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Non-technical summary 
 

 

The Great Recession has revived an important debate about the extent and nature of the misallocation of 

unemployed workers across labor markets. Central to this debate is the notion that some labor markets 

offer better employment prospects than others and that some unemployed workers would benefit if they 

were to reallocate. In this paper we investigate to what extent unemployed workers are able and willing 

to change labor markets in response to changes in aggregate or local conditions and how this affects the 

behavior of unemployment over the business cycle. Our paper makes five contributions.  

 

First, we provide new evidence on worker reallocation across occupations through unemployment. For 

this purpose we focus on the US and use the Survey of Income and Program Participation for the period 

1986-2011. Second, this evidence motivates a theoretical framework through which we can analyse the 

observed patterns and relate them to the aggregate behavior of unemployment over the business cycle. 

We use a subset of the data to ground our theory quantitatively and another subset to test it. Third, we 

decompose aggregate unemployment into three components. Reallocation unemployment, which is 

caused by a time-consuming process of determining in which other occupation to look for jobs. Search 

unemployment, caused by frictions that make it time-costly to successfully find a vacancy in a given 

occupation. Rest unemployment, when unemployed workers remain attached to an occupation that 

currently provides few employment opportunities but is sufficiently likely to recover in the future, 

making it optimal for workers to wait for conditions to improve and jobs to arrive. We find that rest 

unemployment is quantitatively very important, playing a prominent role in shaping the cyclical patterns 

of unemployment. 

 

Fourth, we link occupational human capital, heterogeneous outcomes inside an occupation and 

occupational mobility to overall unemployment outcomes. We find that these can quantitatively 

reproduce the decrease in occupational mobility in unemployment over the life cycle, and explain the 

decrease in the inflow to unemployment, and the longer durations in unemployment. Fifth, the model 

produces unemployment fluctuations of a magnitude similar to the data, jointly with countercyclical 

separations and procyclical reallocations. The cyclical behavior of the distribution of unemployment 

durations in the model is also in line with the data, with a quantitatively similar increase in the 

proportion of long-term unemployment spells in recessions. The cyclical volatilities of the separations, 

job finding and reallocation rates for young and prime-aged workers are also in line with data. 
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Abstract

We build an analytically and computationally tractable stochastic equilibrium model of unem-
ployment in heterogeneous labor markets. Facing search frictions within markets and reallocation
frictions between markets, workers endogenously separate from employment and endogenously
reallocate between markets, in response to changing aggregate and local conditions. Empirically,
using the 1986-2008 SIPP panels, we document the occupational mobility patterns of the un-
employed, finding notably that occupational change of unemployed workers is procyclical. The
heterogeneous-market model yields highly volatile countercyclical unemployment, and is simul-
taneously consistent with procyclical reallocation, countercyclical separations and a negatively-
sloped Beveridge curve. Moreover, the model exhibits unemployment duration dependence, which
(when calibrated to long-term averages) responds realistically to the business cycle, creating sub-
stantial longer-term unemployment in downturns. Finally, the model is also consistent with dif-
ferent employment and reallocation outcomes as workers gain experience in the labor market, on
average and over the business cycle.
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1 Introduction
The Great Recession has revived an important debate about the extent and nature of the misallocation
of unemployed workers across labor markets. Central to this debate is the notion that some labor
markets offer better employment prospects than others and that some unemployed workers would
benefit if they were to reallocate.1 In this paper we investigate to what extent unemployed workers are
able and willing to change markets in response to changes in aggregate or local conditions and how
this affects the cyclical behavior of unemployment. We do this in a fully-fledged equilibrium business
cycle model in which frictional labor markets are heterogeneous and workers’ reallocation choices
across these markets are endogenous.

Our paper makes five contributions. First, we show that our heterogenous market model remains
tractable and easy to compute. Decisions are easily characterized and comparative statics can be done
analytically, laying bare the underlying forces in the model. Second, we operationalize ‘markets’
by occupations and document the reallocation behavior of the unemployed in the data, in particular
over the business cycle. We use a subset of the data to ground our theory quantitatively and another
subset to test it. Third, we decompose aggregate unemployment into three components. Reallocation
unemployment, caused by a time-consuming process of determining in which other occupation to
look for jobs. Search unemployment, caused by frictions that make it time-costly to successfully find
a vacancy in a given occupation. Rest unemployment, when unemployed workers remain attached
to an occupation that currently provides few employment opportunities but is sufficiently likely to
recover in the future, making it optimal for workers to wait for conditions to improve and jobs to
arrive.2 As in Alvarez and Shimer (2011), but inferred from different dimensions of the data, we find
that rest unemployment is quantitatively very important. We subsequently show it is also an important
force shaping cyclical patterns of unemployment.

Fourth, while Kambourov and Manovskii (2009a) link occupational human capital, heterogeneous
outcomes inside an occupation and occupational mobility to inequality in wage outcomes, and Al-
varez and Shimer (2009) link sectoral human capital to rest unemployment of experienced workers,
we study the extent to which occupational human capital and occupational mobility affect overall un-
employment outcomes. We find that these can quantitatively reproduce the decrease in occupational
mobility in unemployment over the life cycle, and explain the decrease in the inflow to unemployment,
and the longer durations in unemployment. Fifth, to our knowledge, we provide the first fully-fletched
quantitative business-cycle investigation of rest, search and reallocation unemployment in a many-
market equilibrium model that goes beyond just two islands and with a shock process that goes beyond
a two-state Markov process. We find that the business cycle patterns implied by the calibrated model

1See, for example, Elsby, et al. (2010) and Barnichon and Figura (2011), who measure the extent to which matching efficiency has
decrease during the Great Recession; and Şahin, et al. (2012) and Herz and Van Rens (2011) who measure the extent of mismatch.

2Jovanovic (1987), Hamilton (1988), Gouge and King (1997) and Alvarez and Shimer (2011) provide earlier studies of rest unem-
ployment. Rest unemployment in our model is conceptually close to unemployment arising in stock-flow matching models. One can
think of our rest unemployed workers as those who are actively look for job openings, for example by visiting job centres (as in the
UK), by inquiring at firms and through acquaintances, but who find out that there are no jobs available for them. Instead of starting to
look for jobs in additional occupations or locations, these workers prefer to wait and repeat the same process for the same market in the
next period. When a market receives shocks that make hiring profitable again, a flow of newly created vacancies will start matching with
the existing stock of unemployed. See Coles and Smith (1998) and Ebrahimy and Shimer (2010) for examples of stock-flow matching
models.
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are in line with the data. In particular, the model produces unemployment fluctuations of a magnitude
similar to the data, jointly with countercyclical separations and procyclical reallocations, while not
creating counterfactual implications for the Beveridge curve or the correlation between aggregate job
finding and labor market tightness (see Shimer, 2005). Moreover, the cyclical behavior of the distribu-
tion of unemployment durations in the model is also in line with the data, with a quantitatively similar
increase in the proportion of long-term unemployment spells in recessions. The cyclical volatilities of
the separations, job finding and reallocation rates for young and prime-aged workers are also in line
with data.

Our theory combines the ideas originally set out by Lucas and Prescott (1974), in the setup of
Alvarez and Veracierto (2000), and Mortensen and Pissarides (1994). It considers an economy with
different occupations. Within every occupation a set of ‘islands’ represents the various labor markets
attached to the occupation. On each island unemployed workers can decide to search and apply for ex-
isting job opportunities, become rest unemployed and wait for jobs to arrive, or reallocate to a different
occupation. Employed workers can decide to separate from their employers and become unemployed.
Search frictions on each island are modelled through a matching function that governs the meeting
process of workers and firms. Reallocation frictions across occupations are modelled through a time
and resource consuming process, where new islands in other occupations are randomly drawn from
the set of all islands. Our framework contrasts with most of the literature as it considers search unem-
ployment separately from reallocation and rest unemployment, and because it analyses the business
cycle implications of rest and reallocation unemployment, in addition to search unemployment.3

Our paper belongs to the emerging literature that investigates the role of heterogeneity across
workers and/or firms in aggregate unemployment fluctuations.4 Though our economy is subject to
both aggregate productivity shocks and shocks to the productivity of the worker in his occupation
(referred to as worker-occupation specific productivity), the model stays tractable and is easily com-
puted, because the equilibrium has a block recursive structure. This means that equilibrium mobility
decisions only depend on the aggregate and idiosyncratic productivity states.5

Key behind this last result is that, on each island, the production and matching technologies are
constant returns to scale. This is also a key building block in the standard Pissarides model, implying
that job finding rates are a function only of productivity, not of unemployment or employment. In

3In island models, the term search unemployment is often used to denote the unemployment experienced when moving to a new
island. In our model, to distinguish search within an island or occupation from search across occupations, we label the latter reallocation
unemployment, and the former search unemployment.

4Closely related papers are Alvarez and Shimer (2011), Lkhagvasuren (2012), Şahin et al. (2012), and Herz and Van Rens (2012),
who all consider heterogeneity and unemployment across sectors, occupations or locations (or combinations thereof). The first two con-
sider steady state settings; Lkhagvasuren (2012) computes the effect of a one-time unexpected permanent shock to aggregate productiv-
ity for geographical mobility and unemployment dispersion. The latter two papers map detailed data on vacancies and unemployment,
using non-arbitrage relations (from the perspective of the market or the planner) to measure mismatch. More broadly related papers
are Birchenall (2010), who constructs an island model with demand uncertainty and reallocation; and Garin, et al. (2011), who study
net sectoral mobility in a two-island model. More generally, this paper contributes to the literature that analysis the quantitative impact
of heterogeneity on aggregate unemployment fluctuations. Recent example are Menzio and Shi (2010), Chassamboulli (2011), Robin
(2011), Bils, et al. (2012), Coles and Mortensen (2012), Elsby and Michaels (2012), Hawkins (2011), Kaas and Kircher (2012), Lise
and Robin (2012) and Moscarini and Postel-Vinay (2012).

