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Non-technical summary 

A researcher may be interested in analysing a policy intervention where the outcome of interest is 

continuous, such as wages or expenditure. Difference-in-differences (dif-in-dif) is a popular method 

applied to analyse such interventions. A common way for the researcher to proceed is to take the 

logarithm of the outcome under study (log-linearisation).  

In this paper, we build on existing results scattered in the literature, to point out particular problems 

of log-linearisation when using a dif-in-dif approach. We argue for the use of an alternative strategy 

(pseudo maximum likelihood estimation) that works with the non-transformed outcome on the 

grounds that: 

1. Log-linearisation complicates the application of the standard dif-in-dif assumptions, which 

refer to the non-transformed outcome and not its logarithm. We document that this point is 

typically not discussed in the dif-in-dif literature.  

2. Even if the standard assumptions are correct, they may not be sufficient to identify the 

policy effect of interest by using the standard method (OLS) on the logarithm of the 

outcome.  This occurs when there are policy effects that go beyond effects on the average of 

the outcome (eg. the policy impacts on the variance of the outcome). 

3. We show that if the response to a policy intervention differs across affected individuals, then 

results from a log-transformed model do not generally have a meaningful interpretation.  

We provide both a simulation exercise and evidence from an original real world policy intervention – 

the introduction of the Educational Maintenance Allowance in the UK - to illustrate our arguments. 

Results from our simulation show that the commonly used methods can lead to misleading 

estimates of the effect of interest, even in the presence of small increases in variance associated 

with the policy intervention. An alternative approach based on a non-linear estimator, on the other 

hand, is capable of correctly estimating the average effect of the policy. 

In our real world policy example, we study the effects of the Educational Maintenance Allowance 

(EMA) on household expenditure patterns. EMA was a conditional cash transfer introduced in the UK 

in 2004 and paid to young people staying on in post-16 full-time education. Results from log-

linearisation suggest that EMA had no impact on households' expenditure, while our preferred 

method shows an increase in transport spending. 
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We consider a difference-in-differences setting with a continuous outcome,

such as wages or expenditure. The standard practice is to take its logarithm

and then interpret the results as an approximation of the multiplicative treat-
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1 Introduction

In applied empirical research, it is common to replace continuous outcomes, such

as earnings or expenditure, with their logarithm. Often, the choice is motivated

by distributional concerns, like skewness, and related estimation problems. In the

difference-in-differences (dif-in-dif) setting, the desire to give a causal interpretation

to the estimates complicates the choice. The model the researcher has in mind is

usually one with multiplicative effects, which are linearised taking logs. If this is

the case, the assumptions needed for causal inference refer to the non-transformed

model. In general, this is not explicitly discussed.

To explore the attention received by this issue in the dif-in-dif literature, we

reviewed papers published in one top journal with an empirical focus, the Quarterly

Journal of Economics, between 2001-2011. A table with complete references is avail-

able in Appendix A. In total, 25 papers using a dif-in-dif estimator with continuous

outcomes were found. In 9 cases, the outcome is not transformed and an additive

model is estimated. We found 16 papers in which at least one outcome is expressed

in logarithmic form. The variables most commonly log-transformed are earnings and

productivity, followed by a group of other monetary quantities including expendi-

ture, land value, exports and loans. In only 5 out of 16 cases is an explicit reason for

the log-transformation given. For example, Nunn and Qian (2011) refer to concerns

about skewness in the dependent variable, whereas DellaVigna and Kaplan (2007)

state that they wish to account for percentage changes in the control variables. In

general, no discussion of the impact of the log transformation on the causal inter-

pretation is given. Only Finkelstein (2007) states that the OLS estimates for the log

of the dependent variable relate to E(ln(y|x)), and not ln(E(y|x)). To provide esti-

mates of ln(E(y|x)), Finkelstein (2007) estimates a generalised linear model (GLM)

with log links.1

1Whilst this literature review illustrates the possible extent of the problem in the dif-in-dif
literature, we do not argue that estimates of treatment effects in the dif-in-dif setting will always
be misleading. As we discuss in section 2, this is an empirical question and will depend on the
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Previous theoretical literature on non-linear dif-in-dif mostly focused on the in-

terpretation of the interaction effect. Mullahy (1999) discussed the case of a log-

linearised exponential model. Ai and Norton (2003) showed that in non-linear mod-

els the marginal effect of the interaction term is not directly related to its coefficient

in the linear index. However, Puhani (2012) recently argued that their way of cal-

culating the marginal effect is not the correct one for the dif-in-dif case. A separate

stream of research, not directly related to dif-in-dif, focused on the estimation of

exponential models (Mullahy, 1997; Manning, 1998; Manning and Mullahy, 2001;

Ai and Norton, 2008). Santos Silva and Tenreyro (2006) showed that the OLS

estimator of the log-linearised model may not be consistent for the parameter of in-

terest. Blackburn (2007) discussed how to estimate wage differentials without using

logarithms.

In this paper we attempt to reconcile the two streams of research for the dif-in-dif

case. Our main aim and contribution is to recollect in a unified setting a number of

results that are scattered in the literature, in order to provide the practitioner with

a clear guide on the choice of modelling and estimation. Using a potential outcome

framework, we reinterpret previous findings to argue that the choice between a

multiplicative and an additive model is fundamental to the causal interpretation of

the estimands. This choice should be taken before deciding whether or not to take

logs, which should be understood as an estimation strategy rather than a matter of

model specification.2

Specifically, we point out in section 2 that the choice between an exponential or

a level model is essentially related to the common trends assumption. Differently,

whether the treatment effect is multiplicative or additive does not make a large

particular research question and data set under study.
2Bertrand et al. (2004) discussed how serial correlation may severely bias inference in dif-in-

dif, because conventional standard errors are likely to underestimate the true standard deviation.
We do not discuss how to account for this problem in exponential models. However, the main
example throughout their paper has log (wage) as the dependent variable, so that the problems
discussed here also apply in their context. Given that they proposed to collapse data over the pre-
treatment and post-treatment period, further research might try to understand whether averaging
logs introduces a different source of bias.
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difference, at least from an ex− post evaluation perspective. Although this follows

from different results available in the literature, we could not find a reference that

made this important point explicit. In terms of estimation, building on Santos Silva

and Tenreyro (2006), but focusing on the dif-in-dif case, we set out the restrictive

conditions under which treatment effects from the log-linear model are equivalent to

treatment effects from an exponential specification. Our favourite interpretation of

this problem is that the log-linearised estimates of a multiplicative treatment effect

may confound distributional effects with shifts in the mean.

Fortunately, different authors (Mullahy, 1997; Santos Silva and Tenreyro, 2006;

Blackburn, 2007) have pointed out that to estimate a multiplicative effect there is

no need to log-linearise, because a simple and robust non-linear estimator (Poisson

Pseudo-Maximum Likelihood) is available. Although Gregg et al. (2006) noted that

it is possible to recover a percentage treatment effect from linear OLS in levels,

we point out that one cannot give a causal interpretation to both the additive and

multiplicative model. We also correct their calculation in order to properly account

for a multiplicative time trend.

We finally show that, in the case of heterogeneous effects, the exponential dif-

in-dif model with a conditional mean assumption does not identify the average mul-

tiplicative effect, but rather the multiplicative effect on the average. Moreover, the

necessary conditions for the latter to be consistently estimated using log-linearisation

are less likely to hold with heterogeneous effects. To the best of our knowledge, these

two results were not discussed in the dif-in-dif literature, although they are partially

related to a comment by Angrist (2001).

In section 3 we present an original applied example. We study the impact on

households’ expenditure of the introduction of the Educational Maintenance Al-

lowance (EMA) in the UK. In section 4 we present a simulation to illustrate our

main arguments. Section 5 concludes and summarises the discussion in terms of a

guideline for practitioners.
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2 Model specification and inference

A practitioner willing to estimate a dif-in-dif model with a continuous outcome, such

as wages or expenditure, usually faces three main decisions:

1. Shall I model the time trend in additive or in multiplicative form? And shall I

report the treatment effect as a difference in levels, or as a percentage change?

2. How can I estimate the model? Shall I take logs?

3. What kind of average effect is identified by my model?

We argue that these points should be addressed independently, in order to cor-

rectly separate model specification from estimation. The next three subsections are

dedicated to these issues.

