient days
England (age 15+) 0.644 0.706 0.638; 0.775

OP rates are based on administrative data, extracted from national schedules of reference costs
NHS Improvement (2017) and Scottish Health Service Costs (ISD Scotland, 2017) for England
and Scotland, respectively. Administrative data on IP days for England are extracted from NHS
Digital (2017). UKHLS means for OP consultations are based on imputations from grouped NB
models estimated separately for England and Scotland using the UKHLS wave 7 data.
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Table A3: Estimated parameters for grouped negative binomial models of GP, OP and IP
utilisation: English sub-sample

OP model IP model
Parameter GP marginal conditional marginal conditional

Allostatic load 0.213*** 0.125** -0.014 0.544*** 0.261
(0.038) (0.055) (0.071) (0.167) (0.181)

age50 -0.046 0.050 0.059 0.269* 0.158
(0.031) (0.047) (0.048) (0.159) (0.143)

agesq 0.019 0.025 0.007 -0.019 -0.050
(0.017) (0.026) (0.028) (0.083) (0.076)

agemale 0.133*** 0.178** 0.143* -0.444** -0.237
(0.045) (0.071) (0.075) (0.220) (0.203)

agesqmale -0.028 0.021 0.061 0.239* 0.258**
(0.026) (0.039) (0.042) (0.129) (0.115)

male -0.205*** -0.348*** -0.341*** -0.560 -0.712*
(0.079) (0.125) (0.122) (0.407) (0.386)

intermed -0.004 0.070 0.107 0.502 0.718**
(0.068) (0.106) (0.106) (0.326) (0.304)

noqual 0.052 -0.051 -0.054 0.703 1.442**
(0.094) (0.149) (0.154) (0.576) (0.718)

lnincome -0.147*** -0.117* 0.006 -0.182 0.104
(0.047) (0.064) (0.062) (0.232) (0.204)

GPcat2 0.811*** -1.745**
(0.151) (0.743)

GPcat3 1.571*** -1.439*
(0.156) (0.764)

GPcat4 1.994*** -0.471
(0.171) (0.822)

GPcat5 2.974*** 1.097
(0.243) (0.787)

cons 1.859*** 1.108** -0.927* -0.336 -1.206
(0.363) (0.495) (0.476) (1.836) (1.671)

ln(α) 0.017 1.076*** 0.669*** 3.858*** 3.278***
(0.058) (0.060) (0.084) (0.125) (0.156)

GP0 14.095***
(0.749)

cons -11.783***
(0.558)

N 2144.000 2144.000 2144.000 2144.000 2144.000
AIC 5610.102 4574.433 4247.375 1410.677 1347.004
BIC 5672.476 4636.808 4332.432 1473.052 1443.402
§ Age measured in decades from an origin of 50. Standard errors in parentheses. Sample size N = 2314.

Statistical significance: * = 10%, ** = 5%, *** = 1%.
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Table A4: Estimated parameters for grouped negative binomial models of GP, OP and IP
utilisation: No medications at baseline

OP model IP model
Parameter GP marginal conditional marginal conditional

Allostatic load 0.214*** 0.149*** -0.002 0.472*** -0.062
(0.039) (0.057) (0.073) (0.159) (0.197)

age50 -0.081** 0.024 0.065 0.376** 0.428***
(0.034) (0.051) (0.052) (0.157) (0.159)

agesq 0.010 0.025 0.018 0.026 0.035
(0.018) (0.028) (0.030) (0.084) (0.085)

male -0.218*** -0.346*** -0.333*** -0.272 -0.239
(0.081) (0.129) (0.125) (0.356) (0.378)

agemale 0.166*** 0.212*** 0.151* -0.408* -0.311
(0.047) (0.078) (0.080) (0.220) (0.236)

agesqmale -0.020 0.037 0.066 0.194 0.192
(0.027) (0.043) (0.045) (0.124) (0.121)

noqual 0.052 -0.056 -0.088 -0.572 -0.200
(0.102) (0.154) (0.159) (0.471) (0.451)

intermed 0.014 0.086 0.118 0.723** 1.030***
(0.069) (0.110) (0.110) (0.348) (0.330)

lnincome -0.142*** -0.105 0.031 -0.183 0.393**
(0.048) (0.067) (0.066) (0.243) (0.185)

wales 0.577*** -0.047 -0.619** -0.238 -2.253***
(0.216) (0.424) (0.315) (1.012) (0.759)

scot 0.048 -0.207 -0.350* 0.278 -1.501**
(0.143) (0.252) (0.211) (0.890) (0.637)

1.loGP 0.793*** -0.701
(0.148) (0.868)

3.loGP 1.533*** -0.253
(0.155) (0.896)