5Menzio and Shi (2011) were the first to formally apply this concept to solve a directed search model of the business cycle that
considers on-the-job search with an infinite dimensional state space. Hoffmann and Shi (2012) study the transition path of a long-run
shift from the manufacturing to the service sector, employing a block recursive structure.
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our model, this property is used to its full extent to keep the heterogeneity tractable. On every island,
vacancy posting, search, reallocation and separations decisions are functions only of the relevant pro-
ductivities, not of the number of employed and unemployed on the island, or much more importantly,
on all other islands.6 In the absence of these constant returns to scale technologies, the distribution
of workers over islands typically will matter, rendering the characterisation and computation of the
equilibrium rather involved. As a result studies with endogenous mobility between heterogeneous fric-
tional markets have mostly been confined to steady state analysis.7 Alternatively, as in Shimer (2007)
and Mortensen (2009), one can abstract from endogeneity of mobility between markets, and focus
on how the business cycle shapes match formation when it changes the numbers of unemployed and
vacancies which are unequally spread over islands such that only the short side succeeds in its entirety
to match.

In the analytical and quantitative sections we establish that separation and reallocation decisions
can be each summarized by reservation properties. The reallocation cutoff is completely analogous to
the reservation wage in a McCall-type model, where here workers consider the expected life-time
values of unemployment across islands. Additionally, search frictions on islands imply that there
is a non-trivial separation decision, which typically results in a separation cutoff similar to the one
in Mortensen and Pissarides (1994). These two cutoffs are not necessarily equal and their relative
position is an important determinant of outcomes in our economy as well as of the importance of
search, rest and reallocation unemployment. Search unemployment occurs in islands with productiv-
ities higher than both cutoffs; reallocation unemployment, occurs when unemployed workers are in
islands below the reallocation cutoff, and rest unemployment, when workers are in islands below the
separation cutoff but above the reallocation cutoff (if there are any such islands).

We are able to study analytically the behavior of these cutoffs to changes in aggregate produc-
tivity. We show that their implied cyclical behavior is affected by the relative importance of search,
rest and reallocation unemployment. Search unemployment creates, perhaps surprisingly, more pro-
cyclical reallocation behavior, while more reallocation unemployment could lead to a less procyclical
reallocation rate. We also show that rest unemployment affects the countercyclicality of separations:
when separated workers expect to be rehired eventually in the same occupation, a potentially pro-
cyclical value of reallocation does not weigh heavily in the decision to separate. Given these different
implications, it is of first-order importance to quantify the contributions of search, rest and realloca-
tion unemployment. The detailed patterns underlying reallocation in unemployment, which we briefly
discuss next, helps us to do so.

We document new evidence on the patterns of worker reallocation through unemployment across
occupations in the US, using the Survey of Income Program Participation (SIPP) for the period 1986-
2011. Existing literature has mainly focused on overall occupational mobility or only on the occupa-
tional mobility of the employed.8 We find that: (i) The extent of occupational mobility by unemployed
workers is high and decreases with age. (ii) Occupational mobility increases with unemployment

6The constant returns to scale assumption brings our model mathematically closer to the one-person one-island model of Jovanovic
(1987), though in our model, importantly, the value of a non-resting worker is shaped by the search frictions on the island.

7An interesting exception is Veracierto (2008), who takes an approximation around the steady state that reduces the heterogeneous
island problem into a linear-quadratic problem.

8See Moscarini and Thomssom (2007), Moscarini and Vella (2008) and Kambourov and Manovskii (2008) for recent examples.
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duration, but rather moderately, such that even at high unemployment durations a large proportion
of unemployed workers find a job in their own occupation. (iii) Occupational mobility is associated
with higher re-employment wages. (iv) After changing occupations workers often change occupations
again in a subsequent unemployment spell. However, if the worker did not changed occupation, he/she
is more likely to stay in the same occupation after a subsequent unemployment spell. (v) The occu-
pational mobility of the unemployed is procyclical and positively correlated with the rate at which
unemployed workers find jobs in a different occupation.

In the calibrated model, we use the evidence on reallocation, net of cyclical patterns, to inform us
about the costs and benefits of reallocation and, more generally, the environment in which workers
make their reallocation decisions. In turn this helps us determine which type of unemployment is
quantitatively important. We find that a large part of unemployment is rest unemployment, in line with
Alvarez and Shimer (2011) who use industry wage dynamics data to determine the relative importance
of rest unemployment. Further, the calibrated model has significant search unemployment, but not
much reallocation unemployment. The latter occurs as the time spent searching across occupations is
small, usually less than a month.9

Rest unemployment is prominent in the calibration because it can reproduce a number of unem-
ployment and reallocation patterns in the data in a mutually consistent way, while search and reallo-
cation unemployment by themselves cannot. First, rest unemployment is fully able to reconcile the
coexistence of large reallocation flows and the substantial empirical proportion of long-duration un-
employed workers who ultimately remain in their occupation. A rest unemployed worker remains
attached to an occupation because a volatile enough worker-occupation specific productivity pro-
cess gives him enough upside there. The same volatility can push many workers to reallocate, while
long-term unemployed workers who are rehired in the same occupation are those whose waiting was
worthwhile ex post. Without rest unemployment, it appears much harder to resolve the tension be-
tween reallocation flows and long-term occupational staying. Then, overall reallocation requires a
volatile enough process, while occupational staying even after long unemployment durations, i.e. in
the most unattractive markets, would require a very persistent process. Otherwise reallocations would
be triggered too frequently after long unemployment durations, leaving too little occupational stayers
at high durations.

Second, within a SIPP panel 40% of the unemployed who found a job in their old occupation are
observed to change occupations when they become unemployed a second time. In the model, without
rest unemployment, the distribution of those unemployed who remain in their occupations after the
first unemployment spell will be biased towards the best islands, and therefore these workers will
be much more likely to stay again in their occupation in a subsequent unemployment spell. With
rest unemployment, many of the unemployed workers who found a job in their previous occupation
are in markets which have recovered just enough for firms to start hiring workers again. When these
workers separate again, they become rest unemployed again, and will be likely to reallocate. Third, rest
unemployment can explain how unemployment incidence is concentrated in a subset of workers. With
rest unemployment, much of the unemployment is found around idiosyncratic productivities close to

9This does not mean that reallocation frictions are small (the fixed cost of reallocation is substantial in the calibrated model), or
that reallocation is unimportant, as almost all the discussion in this paper suggests the opposite.
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the separation cutoff, and rehired workers need only a few adverse shocks to become unemployed
again.

We calibrate our model using averages based on the entire time series (spanning 1986-2011), apart
from the driving aggregate productivity process. The model generates procyclical reallocations in
unemployment, and countercyclical unemployment. The model also produces sufficient amplification
of productivity shocks. The cyclical volatilities of unemployment, job finding and separation rates are
very close to their empirical counterparts. These features are important since it is well known that the
canonical search and matching model, as described in Pissarides (2001), has difficulty in matching
these aspects of the data (see Shimer, 2005, and Costain and Reiter, 2008), and most of its extensions
are able to reproduce some but not all of features we discuss.

The model also does well along the dimensions that the canonical representative-market model
is able to capture. It produces a high correlation between job finding and tightness and the strongly
downward-sloping Beveridge curve.10 It is noteworthy that endogenous separations do not lead to a
breakdown of the Beveridge curve, while this usually causes trouble in the standard representative-
market model. The main reason is that our model exhibits ‘market selection’. Those workers separat-
ing are largely confined to labor markets in which conditions are poor, where there is little incentive to
hire workers, and thus the inflow into unemployment triggers little or no additional vacancy posting.
In other markets vacancies are still posted, and workers still find jobs, implying that in the aggregate
we do not observe the entire labor market shutting down.

Most of the cyclical behavior can be understood directly from the endogenous separation and real-
location responses to aggregate productivity shocks. Rest unemployment occurs at idiosyncratic pro-
ductivities below the separation and above the reallocation cutoffs, and is the most important driver
of cyclical unemployment. As aggregate productivity drops, the separation cutoff in the calibration
rises, and more employed workers separate into rest unemployment. Simultaneously, the reallocation
cutoff in the calibration drops. This means an increase in the range of idiosyncratic productivities at
which rest unemployment occurs and, as a result, rest unemployed workers take longer to become
either search or reallocation unemployed. This causes the overall job finding rate to drop. In addition,
in islands marginally above the separation cutoff, employment surpluses are small and sensitive to
the aggregate productivity, which further decreases the aggregate job finding rate. The countercyclical
separation cutoff and procyclical reallocation cutoff, and the associated rest unemployment, thus pro-
duce cyclical fluctuations in the unemployment, separation, reallocation and job finding rates that are
in line with the data. Moreover, the increased distance between the two cutoffs also increases longer-
duration unemployment in equal magnitudes as in the data during downturns. These features show that
the model captures well the untargeted disaggregated patterns underlying observed unemployment.