2.1 Multiplicative or additive effects?

The simplest, though quite popular dif-in-dif setting involves two groups (g ∈ {con-

trol, treated}) and two time periods (t ∈ {pre,post}), with only one group actually

receiving the treatment in the second period. In this paper, we analyse the case of

a continuous outcome y, such as earnings or consumption.

Several assumptions are required in order to identify the causal effect of the

treatment. We draw attention on those related to the functional form. These depend

on which feature of the distribution of y we are interested in. Here we focus on the

expected value, which is usually the target in program evaluation using dif-in-dif.

First, we specify a model for the expected value of y when non treated (y0igt),

conditional on g and t. The second step is to assume how the expected value of the

potential outcome when treated (y1igt) is related with the expected y0igt. In levels,

we would state (Angrist and Pischke, 2009):

E [y1igt|g, t] = E [y0igt|g, t] + δ∗ = µ∗
g + λ∗t + δ∗. (1)

4



where we combine an additive common trends assumption with an additive treat-

ment effect.3

Differently, one might specify an exponential model

E [y0igt|g, t] = exp (µg + λt) (2)

where the assumption of common trends is in multiplicative form.4 Over time,

the outcome in the absence of treatment would increase by the same percentage

(exp (λpost − λpre)−1) in both groups. Now we can assume a proportional treatment

effect:
E [y1igt|g, t]− E [y0igt|g, t]

E [y0igt|g, t]
= exp (δ)− 1. (3)

where δ is a parameter on the linear index of the exponential model. We do not

need a constant proportional treatment effect to identify the quantity on the left

hand side of (3). However, if there are heterogeneous effects, exp (δ)− 1 is not the

average of the individual multiplicative effects, but rather a multiplicative effect on

the average. More precisely, it identifies the multiplicative effect on the average for

the treated group. A similar discussion, related to IV estimation of an exponential

model with treatment effects, can be found in Angrist (2001, pg. 9). We return to

this issue in section 2.3.

To be precise, the key difference between the exponential model and the linear

one is in the common trends assumption. The choice of a multiplicative or additive

treatment effect plays a less important role. If we are only interested in the ex-post

evaluation problem, in the spirit of DiNardo and Lee (2011), we may just want to

understand which share of the treated-control difference should be attributed to the

treatment. With multiplicative time trends, we still need the counterfactual to be
3The superscript ∗ is used to differentiate the model in levels from the multiplicative one. Note

also that receiving the treatment, with a potential outcome y1igt, does not coincide with being in
the treated group (g=treated), because in the first period (t=pre) all individuals go untreated.

4Mullahy (1997), reprised in Angrist (2001), proposed an exponential model for a multiplicative
treatment effect, but focused on IV estimation.
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specified as in eq. (2), otherwise we would confound time and treatment effects.

To clarify, figure 1 is generated with an exponential model as in eq. (2).5 In this

case the treated group starts from a lower position. Given the multiplicative trend,

in the absence of the treatment the increase in this group over time would be smaller

in absolute value. Therefore a standard dif-in-dif in levels would underestimate the

share of the change that has to be attributed to the treatment. However, it does

not matter whether we express the effect as a percentage difference or as a level

difference. Indeed, the former is the fraction on the left hand side of eq. (3),

while the latter is simply its numerator. Nevertheless, once the time trend is in

multiplicative form, having a multiplicative treatment effect leads to an exponential

model, which is clearer and easier to estimate.

The situation is different if we are willing to predict how the policy will affect

future outcomes. If we believe that the treatment is likely to have the same propor-

tional effect in other time periods, then it should be presented in percentage form.

Otherwise, the focus should be on the level difference E [y1igt|g, t]−E [y0igt|g, t], again

after accounting appropriately for the multiplicative time trend. Caution should be

paid here, as it is not always clear how to perform such predictive analysis using

dif-in-dif results.

With this caveat in mind, for the case of multiplicative effects the full structure

for y1igt is

E [y1igt|g, t] = exp (µg + λt + δ) . (4)

Intuitively, the total percentage change in the expected outcome of the treated group

is given by the composition of a percentage change due to time (call it %time) and

the percentage effect of the treatment (call it %effect), so that (1+%change) =

(1+%time)×(1+%effect). Differently, for the control group we have (1+%change)

= (1+%time) .

Define the dummies treatedit for the treatment group and postit for the second
5µcontrol = −0.3;µtreated = −0.7;λpre = −0.2;λpost = 0;δ = 0.2.
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period. The particular data structure leads to an exponential model for observed

outcomes

E [yit|treatedit, postit] = exp (β0 + β1treatedit + β2postit + δtreatedit × postit) (5)

β0 ≡ µcontrol + λpre; β1 ≡ µtreated − µcontrol; β2 ≡ λpost − λpre. (6)

Although Ai and Norton (2003) showed that we should be careful when looking at

the interaction term in non-linear models, here the coefficient on treatedit×postit has

a meaningful interpretation. Indeed, exp (δ) is a ratio of ratios (ROR), as highlighted

by Mullahy (1999) in his discussion about the interpretation of the interaction term

in log-linear dif-in-dif models:6

exp (δ) =
E [yit|treatedit = 1, postit = 1]

E [yit|treatedit = 1, postit = 0]
/
E [yit|treatedit = 0, postit = 1]

E [yit|treatedit = 0, postit = 0]
. (7)

Differently, the marginal effect of the interaction term would be the cross differ-

ence (Mullahy, 1999, pg. 7):

∆2E [yit|treatedit, postit]
∆treatedit∆postit

=

[exp (β0 + β1 + β2 + δ)− exp (β0 + β1)]− [exp (β0 + β2)− exp (β0)] . (8)

which is actually equal to the difference in difference estimand for the additive effects

model.

Given the assumption of multiplicative effects, this cross-difference does not prop-

erly account for the time trend in the exponential model.7 Therefore, in a multi-

plicative model the causal parameter of interest is the ROR. This point is related
6Similarly, Buis (2010) pointed out that in an exponential model the interaction term should

be interpreted in a multiplicative scale.
7Mullahy (1999, pg. 12) warned the reader that the marginal effect and the ROR are related to

two “different sense(s) of interaction”. Here, we argue that the specification of the common trend
assumption in a multiplicative or additive form is crucial in deciding which one to give a causal
interpretation.
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to the more general comment by Puhani (2012) that, in any non-linear dif-in-dif

model with an index structure and a strictly monotonic transformation function,

the treatment effect is not equal to the cross-difference of the observed outcome.8

It should be noted that, when applied to the specific data structure, a linear

model for the conditional expectation of yit is also correctly specified, because it is

saturated:

E [yit|treatedit, postit] = γ0 + γ1treatedit + γ2postit + τtreatedit × postit. (9)

Indeed, the exponential model is just a reparametrisation of the linear one, with

exp (δ)− 1 =
(γ0 + γ1 + γ2 + τ) / (γ0 + γ1)

(γ0 + γ2) /γ0
− 1. (10)

This was noted by Gregg et al. (2006), who showed that we can estimate eq. (9)

and then recover both the level and the percentage (multiplicative) effect. However,

Gregg et al. (2006) defined the dif-in-dif “percentage method” as the percentage

change in the treatment group minus the percentage change for the controls. This

differs from exp (δ)− 1. The reason is that the percentage change in the treatment

group is equal to %effect+%time+%effect×%time. If we subtract the percentage

change in the control group, we are left with %effect×(1+%time). The difference is

likely to be negligible if %time is small.

In spite of the equivalence in (10), we cannot interpret both τ and δ as causal

effects. If we believe that the common trends assumption holds in multiplicative

terms, τ includes not only the level change due to the treatment, but also the

difference between the time change in levels for the treatment and control groups.

More generally, the equivalence (10) does not work if we are willing to condition

on other covariates, such as demographic controls. The reason is that the equation
8Karaca-Mandic et al. (2012) agreed with Puhani (2012), mentioning that the interaction term is

directly interpretable in non-linear dif-in-dif models when both treated and post are kept constant.
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for the observed outcome is no longer saturated. Therefore it must be that either

the linear model is correctly specified, or the exponential one, but not both. This is

also true if we have more than two periods and a time trend is included.

The discussion of how the different specifications of time effects are crucial for

causal interpretation is related to Angrist and Pischke (2009, pg. 230) comment

that the assumption of common trends can hold either in logs or in levels, but not

in both. We find it more natural to look at the choice between multiplicative or

additive effects, rather than focusing on whether taking logs or not. This perspective

has the advantage of stressing the distinction between specification and estimation.