6.loGP 1.840*** 0.752
(0.173) (0.965)

11.loGP 3.188*** 3.514***
(0.253) (0.925)

cons 1.775*** 0.951* -1.129** -0.610 -4.954***
(0.371) (0.519) (0.509) (1.963) (1.780)

ln(α) 0.040 1.123*** 0.717*** 3.949*** 3.132***
(0.060) (0.062) (0.085) (0.130) (0.162)

inflate
GP0 12.896***

(2.017)
cons -11.049***

(1.914)
N 2109.000 2109.000 2109.000 2109.000 2109.000
AIC 5449.543 4361.401 4047.284 1231.593 1150.856
BIC 5523.045 4434.903 4143.402 1305.094 1258.281
§ Age measured in decades from an origin of 50. Standard errors in parentheses. Sample size N = 2314.

Statistical significance: * = 10%, ** = 5%, *** = 1%.
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Appendix 2: Allocation of costs for inpatient days

The aim here is to construct an estimate of the individual’s expected treatment cost C,

conditional on his or her personal characteristics X. There are two cases; the simpler setting

is where we have data from administrative records on the full distribution of X conditional

on the treatment category j. This is the case if we use only age variables or only gender

variables as covariates in the IP count data model, since we the NHS administrative data

give separate age and gender breakdowns of unit cost and caseload. A more problematic

setting is where X is a vector and we only have univariate marginal distributions of a subset

of the variables in X-variable. This is relevant if we use a full range of demographic and

SES as covariates in X.

Let Y be the episode duration and cj(Y ) be the cost function (5). The probability func-

tion f(Y, j,X) represents the distribution across IP episodes of treatment type and duration

and personal characteristics of the patient and is defined as the probability of a randomly-

selected episode being treatment type j for length of stay Y received by a person with

characteristics X. We also use f(.) as generic notation for any conditional or marginal dis-

tribution derived from f(Y, j,X), with the type of distribution defined by the argument list.

The count data model for duration in days gives a distribution h(Y ∣X) which is conditional

on X but not on the treatment type which is unobserved in the UKHLS.

Write X = (A,G,S), where A represents age variables, G is a gender indicator and S is

a set of SES descriptors. The difficulty here is that we observe separate treatment-specific

marginal distributions Y ∣j, A∣j and G∣j but not their joint distribution, and we have no

information at all on the distribution of S within treatment categories. The simplest way of

using this information is to make the conditional independence assumption Y á A á G á ∣j,

which implies f(Y, j,A,G,S) = f(Y ∣j)f(A∣j)f(G∣j)f(S∣j)f(j). This is much less restrictive

than full independence, since it allows the duration, demographic and SES composition of

patient groups to be completely different in different treatment categories.
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Under these assumptions, the conditional expectation of cost is:

E(C ∣Y = y,X) =
∑

J
j=1 cj(y)f(y∣j)f(A∣j)f(G∣j)f(S∣j)f(j)

∑
J
j=1 f(y∣j)f(A∣j)f(G∣j)f(S∣j)f(j)

(A1)

This structure is not operational, since f(S∣j) is unobserved. To overcome this, make the

further assumption that the weighted covariance over treatment categories between cj(y)

and f(S∣j) is zero for any y and any S:

∑
j

wjcj(y)f(S∣j) − (∑
j

wjcj(y))(∑
j

wjf(S∣j)) = 0 (A2)

where the weight wj is:

wj =
f(y∣j)f(A∣j)f(G∣j)

∑j f(y∣j)f(A∣j)f(G∣j)
(A3)

Assumptions (A1) and (A2) imply E(C ∣Y = y,X) = ∑j wjcj(y)f(S∣j)/∑j wjf(S∣j) = ∑j wjcj(y)

and thus E(C ∣Y = y,X) does not depend on S:

E(C ∣Y = y,X) =
∑

J
j=1 cj(y)f(y∣j)f(A∣j)f(G∣j)f(j)

∑
J
j=1 f(y∣j)f(A∣j)f(G∣j)f(j)

(A4)

In other words, expected cost may depend on SES characteristics, but that dependence dis-

appears if we also condition on treatment duration - people with different SES characteristics

incur different costs only because they tend to have different IP durations.

Overall expected cost is:

E(C ∣X) = ∑
y

h(y∣X)
∑

J
j=1 cj(y)f(y∣j)f(A∣j)f(G∣j)f(j)

∑
J
j=1 f(y∣j)f(A∣j)f(G∣j)f(j)

(A5)

Exactly the same approach can be used without exploiting age and gender information,

by simply removing the terms f(A∣j)f(G∣j) from (A5). This allows us to assess the role of

demographic characteristics in converting utilisation counts into expected costs.
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