The empirical evidence on occupational mobility drawn from the SIPP also suggests that workers’
occupational attachment vary distinctly with occupational experience and age. To analyse whether
our model, and the idiosyncratic shock process that drives much of unemployment and reallocation,
can also reproduce quantitatively these different outcomes for workers of different ages (and simul-
taneously perform well over the business cycle), we let workers gain occupational specific human
capital, which they loose by changing occupations, along the lines of Rogerson (2005), Kambourov

10This suggests that the results in Shimer (2007) and Mortensen (2009) are robust to endogenous reallocation.
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and Manovskii (2009a) and Alvarez and Shimer (2009).11 In particular, Alvarez and Shimer (2009)
relate sector-specific human capital to rest unemployment of experienced workers in a steady state
environment, focusing on net mobility and abstracting from unemployment of inexperienced workers
and other causes of unemployment.

We consider occupational gross mobility patterns, allow search, rest and reallocation unemploy-
ment at all human capital levels, and quantitatively link the idiosyncratic shock process to the real-
location, separation and job finding rates, unemployment duration dependence, and reallocation rates
at different unemployment durations for young and prime aged workers. Even with different human
capital levels our model remains tractable, due to its block recursive structure. Our model with differ-
ent human capital levels can simultaneously reproduce, on one hand, the empirical age-differences in
transition and unemployment rates in response to large returns to occupational experience, and on the
other hand, the empirical sensitivity of unemployment and transition rates in response to the smaller
business cycle shocks. Both life-cycle and business-cycle patterns are shaped by the distribution of
workers over different labor markets (each associated with a value of idiosyncratic productivity and
human capital capital in a worker’s occupation), and thus driven by the same idiosyncratic shock pro-
cess. Unemployment fluctuations over the business cycle are driven by the mass of workers close to
the countercyclical separation cutoff, and the procyclical reallocation cutoff below it.

It is worthwhile mentioning that our heterogeneous market model does not require the usual prox-
imity of the average value of unemployment to the average value of production to create amplification.
Our estimated unemployment benefits flows are close to Hall and Milgrom (2008), rather than Hage-
dorn and Manovskii (2009). For the same reason, our setting also appears to provide a solution to the
trade-off present in representative-market search models between wage growth dispersion with simul-
taneously sufficiently low endogenous separations, and cyclical fluctuations (Bils et al. 2011). Finally,
we emphasize that this paper studies the reallocation behavior of the unemployed and how it shapes
their outcomes. It is not a theory of aggregate reallocation flows between sectors or occupations –
these should also include the flows of employed workers.

The rest of the paper is organised as follows. In the next section we present our motivating evi-
dence. In Sections 3-5 we develop the model and discuss the implications of theory. Section 6 contains
our quantitative analysis and Section 7 concludes. Proofs are relegated to the Appendix or to the Sup-
plementary Appendix.

2 Patterns of Worker Reallocation Through Unemployment
We now present evidence on the occupational reallocation behavior of unemployed workers. We con-
sider the extent of occupational mobility, its relation with unemployment spell durations, the subse-
quent outcomes for reallocating workers, and its cyclical patterns. These patterns will help ground our
model as much as possible in the actual reallocation behavior of the unemployed as observed on the
micro-level. We also think these patterns are interesting and informative in themselves. There is no
reason to believe that the much more extensively studied occupational mobility patterns for employed

11Rogerson (2005) focusses on the role of the life-cycle in observed net mobility between sectors. See also Wong (2012). Al-
brecht et al. (1998) build an early model that considers the interaction between sector specific human capital with rest and reallocation
unemployment.
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workers (or all workers together), are the same for the unemployed. This caution particularly applies
to the cyclical pattern of reallocation of the unemployed.

For these purposes, we use the Survey of Income Program Participation (SIPP) for the period 1986-
2011. The SIPP, administrated by US Census Bureau, provides demographic data on a reasonably
large number of individuals of all ages at a moment in time. It follows them typically for 2.5 to 4
years, depending on the panel, while keeping track of the individuals’ labor market status, including
workers’ occupations and matches with firms. From this sample, we consider all workers between 16
and 65 years of age who are not in self-employment, government employment or in the armed forces.
In the Supplementary Appendix we provide further details of the data used, and its construction; here
we present the main results.

To study occupational reallocation we consider those unemployed workers that after experiencing
an employment to unemployment transition reported an uninterrupted spell of unemployment that
ended in employment. We consider a worker to be unemployed when he/she is unattached to a job and
looking for work.12 We compare their occupation at re-employment with the previously held occupa-
tions, focusing on ‘major’ occupational groups.13 Our focus is also on gross occupational mobility.
Given that in the SIPP gross mobility flows are typically 9 times larger than net mobility flows, and
that we are interested in understanding how reallocation frictions affect decisions and outcomes for
individual workers in unemployment, rather than the effect of occupational shifts on aggregate output,
we find the former better suited for the problem at hand.14

The Extent of Occupational Mobility To measure the extent of occupational mobility in unem-
ployment, we calculate the proportion of the inflow into unemployment (or equivalently, outflow from
unemployment) that will eventually re-enter employment in a different occupation, and denote it by
Cm. For brevity, we will simply refer to the group of unemployed workers who find a job in a different
occupation as ‘occupational movers’ and their counterparts as ‘occupational stayers’.

Table 1: Proportion of completed unemployment spells ending with an occupation change
Major Occupational Groups

all male female high school college
young (20 < age ≤ 30y) 0.525 0.541 0.506 0.537 0.526
prime (35 < age ≤ 55) 0.445 0.446 0.443 0.469 0.453
all working ages 0.500 0.511 0.486 0.519 0.493

Occupational mobility through unemployment is high, on average 50% of workers will find a job
12Under this assumption we exclude those workers that are still with a job but on layoff and hence reduce the effects of firms

recalling laid-off workers on our analysis. We miss, however, those workers on layoff who were not recalled and changed employers
and include those workers that experienced a permanent separation and where recall by their previous employers. Moscarini and Fujita
(2012), who provide an analysis of recall unemployment using the SIPP for a similar period, find that the latter types of workers represent
a small proportion of those workers without a current job (on layoff or permanently separated). See the Supplementary Appendix for
the employment status classification used in the SIPP.

13We also have performed our analysis by comparing the occupation at re-employment with the entire pool of occupations reported
in all observed employment spells prior to the unemployment spell and for finer levels of aggregation, finding similar results.

14To measure the relative size of gross mobility flows we use Mo = min{Io,Oo}
|Io−Oo| , where Io denotes the inflow of workers into an

occupation o and Oo the outflow from that occupation. For each of the three sets of panels sharing the same occupational classification
(see the Supplementary Appendix for details), we rank each occupation by the size of their Mo and compute the median value. The
number reported above is the average of these median values.
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Figure 1: Extent of occupational mobility by unemployment duration - Major occupational groups

that is classified in a different major occupational group. In table 1 we collect the extent of occu-
pational mobility, also for various demographic groups. We see mobility is broadly similar across
gender and eduction (using the entire sample period and pooling all the panels). Occupational mobil-
ity declines with age: prime-aged workers (35-55yo) change occupations about 15% less than young
workers (20-30yo) at the end of their unemployment spell.

From the definition of the occupational categories, these occupational movements appear largely
“horizontal”. For example, a worker could change from performing a “sales” related job to performing
(after re-employment) a “transportation and material moving” related job. These occupational move-
ments also appear somewhat random as their transition matrices show no significant clustering outside
the diagonal (see the Supplementary Appendix).

Now consider the monthly outflow rates for the subset of all unemployed who are occupational
movers, Umt, resp. Ust for occupational stayers. Formally, the outflow rate of occupational movers,
Pmt, equals UEmt+1/Umt, where UEmt+1 denotes the number of unemployed workers at month t
that found a job in a different occupation the following month, t + 1. Pst is the analogous outflow
rate for stayers. We find that on average occupational stayers tend to leave unemployment faster than
occupational movers, with Ps = 0.300 versus Pm = 0.255. Interestingly, this pattern occurs across
occupational categories, and age. For young workers, for example, the monthly outflow rate for movers
Pm = 0.275, while for stayers Ps = 0.322. For prime age workers we obtain that Pm = 0.215 and
Ps = 0.269.15

While a comparison of the average outflow rates shows that occupational movers spend longer in
unemployment, it does not tell us precisely how occupational mobility evolves with unemployment

15Combining the above measures we obtain Jfmt = PmtCmt and Jfst = Pst(1 − Cmt), which describe the proportion
of unemployed workers at time t that found a job in a different (same) occupation between t and t + 1. Overall the above results
show that both occupational movers and stayers account for a significant proportion of the total monthly outflow from unemployment;
50.1% of the aggregate job finding rate, Jfm + Jfs, occurs with a major occupational change. Bart Hobijn has kindly provided us
with his own calculations of the latter measure using the CPS for the period 1986-2011. He finds that on average 48.2% of all those
unemployed workers who became employed at any given month changed their major occupations. This calculation, however, combines
those unemployed workers that, before finding a job, did not transit between unemployment and non-participation (or vice-versa) and
those that did, were our analysis is based only on the former set of workers. By combining these two types of workers we obtain that
41.7% those unemployed workers who became employed at any given month changed major occupation. This comparison is evidence
that the extent of occupational reallocation through unemployed we find in the SIPP is also present in the CPS.
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Table 2: Monthly median re-employment wage changes (%) - Major occupational groups.
Age Group Aggregate Occupational Change Occupational Stay

All -6.060 -1.378 -7.773
Young 2.223 10.106 0.128
Prime -9.102 -7.648 -10.061
Old -14.357 -15.998 -10.456

duration. Figure 1 shows that as on-going unemployment spells become longer, more of the remaining
unemployed will end up in a new occupation (though this relation becomes non-monotone close to
12 months duration). This increase, however, is very moderate. As a result, the proportion of workers
who will be occupational stayers remains high, even at high unemployment durations (close to 40% at
12 months). The slow increase with duration of the proportion of occupational movers in the stock of
remaining unemployed is not driven by a composition effect over age: it also appears when we look at
the subset of young and prime-aged workers. Their profiles appear to be vertical translations, shifted
up for young workers, relative to the profile for all, and shifted down for prime-aged workers.