More importantly, in the next section we show that the multiplicative model and

the log-linearised one are equivalent only under a strong restriction.

2.2 Estimation

If one decides to focus on the multiplicative effect, in the simplest case we can recover

it from linear estimates using eq. (10). However, this method does not work if we

want to include other covariates or a time trend.

A popular alternative is to log-linearise the model. To understand the pros and

cons of this strategy, we can follow the discussion in Santos Silva and Tenreyro

(2006).9 Define an error term ηit:

yit = exp (β0 + β1treatedit + β2postit + δtreatedit × postit) ηit (11)

E [ηit|1, treatedit, postit] = 1 (12)

Consistently with previous section, the individual-transitory error term is mean

independent of group and time. Similar to the standard linear dif-in-dif, we do not

need full statistical independence to identify the treatment effect (Abadie, 2005;

Athey and Imbens, 2006).
9Other approaches to this problem can be found in Mullahy (1998), Manning and Mullahy

(2001), Blackburn (2007).
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To estimate the model, we can log-linearise it

lnyit = β0 + β1treatedit + β2postit + δtreatedit × postit + lnηit. (13)

However, as argued by Santos Silva and Tenreyro (2006) and Blackburn (2007),

nothing ensures that E [lnηit|1, treatedit, postit] = 0. In general, this would be true

if ηit is statistically independent from xit ≡ (1, treatedit, postit), which implies:10

V ar [yit|1, treatedit, postit] =

σ2
itexp (2β0 + 2β1treatedit + 2β2postit + 2δtreatedit × postit) (14)

where σ2
it = V ar (ηit). The ratio of variances between different groups or time periods

should be directly related to the differences in the conditional mean. Furthermore,

the treatment effect must not only shift the conditional mean, but also increase (or

decrease) the conditional variance by a factor equal to the square of exp (δ).11 This

pattern of variance does not necessarily hold under the weaker condition of mean

independence (E [ηit|xit] = 1), which is sufficient to identify the multiplicative effect.

For instance, suppose that the condition ηit ⊥⊥ xit, holds in the absence of the

treatment, that is when treatedit× postit 6= 1. However, assume that the treatment

has a distributional effect which differs from the simple increase in variance by

exp (2δ). We can express this by stating that

V ar [yit|treatedit = 1, postit = 1]

V ar [yit|treatedit = 1, postit = 0]
6= exp (2β2 + 2δ) . (15)

10Whether statistical independence holds depends on the particular application. For instance,
we replicated a study by Aguila et al. (2011) who used dif-in-dif on panel data to estimate the
effect of the retirement of the household’s head on total expenditure and expenditure on food.
Results are only slightly affected by directly estimating the exponential model by PPML rather
than log-linearising it. Full results are available on request. We thank Emma Aguila for providing
us the data and the original do-files.

11A particular case when this pattern of variance would arise is one where the treatment effect
multiplies each single individual outcome by exp (δ), that is if y1igt = y0igt × exp (δ). Clearly, the
pattern in (14) can arise in other specific cases.
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Higher moments can be affected by the treatment as well. Even if the conditional

expectation of lnyit is correctly specified because the model is saturated, the coef-

ficient on the interaction treatedit × postit would not be equal to the parameter of

interest δ:

E [lnyit|1, treatedit, postit] = β∗
0 + β1treatedit + β2postit + δ∗treatedit × postit

(16)

β∗
0 = β0 + E [lnηit|treatedit × postit 6= 1] (17)

δ∗ = δ + E [lnηit|treatedit × postit = 1]− E [lnηit|treatedit × postit 6= 1] . (18)

OLS estimates for the log-linearised model would therefore be consistent for δ∗,

which is confounding distributional with mean effects.12 A similar bias would arise

if the treatment had no effect at all on the outcome distribution, but in the second

period there was some change in the variance of y within the treatment group that

violates the assumption ηit ⊥⊥ xit. Such a situation would be compatible with the

multiplicative common trends assumption stated in terms of conditional mean (eq.

2), because it does not impose any restriction on higher moments.

The estimator of interest might not be affected by a situation as in Blackburn

(2007), where the conditional variance across groups does not follow the pattern in

eq. (14), but the condition is respected over time within the same group. Suppose

that E [ηit|xit] = 1. However, assume that the variance and higher moments in the

distribution of ηit depend on the group, though neither on the time period, nor on

the treatment. In general, we would have that

E [lnηit|treatedit = 0, postit = 0] = E [lnηit|treatedit = 0, postit = 1]

6= E [lnηit|treatedit = 1, postit = 0] = E [lnηit|treatedit = 1, postit = 1] . (19)

12This would hold even if the true treatment effect on the mean was zero, and there was no
difference across groups or time (β1 = β2 = 0).
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Therefore, both the intercept and the coefficient on the group dummy (treatedit)

will be different from β0 and β1, but the coefficient on the interaction would be the

true treatment effect.13

Nevertheless, we know from the literature that there is an alternative estimation

strategy which is consistent in both cases, because it only requires ηit to be mean

independent from xit, and not necessarily statistically independent. Santos Silva

and Tenreyro (2006) and Blackburn (2007) proposed to directly estimate the non-

linear model.14 In practice, one can use both Non Linear Least Squares (NLS) and

Poisson Quasi Maximum Likelihood (PPML), which are both consistent as long

as the conditional mean is correctly specified. Santos Silva and Tenreyro (2006)

argued in favour of the latter, because NLS is likely to be less efficient. PPML

can be implemented in the most popular statistical packages and results can be

easily interpreted.15 In StataTM, one can simply run the poisson command, with

all variables in levels. Although we do not need V ar [yit|xit] to be as in eq. (14)

for PPML to be consistent, a different pattern of heteroskedasticity would make

standard inference invalid. Hence, the robust covariance matrix should be used.

One important point to highlight is that, in the potential outcomes model, we

imposed assumptions only on the conditional expectations. This can be justified by

the fact that we are often interested only on the average. Athey and Imbens (2006)

proposed instead a generalised dif-in-dif model that gives a structural interpretation
13An example comes from the study by Meyer (1995). They used dif-in-dif to estimate how

workers’ compensation affect time out of work, exploiting the fact that Kentucky introduced
a change in the benefit for the high earning group. We replicated their analysis by directly
estimating the exponential model by PPML, instead of log-linearising. The point estimate of
the change in Kentucky is basically unchanged (although it loses statistical significance). How-
ever, we observe a large difference in the estimate for the “high earnings” dummy. Full re-
sults are available on request. The original microdata were obtained from Wooldridge’s dataset
(http://ideas.repec.org/p/boc/bocins/injury.html).

14For the cross-sectional case, Mullahy (1997) proposed a GMM estimator for an exponential
model when an instrument for treatment status is available.

15An applied example can be found in Santos Silva and Tenreyro (2010), who estimated the
effect of the introduction of the Euro on trade by using PPML. Blackburn (2010) also estimated
an exponential model for the effect of migration on earnings growth using panel data, which can
be seen an application of the dif-in-dif setup with longitudinal data. Both articles are focused only
on the empirical exercise and do not discuss the issues that we cover in this paper.
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to all differential changes in the distribution of the outcome y over time. Their

assumptions on the model of y would therefore be valid for any f (y), where f (·)

is a strictly monotone transformation (such as log). Differently, in this paper we

give a structural interpretation only to changes in the expected value. We ignore

higher moments of the distribution of y, which are allowed to change either as a

consequence of treatment or time. As noted by Athey and Imbens (2006, pg. 435-

436), this approach focused on the conditional mean is not nested in their model,

unless one assumes that all individual shocks are statistically independent from

group and time.

2.3 Heterogeneous effects

One important question is what the level and multiplicative model are effectively

identifying when treatment effects are heterogeneous. In the level model, given the

additive nature of the effects, the well know result is that the dif-in-dif estimand

identifies

E [y1igt − y0igt|g = treated] (20)

To discuss the multiplicative model, we follow the IV-exponential model in Angrist

(2001) and we include an individual effect ωi and a heterogeneous treatment effect

δi:16

y0igt = exp (λt + ωi) η
∗
it, (21)

y1igt = y0igtexp (δi) = exp (λt + ωi + δi) η
∗
it, (22)

E [η∗it|t, ωi, δi] = 1; (23)

Similarly, Blackburn (2007, pg. 91-92) discussed how to include individual-fixed

effects in an exponential conditional mean, in order to correctly estimate wage dif-
16Here the superscript ∗ is used to differentiate the error η∗it in the unobservable model from the

error ηit in the observable model.
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ferentials. Differently from his paper, we also allow individual heterogeneity in the

treatment effects and we mainly focus on the estimation of their average.