This pattern reflects the reallocation choices of workers and hence can be informative about the
underlying environment in which unemployed workers trade off the cost and benefits of reallocation.
An immediate and unambiguous conclusion based on these data alone, however, is not straightforward.
Does the long time spent in unemployment for occupational movers reflect that reallocation itself takes
time? Or is it that after a job separation labor market conditions need to worsen further before a worker
looks for jobs in other occupations, so those who find jobs quickly have been first searching in their
old occupation? These two explanations imply different sources behind unemployment and its cyclical
behavior. With the model in hand, we hope to uncover these sources.

Post-reallocation Labor Market Outcomes We now analyse the outcomes after a reallocation to
explore further the potential gains of reallocation and the potential forces in the way of it.

First, consider the gains of reallocation. Perhaps the most direct measure is to compare a worker’s
wages after unemployment with the same worker’s wages before unemployment, for the set of workers
who reallocate, and the set of those who stay in their occupation.16 Table 2 considers the average of the
monthly median re-employment wage changes for workers that experienced an unemployment spell
leading to either an occupational or a non-occupational change.17 The monthly median re-employment
wage growth is overall negative. Re-employment wage growth is higher when the workers ended their
unemployment spell with an occupational change than when they stayed in the same occupation. This
feature is prevalent at an aggregate level and for young and prime age workers. Further these pat-
terns survive when we consider the average median re-employment wage changes based on the entire
panel rather than in each month.18 Since workers who became unemployed and changed occupations

16To emphasize, we are considering the gains of reallocation for a specific subset of workers, those who go through unemployment.
Potentially different patterns for job-to-job or firm-to-firm moves of employed workers with an occupational change or stay concern a
very different subset of workers in a very different choice environment. One should therefore be careful drawing parallels. For recent
work looking at wage changes with occupational changes of employed workers, see Groes et al. (2012).

17The wage change is computed using the average wage earned in the job immediately prior and the average wage earned in the
job that followed immediately after the unemployment spell. These results are based on the 1996 - 2008 panels as they provide more
reliable estimates of re-employment wage changes due to their larger sample size. As from 1996 the sample size of each panel increased
from, approximately, 15,000 to 40,000 individuals.

18When considering all the panels the results also show that the overall average monthly median and panel median are higher for
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Table 3: Outflow rates of the repeat unemployed
Age Group stay after stay stay after move move after move move after stay
All 0.294 0.309 0.281 0.263
Young 0.307 0.348 0.290 0.305
Prime 0.284 0.305 0.274 0.194

appear to gain (lose less) in wages relative to workers who became unemployed and stayed in their
occupation, reallocation appears to benefit workers afterwards.

To get a sense to what degree workers display attachment to their occupations, we analyse what
happens if a recently unemployed worker becomes unemployed again.19 We refer to the statistics con-
cerning these two subsequent unemployment spells as ‘repeat mobility’ statistics, and the workers in
underlying these statistics as ‘repeat unemployed’. When analysing repeat-unemployed workers who
did not change occupation in their first spell, we find that they are more likely to remain in their
occupation at the end of their second unemployment spell. A little under 40% (36%-40%) of these
workers move occupations in the second unemployment spells. This percentage is lower for prime-
aged workers (35%), and higher for young workers (44%), and it compares to the proportion of 50%
for occupational mobility over all unemployment spells. Likewise, we can calculate a corresponding
statistic for repeat-unemployed workers who changed occupations in their initial spell. We find that
these workers in a larger proportion move to yet another occupation in their second spell of unemploy-
ment. Unlike the other statistics, the precise percentage of this proportion is sensitive to the definition
of occupations held before the first occupational move in the data, ranging from 46%-56%.20

Now, consider the outflow rates from unemployment in the second spell, as function of occu-
pational mobility in the previous and the current unemployment spell, as displayed in table 3. Note
that the average outflow rates of occupational movers (resp. stayers) in their second spell are close to
the average outflows rates of movers (resp. stayers) in all spells. The average outflow rate of movers
among the repeat unemployed is slightly higher than the average overall outflow rate of movers, re-
flecting that more young workers are among the repeat movers. In this respect, repeat-unemployed
workers appear to be similar to the typical unemployed worker. A couple of patterns are particularly
interesting: (i) the highest outflow rate occurs among repeat unemployed who only moved occupations
in their previous spell (in particular for the young); and (ii), the lowest outflow rate occurs for those
workers who stayed in their occupation in the previous spell but change occupations in the current
spell. This number appears driven mostly by prime-aged workers. These differences appear consistent
with a degree of attachment to an old occupation acquired over time, which is not as strong in the new

workers that change occupation and for the young group. However, for the prime age workers re-employment wage growth is slightly
higher for those that did not change occupation.

19Even though this worker could be from a selected subset of workers, we can gain insights from these statistics; the model subse-
quently will allow us to get more traction on the selection issue.

20The issue here is the treatment of occupations held preceding the first of the two unemployment spells in question. If returns to
those occupations are counted as occupational stays, then this statistic is 46%, if we consider these transitions as ‘ambiguous’ and leave
them out of the sample, then we get 56%. A reason for this sensitivity is that we are purposefully very harsh in selecting repeated spells
of unemployment and the number of spells is somewhat small (though the fact that we have the entire panel from 1986-2011 at hand,
helps). Since we need to assign the second spell to occupational move/stay, the spell needs to be complete; then, since short spells are
more likely to be stays, we require that at the beginning of the second spell, the worker remains in sample for at least another year. This
issue does not change much the proportion of stayers in an unemployment spell following an spell with an occupational stay, and does
not affect overall mobility statistics.
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occupation after reallocation; the first pattern may also reflect gains in job finding rates after realloca-
tion. Without getting traction on the underlying fundamentals (and any selection issues arising from
these), this is speculative – but, with the model in hand, we can shed more light on these matters.
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Figure 2: Moving average of the growth rate of output per worker and the log series of Cm- Major
occupational groups.

Business Cycle Patterns We now turn to analyse the behavior of the proportion of occupational
movers in the outflow from unemployment, and outflow rates Pmt and Pst over the business cycle.
Figure 2 shows a (centered) 5-quarters moving average of the proportion of workers starting in a new
occupation of all unemployed workers gaining employment in quarter t, together with the growth
rate of output per worker at this time. It shows that the occupational mobility of the unemployed is
procyclical, it tends to be higher when the economy is growing faster. The correlation of the proportion
with the growth rate of output per worker is 0.36. Table 4 shows that the volatility and cyclicality of
Cm, Pm and Ps.

Table 4: Composition and Outflow Rates of Occupational Movers/Stayers over the Business Cycle
Jf Cm Pm Ps u output/worker output

Standard Deviation 0.097 0.028 0.101 0.099 0.129 0.009 0.016
Autocorrelation 0.928 0.850 0.947 0.943 0.966 0.695 0.871
Corr. w/ output/worker 0.453 0.256 0.464 0.433 -0.524 1.000 0.834
Correlation w/ u -0.773 -0.255 -0.854 -0.646 1.000 -0.524 -0.816

It appears that the claim that unemployed workers find it better to reallocate in bad times, perhaps
building on an intuition that in downturns the opportunity cost of reallocation is lower, is not supported
by observed behavior in the data. This raises two questions we take up in the quantitative section of the
paper. How we can rationalize the pattern we actually observe among occupational movers/stayers,
while keeping consistent with other important labor market facts? What further implications does the
procyclicality of reallocation have for unemployment fluctuations and its many facets?
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Perspective The patterns documented above show that (i) occupational mobility among the unem-
ployed is high, decreases with age and increases with unemployment duration. (ii) There is evidence
of gains to reallocation as well as occupational attachment. (iii) Occupational mobility is procyclical.
These provide a new set of facts on the occupational mobility outcomes of the unemployed (exclu-
sively), in particular of the cyclical behavior of their occupational mobility.

In the context of (our) existing knowledge, these mobility patterns are in line with and complement
those documented in Murphy and Topel (1987) for sectoral mobility in the US using the CPS for the
period 1970-1985. They show that the incidence of unemployment is significantly higher for those
workers who change sectors and that inter-sectoral mobility is procyclical for these workers. Our
results are also in line with recent unpublished work by Bart Hobijn, which is perhaps closest related
to us. He documents the procyclicality of the proportion of occupational movers out of unemployment
in hires using the CPS for the period 1986-2011.

The analysis of Kambourov and Manovskii (2008), using the PSID, Xiong (2008), using the SIPP,
and Longhi and Taylor (2011), using the Labour Force Survey for the UK, also find that the extent of
occupational mobility through unemployment is high (though their focus is not on behavior over the
business cycle). Fujita and Moscarini (2012), using the SIPP, have found that those worker that experi-
enced unemployment after being permanently separated from their previous jobs are much more likely
to make an (3-digit) occupational change than those that were on layoff and recalled within 3 months.
They also find that the likelihood of experiencing occupational change in this context increases with
unemployment duration.21

In the next sections we construct and study, analytically and quantitatively, a business cycle model
of the labor market that aims to contribute to our understanding of unemployment with particular
focus on the role of reallocation in unemployment and its behavior over the business cycle. While
occupational human capital is a key input in these matters, for ease of exposition we first present the
model without it. We discuss the implications of this feature later in the paper. In the Appendix we
show that our results generalize to this case.

3 Model
Time is discrete, and goes on forever; it is denoted by t. There is a finite number of occupations
indexed by o = 1, ..., O. Within each occupation there is a continuum of infinitely lived risk-neutral
workers. At any time t workers in an occupation o differ in their occupation-specific productivities,
zot. These productivities are specific to the current match between the worker and occupation and
evolve over time.22 A worker can be either employed or unemployed in an occupation. An unemployed
worker receives b each period. The wages of employed workers are determined below. There is also
a continuum of risk-neutral firms that live forever that are attached to each occupation.23 A firm has

21Faberman and Kudlyak (2012) with data from an on-line job-search website, find that workers apply more to vacancies outside
their usual occupational field as their spell duration increases.

22Other than a match specific component, we think that the productivity of a worker in an occupation also depends on several other
factors, not explicitly modelled, such as the sector and geographical location of this worker. For example, the productivity of a chemical
engineer working in the photo industry in Rochester, US, can differ from the productivity of another, equally qualified, chemical
engineer working in the oil industry in Texas, US. Moreover, these productivities can evolve differently over time. Our occupation
specific productivity tries to capture these features in a tractable way.

23Equivalently one can think of a continuum of firms attached to a particular z within an occupation.
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one position and needs a worker to produce a good with a production function y(pt, zot), where pt is
the aggregate productivity shock which impacts all occupations in the economy. We assume that the
production function is continuous differentiable and strictly increasing in all arguments. Both types of
productivities are drawn from bounded intervals and follow stationary Markov-processes. Further, the
set of productivities z and the stochastic process governing their evolution are identical across workers
and occupations. Assume that all agents discount the future using the same discount factor β.

A firm in occupation o can find a worker with productivity zot by posting a vacancy. Posting a
vacancy costs k per period. Only unemployed workers can decide to search for vacant jobs. Once a
match is formed, firms pay workers according to the posted contract, until the match is broken up. The
latter can happen with an exogenous (and constant) probability δ, but can also occur if the worker and
the firm decide to do so. Once the match is broken, the worker becomes unemployed in his current
occupation and the firm has to decide to reopen the vacancy. A worker that separates from his current
employer (voluntarily or not) stays unemployed in his occupation until the end of the period.

Instead of applying for jobs in their current occupations, unemployed workers can also decide
to start a reallocation process towards another occupation by paying a cost c and sampling a new
z in a different occupation. The new productivity z is an i.i.d. draw with cdf F (z), while any new
occupation is drawn independently of z and has a 1/(O−1) probability of being sampled. To simplify
the analysis we assume that once a worker samples a new productivity, he does not recall his previous
one. In essence, occupational reallocation allows the worker to re-start the z process at a new value of
z that is independent of his previous one. Our notation of zo is meant to capture both the value of z
and the identity of the occupation, (z, o), and anticipates that the relevant component is z.

Over time workers can sample from the set of occupations with replacement, such that it is possible
to re-visit previously performed occupations each time with a different z.24 Further, workers who have
sampled a new z cannot immediately apply for jobs in the new occupation, and must sit out the rest
of the period unemployed. Once the period is over, workers can again decide whether to apply for
jobs in the new occupation or sample another z in a different occupation. A worker, however, will not
be considered to have undergone an occupational reallocation until he has finalised the reallocation
process by finding a job in a new occupation. This distinction is made in order to measure occupational
reallocation in the quantitative section of the paper in the same way as we did in Section 2.

Given the above considerations, Figure 3 summarises the timing of the events within a period
in a given occupation. A period is subdivided into four stages: separation, reallocation, search and
matching, and production. Let Ext denote the joint distribution of z-productivities for unemployed
and employed workers over all occupations at the beginning of stage x in period t. The state space
for a worker with productivity zot at the beginning of stage x is then described by the vector Ωx

t =

{est, ot, pt, zot, Ext }, where est captures the worker’s employment status and ot his occupational at-
tachment. To keep the notation as simple as possible, we will leave Ωx

t only with its time subscript,
though it should be understood that it captures all states relevant for the worker. Tractability will arise
because we can show that the equilibrium decision rules have a relevant state space described solely

24One justification is, again that the same occupation has many locations (or sectors) with productivities independently drawn from
F (z). The worker samples one cross-product between location and occupation at a time, and hence can return to an occupation and still
get a new draw. In his current occupation, we assume that the z-process, in reduced form, captures the best the worker can do without
switching occupations.
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Figure 3: Timing of events within a period

by {pt, zt} and the employment status, for completeness we present the setup of the model using the
general state space described by Ω.

Posting and Matching In each occupation firms post contracts to which they are committed. Un-
employed workers and advertising firms then match with frictions as in Moen (1997). In particular,
for each productivity zo in an occupation o there is a continuum of sub-markets, one for each expected
lifetime value W̃ that could potentially be offered by a vacant firm.25 After firms have posted a contract
in the sub-market of their choice, unemployed workers with productivity zo can choose which appro-
priate sub-market to visit. Once in their preferred sub-market j, workers and firms meet according to
a constant returns to scale matching function m(uj, vj), where uj is the measure of workers searching
in sub-market j, and vj the measure of firms which have posted a contract in this sub-market.

From the above matching function one can easily derived the workers’ job finding rate λ(θj) =

m(1, vj/uj) and the vacancy filling rate q(θj) = m(uj/vj, 1), where labor market tightness is given
by θj = vj/uj . The matching function and the job finding and vacancy filling rates are assumed
to have the following properties: (i) they are twice-differentiable functions, (ii) non-negative on the
relevant domain, (iii) m(0, 0) = 0, (iv) q(θ) is strictly decreasing, and (v) λ(θ) is strictly increasing
and concave.26

Worker’s problem Consider the value function of an unemployed worker having productivity zot in
occupation o at the beginning of the production stage, WU(Ωp

t ) = b+βE[WR(Ωr
t+1)], where Ωp

t sum-
marises the worker’s state vector at the production stage. The value of unemployment consists of the
flow benefit of unemployment b this period, plus the discounted expected value of being unemployed
at the beginning of next period’s reallocation stage,

WR(Ωr
t+1) = max

ρ(Ωr
t+1)
{ρ(Ωr

t+1)R(Ωr
t+1) + (1− ρ(Ωr

t+1))E[S(Ωm
t+1) +WU(Ωm

t+1)]}, (1)

where ρ(Ωr
t+1) takes the value of one when the worker decides to reallocate and samples a new z in a

different occupation and take the value of zero otherwise. Value R(.) denotes the expected benefit of
sampling a new productivity z′o′ in a different occupation. Given that workers who sample a new z have

25This modelling choice is without a loss of generality. In principle, we could allow workers with different zo productivities to
visit the same sub-market and firms to offer menus which specify the W̃ for the contingency that a firm matches with a worker with
productivity zo. One can show that these menus will be chosen such that in equilibrium only one type of worker will visit each sub-
market.

26We impose two restrictions on beliefs off-the-equilibrium path. Workers believe that, if they go to a sub-market that is inactive
on the equilibrium path, firms will show up in such measure to have zero profit in expectation. Firms believe that, if they post in an
inactive sub-market, a measure of workers will show up, to make the measure of deviating firms indifferent between entering or not. We
assume, for convenience, that the zero-profit condition also holds for deviations of a single agent: loosely, the number of vacancies or
unemployed, and therefore the tightness will be believed to adjust to make the zero-profit equation hold.
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to sit out the rest of the period unemployed, this benefit is given byR(Ωr
t+1) = −c+EΩ̃p

t+1
[WU(Ω̃p

t+1)],

where Ω̃p
t refers to the states associated with the different values of z and o that a worker can sample.

The worker’s expected value of staying and searching in his old occupation is given by E[S(Ωm
t+1)+

WU(Ωm
t+1)]. In this case,WU(Ωm

t+1) = E[WU(Ωp
t+1)] describes the expected value of not finding a job,

while S(Ωm
t+1) summarizes the expected value added of finding a new job. The reallocation decision is

captured by the choice between R(Ωr
t+1) and the expected payoff of search in the current occupation.

To derive S(.) recall that λ(θ(Ωm
t ,Wf )) denotes the probability with which a worker with pro-

ductivity zo meets a firm f in the sub-market associated with the promised value Wf and tightness
θ(Ωm

t ). Further, let α(Wf ) denote the probability of visiting such a sub-market. From the set W of
promised values which are offered in equilibrium by firms for a given zo, workers only visit with
positive probability those sub-markets for which the associated Wf satisfies

Wf ∈ arg max
W

λ(θ(Ωm
t+1,Wf ))(Wf −WU(Ωm

t+1)) ≡ S(Ωm
t+1). (2)

When the setW is empty, the expected value added of finding a job is zero and the worker is indifferent
between visiting any sub-market.

Now consider the value function at the beginning of the production stage of an employed worker
with productivity zot in a contract that currently has a value W̃f (Ω

p
t ). Similar arguments as before

imply that

W̃f (Ω
p
t ) =wft + βE

[
max
d(Ωs

t+1)
{(1− d(Ωs

t+1))W̃f (Ω
s
t+1) + d(Ωs

t+1)WU(Ωs
t+1)}

]
, (3)

where d(Ωs
t+1) take the value of δ when W̃f (Ω

s
t+1) ≥ WU(Ωs

t+1) and the value of one otherwise.
In equation (3), the wage payment wft at firm f is contingent on state Ωp

t , while the second term
describes the worker’s option to quit into unemployment in the separation stage the next period. Note
that WU(Ωs

t+1) = E[WU(Ωp
t+1)] as a worker who separates must stay unemployed for the rest of the

period and W̃f (Ω
s
t+1) = E[W̃f (Ω

p
t+1)] as the match will be preserved after the separation stage.