As in the standard dif-in-dif, we need the composition of both groups not to

change over time, so that the expected values of the individual effects are stable (see

Blundell and Macurdy, 1998). The (unobservable) model generating the outcome

becomes

yit = exp (λt + ωi + δi1 [g = treated, t = post]) η∗it. (24)

If we use PPML to estimate the observable model

yit = exp (β0 + β1treatedit + β2postit + δtreatedit × postit) ηit. (25)

we know that exp (δ) identifies the ROR:

exp (δ) =
E [yit|treatedit = 1, postit = 1]

E [yit|treatedit = 1, postit = 0]
/
E [yit|treatedit = 0, postit = 1]

E [yit|treatedit = 0, postit = 0]
(26)

Given the model in (24), it follows that

exp (δ)− 1 =

exp (λpost)E [exp (ωi) exp (δi) |g = treated]

exp (λpre)E [exp (ωi) |g = treated]
/
exp (λpost)E [exp (ωi) |g = control]

exp (λpre)E [exp (ωi) |g = control]
− 1

=
E [y1igt|g = treated]− E [y0igt|g = treated]

E [y0igt|g = treated]
(27)

so that only the multiplicative effect on the average is identified, and not the

average of the multiplicative effect. This was already noted by Angrist (2001) for

IV estimation of an exponential model.

If we assume the stronger condition that η∗it ⊥⊥ (t, ωi, δi), we can log-linearise the
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fixed effect model in (24):

lnyit = λt + ωi + δi1 [g = treated, t = post] + lnη∗it. (28)

where statistical independence ensures that lnη∗it is mean-independent from t, ωi

and δi, so that (28) represents a conditional expectation. In this case, the standard

dif-in-dif level regression applied to lnyit identifies

{E [lnyit|treatedit = 1, postit = 1]− E [lnyit|treatedit = 1, postit = 0]}

− {E [lnyit|treatedit = 0, postit = 1]− E [lnyit|treatedit = 0, postit = 0]} . (29)

which from model (28) is equal to

{λpost + E [ωi|g = treated] + E [δi|g = treated]− λpre − E [ωi|g = treated]}

− {λpost + E [ωi|g = control]− λpre − E [ωi|g = control]} =

= E [δi|g = treated] (30)

This quantity, although related to the original parameters, is not of direct inter-

est. The reason is that the individual multiplicative effect is equal to exp (δi) − 1,

but in general E [δi|g = treated] 6= E [exp (δi)− 1|g = treated].17

The problem is that statistical independence of the error term holds in the un-

observed model (24). Differently, the error term ηit in the observed model is likely

to be heteroskedastic, as it depends on the distribution of the individual effects δi

within each group. Using log-linearisation we can recover the causal effect on the

logs E [δi|g = treated] = E [lny1igt − lny0igt|g = treated] but we cannot use it to go

back to the multiplicative effect on the average in the original scale (27).
17Clearly, if there is little variation in δi, and its average is quite small in absolute value, then

the two are likely to be quite similar. But this would be a case in which there is little heterogeneity
in the treatment effect, so that there is not a big difference between the individual and the average
δ.

15



In a nutshell, in the presence of heterogeneous effects the standard mean in-

dependence assumptions behind the exponential dif-in-dif model only allow us to

identify the multiplicative effect on the average for the treated group, and not an

average multiplicative effect.18 The presence of heterogeneous treatment effects is

likely to induce a dependence between the error term ηit in the observed model

and the covariates. Therefore the statistical independence assumption is not likely

to hold, and the OLS estimates of the log-linearised model would not recover the

quantity of interest.

3 An applied example

To provide an example, we apply the PPML estimator in a dif-in-dif setting to assess

the effects of the recent introduction of the Educational Maintenance Allowance

(EMA) in the United Kingdom on household expenditures. EMA provided up to

£30 per week to 16-18 year olds in low income households, conditional on them

attending a full time educational course. Two further bonus payments of up to £100

were available if additional educational targets were met. The policy was introduced

nationwide in September 2004, although a pilot took place in 1999-2000. Dearden

et al. (2009) provide evidence suggesting that EMA pilots increased post 16 schooling

by 5-7%. Further details of the reform can be found in Appendix B.

Here we study how families targeted by the scheme spent the available resources.

In line with the theory of the previous section, we specify a multiplicative model

for expenditure and present dif-in-dif estimates of the effect of EMA on 7 major

expenditure categories, using both OLS on the log-linearised values and PPML.
18Further restrictions can be imposed. For instance, if one assumes that ωi and δi are statistically

independent, then eq. (27) reduces to the average multiplicative effect. But we find this assumption
quite implausible. Furthermore, any interpretation in terms of individual multiplicative effect
should be carefully evaluated: if for some individuals y0igt = 0, then y1igt/y0igt is not defined and
therefore the individual semi-elasticity does not exist.
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3.1 Data and identification strategy

We take advantage of expenditure data from the first five years of the Expenditure

and Food Survey (EFS).19 Interviews took place across a year. All income and

expenditure figures are in weekly equivalents and are expressed in December 2005

terms using the retail price index, available from the Office for National Statistics.

The estimation sample consists of all households with at least one child aged

either 14, 15 or 17 and responding to the EFS in one of the first five years (2001-2005)

of the survey. The EFS operates on the basis of a financial year (April – March),

so that to be precise our sample includes periods from April 2001 until March 2006.

The reform coincides with the start of the school year in 2004 (September). Given

that we have more than two time periods, we include a full set of year dummies,

plus a set for the month of interview to account for seasonality. The departure

from the simple 2 × 2 setting implies that the exponential model is not simply a

reparametrisation of the level one.

Treatment and control groups are not defined according to information on edu-

cation status, which may be endogenous to the reform. Rather, information is used

on exogenous age at interview of the household members. The treated group of

households is defined to be those where at least one 17 year old is residing, because

conditional on having low income they will be eligible to receive EMA.20 The control

group is formed of households where at least one 14 or 15 year old resides, excluding

households defined to be in the treated group as above. Table B1 in appendix B

demonstrates that, under this definition, treatment and control groups are similar

in terms of observable characteristics.

In line with the spirit of this paper, we focus on the issues related to functional

form specification and estimation of a multiplicative model. Clearly, accounting
19Further details are available in Appendix B.
20We exclude 16 and 18 year olds to avoid misclassification, because full information on date of

birth would be required to determine EMA eligibility status. The EFS only contains information
on age at interview.
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properly for the time trend does not imply that estimates can be interpreted as

causal effects. Other problems, such as the presence of an Ashenfelter’s dip or of

anticipation effects, can bias the results. The interested reader can found a more

detailed discussion in Appendix B.

Before the UK wide rollout in September 2004, a pilot took place in 41 English

Local Education Authorities (LEAs) in years 1999 and 2000 (see Dearden et al.,

2009, for an assessment). Therefore, EMA was already in operation in 41 of the 150

English LEAs before the start of our sample period. Pilot areas cannot be removed

from the treated group as the EFS does not record information on LEA status. This

implies that treatment is less than 100 percent for the treated group and that the

presented estimates of the effect of the policy on household expenditure patterns,

therefore, represent a lower bound of the effect on those actually receiving EMA.

On the one hand, it may be enough for a policy maker to know this intent to treat,

on the other, the interest may be in the effect for those that actually received EMA.

In Appendix B we comment on the possibility of rescaling the estimated treatment

effects to reflect this fact. We show that in the case of a multiplicative model,

rescaling may be problematic.

We present estimates for 7 major areas of spending: food and non-alcoholic

drinks; alcoholic beverages and tobacco; clothing and footwear; furnishings, house-

hold equipment and carpets; transport; communication; and recreation. Following

on from the earlier discussion, it is natural to specify the common trends assumption

in multiplicative form. That is expenditures, following the growth of the economy,

increase by a constant percentage in the absence of treatment.