Firm’s problem Consider a firm f in occupation o, currently employing a worker with productivity
zot who has been promised a value W̃f (Ω

p
t ) ≥ WU(Ωp

t ). Noting that the state space for this firm is
the same as for the worker and given by Ωx

t , the expected lifetime discounted profit of the firm can be
described recursively as

J(Ωp
t ; W̃f (Ω

p
t )) = max

{
y(pt, zot)− wft + βE

[
max
σ(Ωs

t+1)

{
(1− σ(Ωs

t+1))J(Ωs
t+1; W̃f (Ω

s
t+1))

+σ(Ωs
t+1)Ṽ (Ωs

t+1)
}]}

, (4)

where σ(Ωs
t+1) takes the value of δ when J(Ωs

t+1; W̃f (Ω
s
t+1)) ≥ Ṽ (Ωs

t+1) and the value of one other-
wise, Ṽ (Ωs

t+1) = max
{
V (Ωs

t+1), 0
}

and V (Ωs
t+1) denotes the maximum value of an unfilled vacancy

in occupation o at the beginning of next period t+ 1. Hence (4) takes into account that the firm could
decide to target its vacancy to workers of with a different productivity in the same occupation or
withdraw the vacancy from the economy and obtain zero profits.

The first maximisation in (4) is over the wage payment wft and the promised lifetime utility to
the worker W̃f (Ω

p
t+1). The second maximisation refers to the firm’s layoff decision. The solution to
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(4) then gives the wage payments during the match (for each realisation of Ωp
t for all t). In turn these

wages determine the expected lifetime profits at any moment during the relation, and importantly also
at the start of the relationship, where the promised value to the worker is W̃f .

Equation (4) is subject to the restriction that the wage paid today and tomorrow’s promised values
have to add up to today’s promised value W̃f (Ω

p
t ), according to equation (3). Moreover, the workers’

option to quit into unemployment, and the firm’s option to lay off the worker imply the following
participation constraints(

J(Ωs
t+1; W̃f (Ω

s
t+1))− Ṽ (Ωs

t+1)
)
≥ 0 and

(
W̃f (Ω

s
t+1)−WU(Ωs

t+1)
)
≥ 0. (5)

Now consider a firm posting a vacancy in occupation o. Given cost k and knowing Ωm
t , a firm

must choose which unemployed workers to target. In particular, for each zo a firm has to decide which
W̃f to post given the associated job filling probability, q(θ(Ωm

t , W̃f )). This probability summarises the
pricing behaviour of other firms and the visiting strategies of workers. Along the same lines as above,
the expected value of a vacancy targeting workers of productivity zo solves the Bellman equation

V (Ωm
t ) = −k + max

W̃f

{
q(θ(Ωm

t , W̃f ))J(Ωm
t , W̃f ) + (1− q(θ(Ωm

t , W̃f )))Ṽ (Ωp
t )
}
. (6)

We assume that there is free entry of firms posting vacancies within any occupation. This implies
that V (Ωx

t ) = 0 for all those Ωx
t and W̃f that yield a θ(Ωx

t , W̃f ) > 0, and V (Ωx
t ) ≤ 0 for all those

Ωx
t and W̃f that yield a θ(Ωx

t , W̃f ) ≤ 0 at any stage x in period t. In the former case, the free entry
condition then simplifies (6) to k = maxW̃f

q(θ(Ωm
t , W̃f ))J(Ωm

t , W̃f ).

Worker flows Until now, we have taken as given the state vectors Ωs
t ,Ω

r
t ,Ω

m
t ,Ω

p
t and their evolution

to discuss agents’ optimal decisions. As mentioned earlier pt, zot follow exogenous processes that are
common across all workers and occupations. However, the evolution of the number of unemployed
and employed workers is a result of optimal vacancy posting, visiting strategies, separation and re-
allocation decisions. In the Supplementary Appendix we provide a derivation of how these measures
evolve.

4 Equilibrium
We look for an equilibrium in which the value functions and decisions of workers and firms in any
occupation only depend on the productivities pt and zt and workers’ employment status. To solve for
equilibria of this type it is convenient to label the labor market attached to a particular value of zo in
an occupation o an ‘island’. Hence, in any period t an island, within a given occupation and associated
with the value zo, is composed of unemployed workers with idiosyncratic productivity equal to zot,
vacant firms which have decided to attract unemployed workers of productivity zot, and existing job
matches with current productivity zot. When workers move to a new occupation, they sample one
from the measure of islands in that occupation, and become an unemployed worker on that island
after reallocation. When a worker’s z-productivity is shocked, it is as if he has moved islands within
his occupation.27

27The island-structure we set up also can be applied to study net mobility between occupations, sectors, etc.; in this case, the
mapping between islands and e.g. an occupation could be one-to-one. All results that we derive subsequently would hold for such a
setting as well.
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Under these considerations the following describe the candidate equilibrium value functions of
agents in any occupation

WU(p, zo) = b+ βEp′,z′o

[
max
ρ(p′,z′o)

{
ρ(p′, z′o)

[
−c+

∑
o′ 6=o

∫
WU(p′, z̃o′)

dF (z̃)

O − 1

]
+ (7)

(1− ρ(p′, z′o))

[
max
WE ′

{
λ(θ(p′, z′o,W

E ′))WE ′ + (1− λ(θ(p′, z′o,W
E ′)))WU(p′, z′o)

}]}]
WE(p, zo) = w(p, zo) + βEp′,z′o max

d(p′,z′o)

{
(1− d(p′, z′o))W

E(p′, z′o) + d(p′, z′o)W
U(p′, z′o)

}
(8)

J(p, zo, W̃
E) = max

{w,W̃E ′(p′,z′o)}

{
y(p, zo)− w + βEp′,z′o max

σ(p′,z′o)
{(1− σ(p′, z′o))J(p′, z′o, W̃

E ′(p′, z′o))}
}
(9)

V (p, zo, W̃ ) = −k + q(θ(p, zo, W̃ ))J(p, zo, W̃ ) ≤ 0, (10)

where we have left implicit the time subscripts denoting the following period with a prime, z̃ in (7)
refers to new draws of z in different occupations, W̃E , w and W̃E ′ must satisfy (8) and the maximisa-
tion in (9) is subject to the participation constraints in (5).

In this type of equilibria we do not need to keep track of the measures of unemployed and employed
workers within occupations or their flows between occupations to derive agents’ decision rules. In
turn, this implies that equilibrium outcomes can now be derived in two steps. In the first step, decision
rules are solved independently of the heterogeneity distribution that exists across islands using the
above four value functions. Once those decision rules are determined, we fully describe the dynamics
of these distributions using the workers’ flow equations. Shi (2009) and Menzio and Shi (2011, 2012)
call this type of equilibrium ‘block recursive’.28

Definition A Block Recursive Equilibrium (BRE) is a set of value functions WU(p, zo), WE(p, zo),
J(p, zo,W

E), policy functions d(p, zo), ρ(p, zo), α(p, zo) (resp. separation, reallocation and visit-
ing strategies), firms’ policy functions W̃f (p, zo), σ(p, zo,W

E), w(p, zo,W
E), W̃E ′(p, zo,W

E) (resp.
contract posted, layoff decision, wages paid, and continuation values promised), tightness function
θ(W̃ , p, zo), laws of motion of zo, p for all islands and occupations, and a law of motion on the distri-
bution of unemployed and employed workers over islands and occupations ũ(.) : F [0,1] → F [0,1] and
ẽ(.) : F [0,1] → F [0,1], such that (1) the value functions and decision rules follow from the firm’s and
worker’s problems outlined above; (2) tightnesses θ(p, zo, W̃ ) are consistent with free entry, with zero
expected profits determining θ(p, zo, W̃ ) for all W̃ at which positive ex-post profits exist, also off the
equilibrium path; θ = 0 otherwise; (3) distributions evolve according to workers’ and firms’ decisions.
A more detailed definition and the flow equations underlying the evolution of the distributions are in
the Supplementary Appendix.29

28This recursive property is common in many search models when markets are segmented per type and there is constant returns to
scale in the key ‘production’ functions.

29We have not fully specified wages here; this is because wages are not uniquely pinned in the equilibrium, whereas allocations are.
Firms and workers, faced with the same discount rates, can substitute across time wage payments, without affecting separations and
application decisions, as long as the ex ante value of the match remains the same. If one additionally assumes that over time, the values
in existing matches are kept identical to values in starting matches with the same state variables, the equilibrium wages paid are exactly
in line with the Nash Bargaining solution under the Hosios’ condition.
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Characterization We start the characterisation of equilibria by showing that if there are positive
gains to form a productive match in an island, firms offer a unique W̃f with associate tightness θ̃(p, zo)
in the matching stage. Consider an island characterised by state vector (p, zo). For any promised value
WE , the joint value of the match is defined as WE + J(p, zo,W

E) ≡ M̃(p, zo,W
E). Lemma 1 shows

that under risk neutrality the value of a job match is constant in WE and J decreases one-to-one with
WE .