In general, we know that total household expenditure tends to be log-normally

distributed (see, for instance, Battistin et al., 2009). One might claim that, in this

case, log-linearisation is harmless. This is not necessarily the case. First of all, the

required assumption refer to the conditional distribution of yit, that is within group

and time period. Secondly, even if the error ηit was log-normal, we would need it to
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be statistically independent from the covariates. Indeed, in the simulation in section

4 we show that a log-normally distributed disturbance is not enough for log-OLS

consistency. Finally, nothing ensures log-normality of each category of spending.

This is particularly true if there is a non-negligible proportion of zero, which may be

due to measurement error related to the recording of small amounts, as was pointed

out for trade data by Santos Silva and Tenreyro (2006).

All estimates are obtained using Stata 11. For OLS we used the standard com-

mand regress, while PPML estimates are obtained using the command poisson.

We chose the robust option for standard errors.21

3.2 Results

Table 1 presents dif-in-dif estimates of the effect of the national roll out of the

EMA scheme on each of the 7 major spending categories for the treated group of

households. The results in columns 1 correspond to estimates of the multiplicative

effect using OLS on the log-linearised model, while in column 2 the reform effect is

estimated directly using the PPML estimator. For completeness, we also report OLS

estimates for a level model of expenditure in column 3. It is important to stress that,

as usual, observations with zero expenditure are dropped from OLS log estimates,

while PPML allows us to keep them. Nevertheless, results are quite similar when

excluding these cases for all estimators or setting the logarithm equal to zero in the

case of zero expenditure (results available on request).

Following the national roll out of EMA in September 2004, we expect the treated

group of households to increase expenditures in some of these areas. For the OLS
21Procedures to correct for the fact that regular standard errors may overstate the precision of

estimates of a treatment effect in dif-in-dif regressions have been the subject of much debate in
recent years (see Bertrand et al., 2004; Donald and Lang, 2007; Wooldridge, 2003, 2006). If shocks
are common to observations in a given group and year, then the error terms within a group are not
independent but correlated. Moreover, in the case of multiple time periods, errors are also likely
to be serially correlated. Under the definition of the treatment and control groups in this paper,
we see no reason to believe that there are shocks that occur at the group level. Moreover, sample
sizes are relatively small and adjustments to standard errors will be conservative if observations
are indeed independent.
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log-linearised estimates in column 1 we see positive dif-in-dif estimates for food,

non-alcoholic drinks; alcoholic beverages and tobacco; transport; recreation and

negative effects for clothing footwear; furnishings household equipment and carpets;

communication. None of the estimated effects are, however, statistically significant.

Turning to the reform effects in column 2, EMA might also have distributional

effects that make the multiplicative error term statistically dependent on the time

and group dummies. In this case, we expect the previous OLS log results to suffer

from bias, while PPML results should be consistent. For most of the categories,

coefficients are in line with the OLS log results, but for transport spending the

estimated coefficient has increased in magnitude. Moreover, it is now statistically

different from zero at the 5% level. The result implies an increase around 23 percent

in transport spending due to the reform, calculated as exp
(
δ̂
)
−1. This finding is in

line with evidence from the EMA piloting, in which EMA recipients were more likely

to be contributing to transport expenditures compared to non-recipients and EMA

eligibles residing in control areas (see Ashworth et al., 2001, p. 59). In comparison to

the standard log expenditure estimates of column 1, the PPML coefficient implies an

EMA effect of 10.8 percentage points bigger, which is more precisely estimated. For

the remaining spending categories, we observe statistically insignificant coefficients,

which are also generally smaller than the effect on transport.22

On the OLS level results of column 3, the estimated signs and significance of the

interaction terms match well with the PPML results. For transport spending, the

treated× post interaction is a statistically significant £16.46, which corresponds to

18.3 percent of the pre-reform mean. However, the dif-in-dif coefficient presented

only corresponds to the causal effect of EMA on the level of expenditure if we are

willing to impose common trends in expenditure levels. If the common multiplicative
22One criticism might be that the result for transport is accidental, because in a full set of regres-

sions it is not unlikely to find at least one statistically significant estimate, e.g. we have a multiple
hypothesis testing problem. However, here we focus on the difference between OLS (logs) and
PPML results. Moreover, given the relatively small sample sizes, rather than making adjustments
to standard errors, which can be conservative and computationally intensive (Duflo et al., 2008),
we draw on the evidence from the EMA trials to give further support to our conclusions.
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trend is the correct one, then no meaningful interpretation can be given to the

coefficient of the level model.

Columns 4-6 try to better target the groups affected by the reform by repeating

the previous analysis for a sample of low income households. Results give fur-

ther strength to the main finding with PPML estimates in column 5 suggesting

that households devoted the additional resources from EMA primarily to transport

spending. The PPML estimate increases in magnitude with little reduction in the

precision (comparing to column 2). This is once again in contrast to the OLS log

result which remains smaller and statistically insignificant.

We compare how the models perform on Ramsey’s RESET test (Ramsey, 1969)

for misspecification of the conditional mean. It involves calculating the square of

the fitted values and including them as an additional regressor. P-values for the

significance of this coefficient are reported alongside the main results in table 1.

The OLS log, PPML, and OLS level specifications all typically pass the test. For

the full sample, no evidence is found of misspecification of the conditional mean

whether the estimates are for OLS log, PPML or OLS level. For the low income

sample the same picture emerges; however, the test is only marginally passed in

the case of the PPML and level estimates for alcoholic beverages and tobacco; and

recreation; and the OLS log results for clothing and footwear.

The results of the test illustrate an important point that correct specification is

not sufficient for causal interpretation. For example, in the simple 2-period-2-group

case, the conditional expectations of both lny and y are correctly specified as linear

because the model is saturated. Our choice about which estimates to interpret as

causal effects critically depends on our belief about the nature of common trends.

Furthermore, under heteroskedasticity the effect estimated with logs might confound

mean with distributional effects, even though the model for lny is correctly specified.
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4 A simulation

In order to illustrate the theoretical arguments, this section reports results from

monte-carlo simulations. A group of hypothetical reforms are considered that have

common multiplicative time and treatment effects on the mean, but that differ in

terms of their distributional impacts.

We consider a setting similar to that reported in figure 1, so that the reader can

follow the difference between the estimates in levels and the ones in multiplicative

form. The outcome of interest is generated according to an exponential dif-in-dif

equation:

E (yit|x) = exp (β0 + β1treatedit + β2postit + β3treatedit × postit) (31)

i=1,..., 2631. Here, the conditional mean is made up of an intercept β0, a multiplica-

tive treated group effect β1, a common multiplicative post-reform effect β2, and a

multiplicative treatment effect equal to the ratio-of-ratios β3. The sample size and

size of the groups are selected to be as in the applied example of section 3, in order

to be able to detect similar differences between estimators.

Each replication is generated according to β0 = 3.5, β1 = −0.4, β2 = 0.03

and with the hypothetical reform having a constant multiplicative treatment effect

equal to β3 = 0.2.23 This set of parameters implies that for the treated group the

difference in levels between y1i and y0i (the counterfactual) in the post treatment

period would be exp (3.5− 0.4 + 0.03 + 0.2)− exp (3.5− 0.4 + 0.03) = £5.06. This

is the part of the change that can be attributed to the reform after accounting

properly for the multiplicative trend. It is different from the estimand of a standard

dif-in-dif in levels, which would be: [exp(3.5− 0.4 + 0.03 + 0.2)− exp(3.5− 0.4)]−

[exp(3.5 + 0.03)− exp(3.5)] = £4.73].

A random error term is introduced, so that each individual observation is gener-
23Simulations with a negative time trend and a positive difference between groups lead to the

same conclusions and are available on request.
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ated according to yit = exp(xitβ)ηit where ηit is a log normal random variable with

mean 1, and var(ηit|x) = σ2
it. The variance σ2

it is specified as:

σ2
it = exp(α× 1(treatedit × postit = 1)) (32)

where 1 is an indicator function and α a parameter that determines the degree

of heteroskedasticity in ηit. α = 0 implies a multiplicative error term with con-

stant variance equal to 1 while α 6= 0 implies a multiplicative error term that is

heteroskedastic with respect to treatment. That is, for α 6= 0 the treatment oper-

ates not only on the conditional mean, but also having an additional independent

effect on the conditional error variance.24 Note that any real value of α is in line

with the standard dif-in-dif identifying assumption of common trends (in this case

multiplicative) expressed in terms of the conditional mean of yit, which places no

restriction on the conditional variance. Furthermore, even if here we are interpreting

the additional variance introduced by α 6= 0 as a distributional effect of the reform,

this may not be the case. If the heteroskedasticity is due to other changes in higher

moments over time, the conditional mean independence assumption would still be

enough for PPML to be consistent, but would not be sufficient for log-OLS.

To assess the performance of the three estimation strategies outlined above, sim-

ulations are reported for five key values of α. The first special case of interest is

the scenario where α = 0 implying ηit is statistically independent of the treatment

and other regressors, so that OLS estimates from the log-linear model will provide

consistent estimates of the multiplicative treatment effect. In contrast, the other

four specifications for the conditional variance consider increasing strengths of het-

eroskedasticity with α = 0.1, α = 0.2, α = 0.3, and α = 0.4. Here, OLS estimates

from the log-linear model may confound mean effects with distributional effects,

whereas PPML estimates should be consistent for all values of α.
24Here, receiving the treatment has an additional effect on the error variance, but being in the

treated group not.
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For the specified values of α we also consider the case where the researcher

wrongly estimates the model in levels, not accounting for the multiplicative time

trend. The OLS level models are expected to be biased for the true reform effect,

although the degree of heteroskedasticity is not expected to affect the magnitude of

the bias but only the usual efficiency properties.

Table 2 reports results from 1000 replications of the simulation procedure. For

each value of α, reported are the mean and standard deviations of the estimated

treatment effects, in addition to estimates of the treated coefficients (β1’s), which

while not the main focus, may also be of interest in a dif-in-dif study. Whilst

columns 1 and 2 report estimates of the multiplicative treatment effect, column 3

gives estimates of the level treatment effect from a model not correctly accounting

for the multiplicative time trend.

Starting with the case where α=0, as expected both the OLS log in column 1 and

PPML estimates in column 2 are close to the true multiplicative treatment effect

of 0.2. Whilst the difference between the two estimates is negligible, the OLS log

estimates are slightly less dispersed, confirming the greater efficiency of the OLS

estimator under statistical independence of the error term.

Moving to the case where α = 0.1, where the treatment now has a distributional

effect above that due to the simple increase in the conditional mean, we observe that

the OLS log procedure performs less well. Here, the OLS log estimates confound the

distributional effect of treatment with the mean effect and are biased for the true

multiplicative effect. As expected, the value of this bias increases with the value of

α, even though the variance of the estimated effects remains small. For example,

the mean of the estimated treatment effects being only 43 percent of the true effect

when α = 0.4. On the other hand, the PPML estimates perform well under all

values of α, giving estimates close to the true treatment effect in all cases.

It is worth pointing out that the parameter values considered above imply an

independent effect of treatment on the conditional variance of y that deviates only
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slightly from statistical independence. For example, under the strongest pattern of

heteroskedasticity considered (α = 0.4), the independent effect of treatment is to

increase the conditional standard deviation of y by only 22 percent, whereas when

α = 0.1 the increase in standard deviation is just 5 percent. Even when these very

small distributional effects of treatment are introduced, the estimates in the table

from the log-linearised model are strongly biased.

Column 3 of table 2 presents estimates from standard OLS estimation of the

model in levels. From the table, we observe that the estimated treatment effects

repeatedly underestimate the true reform impact. The effect is £4.69 in the baseline

case, in contrast to the change in levels that is implied by the multiplicative model

(£5.06). The bias is independent from the value of α. So although the regression

for yi is saturated and therefore correctly specified, the estimated effect in levels

confounds the treatment and trend effects. Note, that the estimate does match well

with the actual value of the estimand for the dif-in-dif in levels (4.73), implied by

the parameters.

Given an exponential model for the conditional mean of y, a researcher may

wish to test whether estimation by log-linearisation will be consistent. Table 2 also

presents evidence on the performance of two tests. The first is a Park test (Manning

and Mullahy, 2001; Santos Silva and Tenreyro, 2006) for whether the conditional

variance of y is proportional to the conditional mean squared. This involves testing

whether γ1 is statistically different from 2 in the equation:

(yi − ỹi)2 = γ0(ỹi)
γ1 + εi (33)

where ỹ is a consistent estimate of E[yi|x], obtained using PPML. Inference from

equation (33) uses the Eicker-White robust covariance matrix estimator. A rejec-

tion of γ1 = 2 implies a rejection of the log-linear model. The second test is the

standard Breusch-Pagan (BP) test for heteroskedasticity, which is the optimal test
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for heteroskedasticity when errors are normally distributed. It examines whether

the estimated variance of the residuals from the log model is statistically dependent

on the value of the treated × post variable. Evidence of heteroskedasticity in the

model for the log of expenditure is interpreted as a rejection of log-linearisation as

an estimation strategy. For both tests, rejection rates at the 5 percent level are

reported in the table.

For the Park test, equation (33) is estimated by both log-linerisation (column 1)

and directly by PPML (column 2). Results from the simulation are not promising.

In all cases the Park test fails to detect the mild pattern of heteroskedasticity that

treatment introduces into the model and the rejection rates are around 5 percent

for all values of α.25 For the BP test, moving away from the baseline scenario

where the log-linear model gives consistent estimates of the treatment effect, the

test detects the heteroskedasticity introduced into ηi and has reasonable power.

For example, in the case where α=0.4 the test detects the inadequacy of the log-

linearised specification 94.5 percent of the time. These results suggest that testing

for heteroskedasticity in the model for lny with a BP test can be informative when

deciding upon an estimation strategy with a multiplicative model in the dif-in-dif

setting.

In appendix C we also analyse the case in which the treatment has no distri-

butional effect, but the pattern of variance across the treated and control groups

does not respect the proportional structure from equation 14. As discussed in the

theoretical section, in this case the log-OLS estimator for the treatment effect is

consistent, while the treated-control difference is biased.26

25When stronger patterns of heteroskedasticity were introduced to the model, for example with a
simulation with a constant variance of y, the performance of the Park test improves with rejection
rates reaching 72 percent.

26We also analysed the case with a constant variance of y. Again here log-OLS for the treatment
effect performs poorly. Results are available from the authors.
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5 Conclusion

We critically assessed the standard practice of log-linearising in a dif-in-dif setting.

We argued that a researcher should first decide whether a multiplicative or additive

effect model is appropriate for the non-transformed outcome, because we cannot

give a causal interpretation to both. If the multiplicative model is chosen, using

Poisson Pseudo Maximum Likelihood can be preferable to log-linearisation. The

reason is that the latter might confound changes in higher moments of the outcome

distribution with the treatment effect on the mean.

As a summary, we think that the best practice for a practitioner willing to

estimate a dif-in-dif model with continuous outcome should be:

1. Decide whether the time trend is more likely to hold in multiplicative or in

level form.

2. If in levels, the best solution would be to use the standard level model and

estimate it through OLS. The coefficient on the interaction term could be

interpreted as an average treatment effect for the treated.

3. If in multiplicative form, the most coherent solution is to use and estimate an

exponential model, with a multiplicative treatment effect.

(a) Without covariates, the multiplicative treatment effect can be recovered

from OLS estimates of the standard dif-in-dif regression in levels (eq. 10).

(b) Estimating the exponential model with PPML allows for covariates and

for the presence of zeros in the dependent variable, and does not require

statistical independence of the error term.

(c) The researcher can test for heteroskedasticity using a BP test for the

presence of heteroskedasticity with respect to the treated × post variable.

If they fail to reject the null of homoskedasticity, and the researcher

is willing to assume statistical independence, OLS on the log-linearised
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model would be unbiased and efficient. This method also requires to

eliminate or censor the zeros, which may introduce another source of

bias.