Lemma 1. The joint value M̃(p, zo,W
E) is constant in WE ≥ WU(p, zo) and hence we can uniquely

define M(p, zo)
def
= M̃(p, zo,W

E), ∀ M(p, zo) ≥ WE ≥ WU(p, zo) on this domain. Further,
JW (p, zo,W

E) = −1, ∀ M(p, zo) > WE > WU(p, zo), and endogenous match breakup decisions
are efficient from the perspective of the firm-worker match.

The proof of Lemma 1 crucially relies on the firms’ ability to offer workers inter-temporal wage
transfers such that the value of the job match is not affected by the (initial) promised value. Note that
Lemma 1 implies that no firm will post vacancies in islands for which M(p, zo) −WU(p, zo) ≤ 0.
Lemma 2 now shows that in any island zo, for which M(p, zo)−WU(p, zo) > 0, firms offer a unique
W̃f in the matching stage and there is a unique θ associated with it.

Lemma 2. Assume free entry of firms, and JW (p, zo,W
E) = −1 for each p, zo, and a matching

function that exhibits constant returns to scale, with a vacancy filling function q(θ) that is nonnegative
and strictly decreasing, while the job finding function λ(θ) is nonnegative, strictly increasing and
concave. If the elasticity of the vacancy filling rate is weakly negative in θ, there exists a unique
θ∗(p, zo) and W ∗(p, zo) that solve (2), subject to (6).

The requirement that the elasticity of the job filling rate with respect to θ is non-positive is au-
tomatically satisfied when q(θ) is log concave, as is the case with the Cobb-Douglas and urn ball
matching functions. Both matching functions imply that the job finding and vacancy filling rates have
the properties described in Lemma 2 and hence guarantee a unique pair W̃f , θ. To simplify the analysis
that follows, we assume a Cobb-Douglas matching function as it implies a constant εq,θ(θ). Using η
to denote the (constant) elasticity of the job finding rate with respect to θ, we find the well-known
division of the surplus according to the Hosios’ (1991) rule

η(WE −WU(p, zo))− (1− η)J(p, zo,W
E) = 0. (11)

Since in every island there is at most one W̃f offered in the matching stage, the visiting strategy
of an unemployed worker is to visit the sub-market associated with W̃f with probability one when
S(p, zo) > 0 and to randomly visit any sub-market (in the island) when S(p, zo) = 0 (or not visit any
submarket at all).

Given Lemmas 1 and 2, we can move forward to prove existence and characterize the reallocation
and separation decisions rules, in addition to the application policy rule.

Existence To show existence of equilibrium, once again consider an island characterised by state
vector (p, zo). In addition, noting that the shock process for zo does not depend on the island identity,
we conjecture at this point that all values and decisions at zo = zo′ are in fact identical at differing
o, o′, and verify whether this is indeed the case. It is useful to consider the operator T that maps the
value function M̃(p, z, n) for n = 0, 1 into the same function space, such that M̃(p, z, 0) = M(p, z),
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M̃(p, z, 1) = WU(p, z) and

T (M̃(p, z, 0)) = y(p, z) + βEp′,z′
[

max
dT
{(1− dT )M(p′, z′) + dTWU(p′, z′)}

]
,

T (M̃(p, z, 1)) = b+βEp′,z′
[

max
ρT
{(ρT

(∫
WU(p′, z̃)dF (z̃)− c

)
+(1−ρT )(ST (p′, z′)+WU(p′, z′))}

]
,

where by virtue of the free entry condition

ST (p′, z′)
def
= max

θ(p′,z′)

{
λ(θ(p′, z′))

(
M(p′, z′)−WU(p′, z′)

)
− θ(p′, z′)k

}
.

A fixed point M̃(p, z, n), n = 0, 1 describes the problem faced by unemployed workers and firm-
worker matches with productivity z in any occupation o. Further, since the identity of the occupation
does not affect the value function M̃(p, z, n) for n = 0, 1, a fixed point of M̃(p, z, n), n = 0, 1 also
describes the problem faced by agents in the decentralised economy. In the proof of Proposition 1 we
show that all equilibrium functions and the evolution of the economy can be derived completely from
the fixed point of the mapping T . For that purpose, we make the following assumption.

Assumption 1. F (z′|p, z) < F (z′|p, z̃), for all z′, p if z > z̃.

Thus, a higher occupational-specific productivity today leads, on average, to a higher productivity
tomorrow and hence the ranking of productivities z within an occupation is, in this sense, persistent.
The next result derives the essential properties of T .

Lemma 3. T is (i) a well-defined operator mapping functions from the closed space of bounded
continuous functions M̃ into itself, (ii) a contraction and (iii) maps functions M(p, z) and WU(p, z)

that are increasing in z into itself.

Given this Lemma, and Banach’s Fixed Point Theorem, a unique fixed point (M(p, z),WU(p, z))

of the mapping T exists. We can reverse our steps, and derive all equilibrium value functions and
decision rules from this fixed point. We have the following: W̃ (p, z) = M(p, z) − J(p, z, W̃ ) and
J(p, z, W̃ ) = (1−η)(M(p, z)−WU(p, z)) = k/q(θ(p, z, W̃ )), W̃ (p, z), then J(p, z, W̃ ) and θ(p, z, W̃ )

can be constructed from M(p, z) and WU(p, z). Completing these steps, assuming a tie breaking rule
in favor of the status quo, we then have existence and uniqueness of a block recursive equilibrium
which are ‘inherited’ from the existence and uniqueness of the fixed point of the mapping T . Sub-
sequently, with help of Proposition 2, we can show that the equilibrium is also unique in the more
general class of equilibria that respect the standard ‘subgame-perfection-like’ off-equilibrium belief
restriction made in competitive and directed search models.

Proposition 1. A Block Recursive Equilibrium exists and it is the unique equilibrium (up to the timing
of transfers within the match that are irrelevant for both ex ante values and the optimal policies of
separation, application, reallocation and posting).

Since the remaining verification of equilibrium is mechanical, reversing the steps in the construc-
tion of mapping T , it is in the Supplementary Appendix. There we also show the more general unique-
ness proof.

Reservation Cutoffs for Separations zs(p) and Reallocation zr(p) Lemma 3 tells us thatWU(p, z)

is increasing in z, and hence the optimal reallocation policy has a reservation property, as a function
of p: reallocate if and only if z < zr(p), where zr(p) satisfies WU(p, zr(p)) =

∫
WU(p, z̃)dF (z̃)− c.
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We can derive a similar property for separations, under a sufficient condition that is easily satisfied
– when being in a job today before the matching stage makes it more likely to be in the job as well
tomorrow, compared to being unemployed today but applying for this job.

Lemma 4. If δ + λ(θ(p, z)) < 1, for all p, z in equilibrium, then difference M(p, z) − WU(p, z)

associated with the fixed point of T is increasing in z.

Hence (for non-trivial cases), there exists a unique cutoff zs(p) that depends only on the aggregate
productivity p, such that d(p, z0) = σ(p, z0) = 1 for all zo < zs(p) in any occupation, and d(p, zo) =

σ(p, zo) = 0 for all zo ≥ zs(p). Additionally, Lemma 4 and equations (10) and (11) together imply
that labor market tightness θ(p, z) and the job finding rate λ(θ(p, z)) are also increasing functions of
z if δ + λ(θ(p, z)) < 1.

Thus two functions zs(p), zr(p) capture all separation and reallocation behavior in our economy.
In a way, our model with Pissarides-type search on each island, and McCall-type random search across
islands is not more difficult than its two parts: instead randomly drawing from a wage distribution, a
worker now draws randomly from the distribution of unemployment values, which in turn is calculated
with the same ease as in the Pissarides model, where the unemployment rate is not a state variable in
the value of unemployment. Underlying this tractability, which is present in the representative-market
Pissarides model but here is used on each and every island, i.e. at every (z, o), is constancy in the
returns to scale: in the production function, in the matching function, and in the vacancy production
function.

Planner’s Problem and Efficiency The social planner, currently in the production stage, in this
economy solves the problem of maximising total discounted output by choosing separations, reallo-
cations, applications and vacancy creation decisions for each pair (z, o) in any period t. Namely,

max
{d(.),ρ(.),v(.),α(.)}

E
[
∞∑
t=0

βt
O∑
o=1

∫ z

z

[ut(zo)b+ et(zo)y(pt, zo)− (cρ(.)ut(zo) + kv(.))] dzo,

]
where choices depend on (pt, zt,Ωt), where Ω is the entire worker distribution at the time of decision
making. The planner’s problem is subject to initial conditions (p0,Ω0), and laws of motion

ut+1(zo)dzo =

∫ z

z

[(1− λ(θ(.)))(1− ρ(.))ut(z̃o) + d(.)e(z̃o)] dF (zo|z̃o)dz̃o

+
∑
∀õ 6=o

[ ∫ z

z

ρ(.)ut(z̃õ)dz̃õ

]dF (zo)

O − 1

et+1(zo)dzo =

∫ z

z

[λ(θ(pt, z̃o))(1− ρ(pt, z̃o))ut(z̃o) + (1− d(pt, z̃o))et(z̃o)] dF (zo|z̃o)dz̃o

where ut(zo) and et(zo) denote the number of unemployed and employed workers in island zo in oc-
cupation o at period t, v(pt, zo,Ωt) denotes the number of vacancies posted for unemployed workers
in this island at time t and θ(pt, zo,Ωt) = v(pt, zo,Ωt)/(1− ρ(pt, zo,Ωt))ut(zo) denotes labor market
tightness. As with tightnesses, the planner’s choice variables ρ(pt, zo,Ωt), d(pt, zo,Ωt) are continu-
ous choice variables in [0, 1]: the planner can decide on the proportion of workers at a certain zo-
productivity to separate, or reallocate. A full derivation of the workers’ flow equations can be found
in the Supplementary Appendix.
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Proposition 2. The equilibrium identified in Proposition 1 is constrained efficient.