(d) In the case of heterogeneous effects, the exponentiated coefficient on the

interaction term (exp (δ)−1), can be interpreted as a multiplicative effect

on the average for the treated group.
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Tables and Figures

Figure 1: An example of a dif-in-dif setting with multiplicative time trend
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Table 1: Estimates of the EMA Effect on 6 Major Expenditure Categories

Full Sample Low Income Sample
(1) (2) (3) (4) (5) (6)

OLS Log PPML OLS
Level

OLS Log PPML OLS
Level

Food and 0.069 0.026 1.777 0.039 0.010 0.584
Non-alcoholic drinks (0.051) (0.041) (2.838) (0.080) (0.065) (3.868)
Observations 2626 2631 2631 1314 1317 1317
Reset(p-value) 0.0927 0.7315 0.8800 0.5150 0.5410 0.5940
Alcoholic Beverages 0.026 0.104 1.276 -0.022 0.178 2.458
and Tobacco (0.104) (0.101) (1.659) (0.156) (0.152) (2.320)
Observations 1968 2631 2631 935 1317 1317
Reset(p-value) 0.8720 0.2829 0.1083 0.4835 0.0107 0.0417
Clothing and -0.137 0.012 -0.477 -0.136 -0.024 -1.638
Footwear (0.100) (0.091) (4.060) (0.152) (0.142) (5.350)
Observations 2342 2631 2631 1128 1317 1317
Reset(p-value) 0.8158 0.9232 0.3009 0.0337 0.8239 0.3901
Furnishings, HH -0.126 -0.092 -3.511 -0.150 -0.211 -6.015
Equipment, Carpets (0.115) (0.177) (7.108) (0.170) (0.219) (6.976)
Observations 2575 2631 2631 1282 1317 1317
Reset(p-value) 0.2364 0.5347 0.3370 0.8011 0.1806 0.1282
Transport 0.116 0.208** 16.458** 0.127 0.328** 18.292*

(0.098) (0.095) (8.276) (0.153) (0.163) (9.851)
Observations 2505 2631 2631 1204 1317 1317
Reset(p-value) 0.7219 0.9051 0.6783 0.0936 0.7100 0.3995
Communication -0.083 -0.032 -0.553 -0.011 0.029 0.559

(0.064) (0.074) (1.406) (0.095) (0.118) (2.027)
Observations 2548 2631 2631 1248 1317 1317
Reset(p-value) 0.4642 0.3287 0.2247 0.6068 0.1991 0.1732
Recreation 0.014 -0.010 -0.633 0.083 0.204 12.676

(0.081) (0.092) (7.745) (0.118) (0.150) (9.522)
Observations 2629 2631 2631 1315 1317 1317
Reset(p-value) 0.8858 0.1458 0.0923 0.4734 0.0194 0.0131
Notes: * p<.10, ** p<.05, *** p<.01. Standard errors (robust) in parentheses. Treated group
formed of households with at least one individual aged 17. Control group formed of households with
at least one individual aged 15 (excluding households with a 16-18 year old). Columns 1-3 present
estimates of the reform effect for the full sample of households, Columns 4-6 present estimates of
the reform effect for the subsample of households in the bottom half of the earnings distribution
(excluding earnings from 16-18 year olds). Models include a full set of year and month of interview
dummies, a treatment status indicator and a post reform indicator interacted with the treatment
status dummy (coefficient presented). All expenditure categories are in weekly equivalent and are
expressed in December 2005 terms.
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Table 2: Simulation Results

(1) (2) (3)
OLS Log PPML OLS Level

α = 0
Treated x Post .1999924 .1984138 4.689477

(0.0711943) (0.0842905) (2.510064)

Treated -.399073 -.3976382 -10.84626
(0.0398905) (0.0474284) (1.290385)

Park Test 0.052 0.014 -
Breusch-Pagan 0.049 - -
α = 0.1
Treated x Post .1710568 .1951523 4.585499

(0.0731679) (0.0882464) (2.62745)

Treated -.4002561 -.4000494 -10.90821
(0.0404467) (0.0470304) (1.277552)

Park Test 0.04 0.005 -
Breusch-Pagan 0.154 - -
α = 0.2
Treated x Post .1506154 .2026701 4.814591

(0.0727646) (0.0887447) (2.625155)

Treated -.4010721 -.401937 -10.96927
(0.0406465) (0.0496038) (1.345574)

Park Test 0.046 0.017 -
Breusch-Pagan 0.441 - -
α = 0.3
Treated x Post .1203693 .1993501 4.727764

(0.0726566) (0.0908685) (2.672351)

Treated -.3996677 -.3990473 -10.88376
(0.0386935) (0.0457816) (1.232807)

Park Test 0.052 0.014 -
Breusch-Pagan 0.756 - -
α = 0.4
Treated x Post .0861068 .1960358 4.632431

(0.0776181) (0.096877) (2.870258)

Treated -.399795 -.3997392 -10.90645
(0.0404998) (0.0484243) (1.310166)

Park Test 0.064 0.022 -
Breusch-Pagan 0.945 - -
Notes: Results from 10,000 replications of the simulation
procedure described in section 4. Mean of the estimated
coefficients reported with standard deviations in parenthe-
ses.
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Supplementary material (online)

Appendix A: Literature review

We consider as dif-in-dif papers those where the authors explicitly describe their

estimation strategy as dif-in-dif or where a policy intervention affects differently

periods/groups and a dif-in-dif estimator is implicitly exploited. A paper is recorded

as having a continuous outcome if at least one dependent variable is continuous

(or discrete but with many mass points, such as hours worked). In cases where

multiple outcomes were analysed, we report only the continuous ones or the one

with several mass points. A paper is recorded as having a logged outcome if at least

one dependent variable undergoes a log transformation.
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Appendix B: Further details for the applied example

The policy

EMA was rolled out nationally in the UK from September 2004. This followed on

from evidence documenting the poor international performance of the UK in terms

of post 16 education take-up (see for example Blanden, Gregg and Machin, 2005). It

provided resources to low income young people staying in post compulsory education,

with the objective of increasing take-up rates of post 16 schooling. The programme

was far reaching - by December of the 2010/11 academic year, 44 percent of 16-18

year olds in full-time education had received an EMA payment or 31 percent of all

16-18 year olds.1

EMA required attendance of a full time educational course at a school or col-

lege; or a course leading to an apprenticeship or foundation learning programme.2

The policy was rolled out nationwide in September 2004. Therefore, students in

low income households turning age 16 before that date and entering non-advanced

education would be eligible for the allowance. The maximum value of the award was

worth a considerable £30 per week, which was paid to the bank account of the eli-

gible young person. Further bonus payments were available for meeting educational

targets on course attendance, exam attendance and the completion of coursework as-

signments. These were paid twice annually and worth £100. It was usually claimed

for two years of study, ending in the academic year a claimant turned 19. The final

value of the award depended on household income and the meeting of educational

targets, with the greatest amounts going to the poorest students.3

Prior to the national rollout, EMA was piloted in 15 Local Education Authorities
1Based on authors calculations from “Participation in Education, Training and Employment by

16-18 Year Olds in England , End 2011”, Department for Education; and “Educational Maintenance
Allowance Take-up”, Young People’s Learning Agency.

2A course is defined as one with at least 12 teaching hours per week, lasting for at least 10
weeks and be at an institution that is inspected by a public body, to assure quality.

3Income of the claimant was not included in the calculation of household income, however,
claimants were restricted to engaging in part-time work of at most 24 hours per week. EMA did
not interact with other UK benefits.

38



(LEAs), followed by a further 41 in the year 2000.4 Therefore, for the national

rollout, the pool of recipients consisted of those aged 16 at the start of the 2004/05

academic year (september), 16-17 year olds in 2005/06 academic year and 16-18

year olds in 2006/07 academic year; whilst in the pilot regions, EMA was rolled out

from the 1999/2000 academic year. Dearden, Emmerson and Meghir (2009) provide

an excellent description of the policy environment and piloting of the programme.

Their evidence suggests that the piloting of the scheme had substantial policy effects,

with estimates implying a 4.5 percentage point increase in the first year of post 16

schooling and 6.7 percentage points in the second year. Further results indicate that

the increased school participation largely comes from those who are not otherwise

working and have low prior ability levels.

Data details

The EFS is managed by the Office for National Statistics. The data is available

online through the Economic and Social Data Service. The survey changed in 2008

to become the Living Costs and Food Survey. The primary purpose of the EFS is to

provide expenditure weights for the consumer and retail price indexes. The survey

records all expenditure items for a random sample of UK households. Expenditure

items for all individuals aged over 7 in a household are recorded through a detailed

expenditure diary over a two week period. Expenditures are then aggregated to

the household level and into broad expenditure categories, and finally converted

in weekly equivalents. The survey thus provides household level expenditure infor-

mation for broad expenditure categories and disaggregated expenditures on specific

consumption items.
4LEAs are local authorities responsible for education. There are 152 LEAs in England and

Wales.
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Table B1: Pre-Reform Summary Statistics

Treated Control Mean Diff

Household Characteristics
Number aged 16-18 1.15 0.00 1.15∗∗∗
HH Labour Income (Less Income from 14-18 year olds) 362.90 353.35 9.55
HH Size 4.09 4.00 0.10
HH Owned 0.69 0.69 0.00
Social Housing 0.22 0.25 -0.03
North East 0.05 0.04 0.01
North West 0.09 0.09 0.00
Merseyside 0.03 0.03 -0.00
Yorkshire and the Humber 0.08 0.08 -0.00
East Midlands 0.06 0.07 -0.00
West Midlands 0.08 0.10 -0.02
Eastern 0.08 0.10 -0.01
London 0.09 0.09 0.01
South East 0.11 0.12 -0.01
South West 0.08 0.07 0.01
Wales 0.06 0.05 0.01
Scotland 0.08 0.08 0.00
Northern Ireland 0.11 0.10 0.01

Expenditures
Food non-alcoholic drinks and Clothing 69.31 66.32 2.99
Alcoholic Beverages and Tobacco 18.47 15.83 2.65∗
Clothing and Footwear 50.55 38.54 12.01∗∗∗
Furnishings, HH Equipment, Carpets 40.51 40.26 0.25
Transport 90.11 78.83 11.28∗
Communication 19.88 15.81 4.08∗∗∗
Recreation 86.97 87.95 -0.98
Observations 1799
Notes: * p<.10, ** p<.05, *** p<.01. Control group formed of households with at least one
individual aged 14-15 (excluding households with 16-18 year olds). All expenditure categories are
in weekly equivalent and are expressed in December 2005 terms.

Possible violations of dif-in-dif assumptions

One of the possible problems in giving a causal interpretation to dif-in-dif estimates

is that the treatment group assignment could reflect short-term idiosyncratic shocks,

causing an Ashenfelter’s dip (see Ashenfelter (1978) and Blundell and Dias (2009)).

In such a scenario units assigned to the treatment group may recover more quickly

in terms of the outcome of interest, than those in the control group. This is not a

likely problem for the identification strategy outlined above, where treatment group

assignment is allocated according to information on age.
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Another possible source of bias is the presence of “anticipation effects”, where

households changed their spending behaviour prior to the reform. Pre-reform con-

trol households with younger children could potentially adjust their spending be-

haviour in anticipation of becoming EMA eligible in the post-reform period. This

would lead to a downward bias in the estimated reform effects, assuming control

households anticipating eligibility increased current spending. For the pre-reform

treatment group (i.e. those with a 17 year old member), there is no problem of

anticipation. Given that the roll-out of the policy applied only to new entrants in

post 16 education, these individuals were ineligible.5 A final important issue that

could affect the causal interpretation of the dif-in-dif estimates is the presence of

general equilibrium effects that influenced the spending behaviour of the control

group. EMA is a large programme and any increase in post 16 participation rates

implies increased competition for post 16 schooling places. This may further affect

the spending behaviour of the control households in the event that it caused a change

in their expected post 16 schooling plans or future expected wage rates, which in

turn lead them to adjust their current spending behaviour.6

A note on rescaling

As discussed in the methodology section, the initial piloting of the scheme means

that in 41 of the 150 English LEAs, EMA was in operation before the start of the

sample period. The above estimates therefore reflect a lower bound for the effect

of EMA on the treated. Whilst the EFS data does not record information on LEA

status, Government Office Region (GOR) information is available with each GOR

being made up of multiple LEAs. Given information on EMA receipt by LEA, one

may wonder whether it is possible to rescale the estimated EMA effects to reflect the
5However, if there are younger siblings in the household then anticipation effects are theoretically

possible.
6The models estimated in this section do not include household level covariates. In a model

with covariates, consistent estimation of the treatment effect further requires that the covariates
are exogenous to the reform.
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fact that treatment on the treated group is less than 100 percent, but by a known

number. Here, we point out that rescaling a multiplicative treatment effect may not

always make sense.7

We know that when effects are heterogeneous, PPML returns the multiplicative

effect on the average. For the case of EMA, we know that the effect of the treatment

is zero for a known share p of recipients. Following the main text, exp(δ)−1 identifies

E [y1igt|g = treated]− E [y0igt|g = treated]

E [y0igt|g = treated]
. (1)

However, both the numerator and denominator are going to be a weighted average

of the two groups counterfactuals, so that exp(δ)− 1 is equal to

(E [y1it|g = treated, LEA = notpilot]− E [y0igt|g = treated, LEA = notpilot])× (1− p)
E [y0igt|g = treated, LEA = pilot]× p+ E [y0igt|g = treated, LEA = notpilot]× (1− p)

.

(2)

Under the assumption that

E [y0igt|g = treated, LEA = pilot] = E [y0igt|g = treated, LEA = notpilot] (3)

it is fairly trivial to rescale the estimated multiplicative effects of the results section.

The scale factor (1 − p) could be calculated from publicly available data on EMA

receipt by GOR and by then appropriately weighting for regional shares from the

main estimation sample. However, eq. 3 is unlikely to hold in this example, where

the pilot regions were on average much poorer than the national roll out areas. For

this reason, we argue that rescaling may not make sense and caution against making

such adjustments to the intent to treat estimates.
7On the one hand, one might argue that as a policy maker it is enough to know the intent to

treat.

42



Appendix C: Simulation of a reform with only mean

effects, in the presence of a different variance across

groups

We consider a separate scenario corresponding to the case where α = 0, so that the

multiplicative error term is statistically independent of the treatment, but where its

properties depend on the group. Specifically, yit is heteroskedastic with respect to

the group status but not to the treatment itself. To illustrate this scenario, consider

the simulation procedure above but now σit is generated according to:

σ2
it = exp(γ × 1(treatedit = 1))

where γ is now the parameter determining the degree of heteroskedasticity with

respect to group status.

Simulations were made for five values of γ = {0, 0.1, 0.2, 0.3, 0.4}. Estimates

of the multiplicative treatment effects along with the multiplicative treated group

effects from OLS Log and PPML estimators are presented in table C1, along with

the OLS level models.

The table confirms that, under the particular form of heteroskedasticity con-

sidered, log linerization works well when estimating the multiplicative treatment

effect, but it performs poorly in terms of estimating the treated group effect. In

contrast, PPML performs well for both the treated group and treated × post coef-

ficients and for all values of γ. This illustrates the point made in section 2 that,

in the dif-in-dif setting, heteroskedasticity is only a problem for consistently esti-

mating the treatment effect when the treatment itself (and not the group) has an

independent distributional effect; although estimates of the treated group effect can

be misleading.

Finally, for the wrongly specified OLS level model in column 3, estimates of the

multiplicative treatment effect again confound treatment and trend effects. Addi-
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tionally, here we see that the form of heteroskedasticity means that the estimates of

the treated group effect become more dispersed for higher values of gamma.

Table C1: Simulation
(1) (2) (3)

OLS Log PPML OLS Level
γ = 0
Treated x Post .1976176 .19624 4.618121

(0.0698541) (0.084088) (2.510334)

Treated -.3995088 -.3996061 -10.8962
(0.0404981) (0.047648) (1.302451)

Park Test 0.053 0.008 -
Breusch-Pagan 0.061 - -
γ = 0.1
Treated x Post .1976049 .1960462 4.614949

(0.0712667) (0.0866465) (2.570692)

Treated -.4251419 -.3996628 -10.89587
(0.0413711) (0.0490935) (1.328722)

Park Test 0.096 0.023 -
Breusch-Pagan 0.255 - -
γ = 0.2
Treated x Post .197592 .1958383 4.61164

(0.0727196) (0.0893964) (2.636176)

Treated -.4520214 -.3997227 -10.89545
(0.0422676) (0.0506476) (1.357337)

Park Test 0.242 0.063 -
Breusch-Pagan 0.705 - -
γ = 0.3
Treated x Post .1975789 .1956156 4.608198

(0.0742098) (0.0923475) (2.707136)

Treated -.4801382 -.3997863 -10.89492
(0.0431861) (0.0523165) (1.388475)

Park Test 0.488 0.157 -
Breusch-Pagan 0.955 - -
γ = 0.4
Treated x Post .1975658 .1953774 4.604632

(0.0757344) (0.0955096) (2.783938)

Treated -.5094768 -.3998539 -10.89427
(0.0441245) (0.0541067) (1.422332)

Park Test 0.715 0.304 -
Breusch-Pagan 0.996 - -
Notes: Results from 10,000 replications of the simulation
procedure described in section 4. Mean of the estimated
coefficients reported with standard deviations in parenthe-
ses.
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