This immediately implies that the planner’s decisions (when considering tightnesses instead of
number of vacancies) only vary with (p, z), not with the distribution of workers over employment
status, or islands. The crucial insight behind Proposition 2 is that the social planner’s value functions
are linear in the number of unemployed and employed on each island. The remaining dependence
on p and z is equivalent to the one derived from the fixed point of T . Given the value functions of
unemployed workers and firm-worker matches, the outcome at the matching stage is efficient and
the Hosios’ (1991) condition is thus satisfied. Proposition 2 also implies that workers’ reallocation
decisions are efficient. This is intuitive as the value of an unemployed worker cannot move to another
occupation equals the shadow value of this worker in the problem of a similarly restricted social
planner. One step backwards, suppose one and only one reallocation is allowed: then reallocation
decisions are made by comparing the expected value of unemployment at other islands in different
occupations with the value of unemployment on the current island and occupation, which are identical
for planner and worker. Iterating on this backwards, the coincidence of planner’s values and workers’
value of unemployment is preserved, ad infinitum into the fixed point.

Occupational Human Capital The empirical evidence presented in Section 2 points to age effects
in the reallocation patterns of workers across occupations. Further, we also know that unemployment
rate differs with age, and so do the underlying inflows and outflows into unemployment. We would
like to investigate the role of occupation-specific human capital in heterogeneous occupational markets
(and endogenous reallocation between these), along all these dimensions. To capture these features,
we allow the production function y(p, x, z) to depend positively on occupation-specific human capital
x, which the worker acquires with productive time spent in an occupation, and loses when moving to
another occupation. In the Appendix, we prove existence, uniqueness, and efficiency for this general-
ized setting. Again, the block-recursive structure will be very helpful here, as decisions do not depend
on the distribution of workers (now also over human capital levels).

5 Implications of Agents’ Decisions
Aggregate outcomes are determined by the interplay between the decisions agents make given their
economic environment, and how this environment evolves, in part as a result of decisions made. Keep-
ing track of the evolving distributions over state variables requires us to go beyond just analytics, and
is detailed in the next section. However, we can already learn important lessons by focussing entirely
on decisions and how these vary with the state variables and parameters. This can be done analyti-
cally, in simplified settings. The block recursive property is very helpful here: decisions depend on the
aggregate productivity state p, on the individual-level employment status, z-productivity and human
capital level of the worker himself, but not the individual state variables of other workers.

We first consider the separation and reallocation cutoff, for now ignoring (again) different levels
of human capital. Figure 4 depict the two situations that can arise. Figure 4a shows that the cutoff for
reallocation can lie above the cutoff for separation. This implies that unemployed workers reallocate
at z-productivities at which existing matches still produce a surplus. Employed workers who fall
below the separation cutoff become unemployed will start looking for jobs in other occupations. As
a result, no new matches are created below the reallocation cutoff, but existing matches above zs
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Islands with employed workers,
unemployed reallocate

All workers reallocate

p

z

zr(p)

zs(p)

Islands with employed workers,
unemployed workers search on island

(a) zr > zs

Rest unemployment

All workers reallocate

p

z

zs(p)

zr(p)

Employed workers
Unemployed workers search on the island

(b) zs > zr

Figure 4: Relative positions of the reservation productivities

remain productive. On the other hand, Figure 4b shows that the cutoff for separations can as well lie
above the cutoff for reallocation. This implies that separating workers, at least initially, do not look
for jobs in other occupations. Following Alvarez and Shimer (2011) we call this ‘rest unemployment’,
reflecting that for z-productivities (islands) below separation cutoff zs, the probability of finding a job
is very low – in the model, starkly, zero. Only after the z-productivity has declined further, to below
reallocation cutoff zr, will workers look for jobs in other occupations; otherwise, they hang on for a
possible improvement in the z-productivity in their old occupation at which they can find a job again.
Above both cutoffs unemployed workers remain in their occupation and flow back to employment
over time.

An important issue in this paper is the cyclicality of reallocation and separation. The countercycli-
cality of separation rate in the aggregate naturally depends on how aggregate productivity affect the
separation decision. Are workers and firms less picky about there z-productivity for employment in
good times? A (sufficiently) negative slope of zs(p), as depicted in Figure 4, will imply countercycli-
cal separations. Likewise, procyclicality of reallocations occurs when zr(p) is (sufficiently) positively
sloped in p, also as depicted in Figure 4. We now investigate the slopes of the productivity cutoffs an-
alytically by employing the same device as used in analytical investigations of the Pissarides model: a
situation in which aggregate productivity is believed to be fixed at p forever, but a one-time only, unex-
pected, and permanent change in p occurs.30 Additionally, we assume (for now) that z-productivities
are permanently fixed.

The Cyclicality of Reallocation in Unemployment The reservation cutoff occurs where the value
of reallocation, R(p), equals the value of staying WU(p, zr(p)). In this simplified setting, the inter-
esting case is where a worker decides between looking for a job in his current occupation or in other
occupation (i.e. there is no rest unemployment: z productivities are permanent). We can write the value

30See also Shimer (2005), Mortensen and Nagypal (2007), and Hagedorn and Manovskii (2008). Since the equilibrium value and
policy functions only depend on p and z, analysing the change in the expected value of unemployment and joint value of the match
after a one-time productivity shock is equivalent to compare those values at the steady states associated with each productivity level.
This follows as the value and policy functions jump immediately to their steady state level, while the distribution of unemployed and
employed over islands takes time to adjust.
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of unemployment at z-productivities that do not trigger reallocation, and the value of reallocation

WU(p, z) =
b+ βλ(θ(p, z))(WE(p, z)−WU(p, z))

1− β
. ∀z ≥ zr(p) (12)

R(p) =

∫ z̄

z

max{WU(p, z),WU(p, zr(p))}dF (z)− c. (13)

Using the free entry condition, together with optimal vacancy posting (or Nash Bargaining with the
Hosios condition), this results in the following equality (with details of the derivation in the Supple-
mentary Appendix)

(1− η)k

η

(
β̂

∫ z̄

z

max{θ(p, z), θ(p, zr(p))}dF (z)

)
− c(1− β) =

(1− η)k

η
θ(p, zr(p)). (14)

In this form, equation (14) captures a slightly more general situation: for β̂ = β, it captures the one
period delay in unemployment before the worker can start applying after reallocation. If this delay is
absent (and the worker can do his sampling within the same period), β̂ = 1, if the delay is τ periods
instead, β̂ = βτ . With the Pissarides wage equation in hand,

w(p, z) = (1− η)y(p, z) + ηb+ β(1− η)θ(p, z)k, (15)

together with the free entry condition, we can derive 31

dθ(p, z)

dj
=

θ(p, z)

w(p, z)− b
dyj(p, z)

dj
, for j = p, z. (16)

From this, we can derive the slope of zr(p):

dzr

dp
=
β̂F (zr)yp(p,zr)

yz(p,zr)
+ β̂

∫ z̄
zr

θ(p,z)(w(p,zr)−b)
θ(p,zr)(w(p,z)−b)

yp(p,z)

yz(p,zr)
dF (z)− yp(p,zr)

yz(p,zr)

1− β̂F (zr)
(17)

It is perhaps also insightful to compare labor markets with search frictions with their perfectly com-
petitive counterpart (under the same constant returns to scale production function), where we keep the
reallocation frictions – including the time cost of reallocation– constant, but λ(.) = 1 always. Since
yp(p, z) is weakly increasing in z, and θ(p, z)/(w(p, z) − b) is increasing in z, the integral is larger
than (1− F (zr)yp(p,zr)

yz(p,zr)
), and hence we find the following:

Proposition 3. Given an unexpected, permanent increase in p,
1. For β̂ close enough to 1, or reallocation cost c high enough, then dzr(p)

dp
> 0, i.e. reallocation is

procyclical, when dy(p,z)
dpdz

≥ 0;
2. Search frictions make reallocations more procyclical than in the frictionless competitive bench-

mark with the same cutoff zr(p);
3. For β̂ small enough, reallocation becomes countercyclical.

The proof of this proposition, intermediate steps and the equations in the text are in the Appendix. This
means that procyclicality with respect to aggregate productivity comes in part from the complementary
on the production function, which would be present in frictionless competitive settings as well, but is
amplified by the presence of search unemployment, rather than dampened, as perhaps intuition would
lead to expect. Unemployment caused entirely by the time cost of reallocating, on the other hand, does
have a dampening or offsetting effect on the cyclicality of reallocation. To see the argument for the

31A formal derivation of this equation can be found in the Supplementary Appendix.
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amplification of search unemployment, note that in the equilibrium the trade-off between wages and
job finding is optimally resolved. The envelope condition then tells us that on the margin, we can pay
out any productivity gains in wages, yz(p, z)

(1− β)
dWU(p, z)

dz
=

θ(p, z)

w(p, z)− b
(1− η)k

η
yz(p, z) =

βλ(θ)

1− β(1− δ) + βλ(θ)
yz(p, z), (18)

while in the competitive benchmark, employment would be found instantly after sitting out one period
of unemployment, λ(.) = 1, and hence the corresponding derivative reduces to

(1− β)
dWU

c (p, z)

dz
= yz(p, z), (19)

Now, we can see how search creates an additional complementarity between p and z: the gains in
employment are proportional to the competitive case, but these are premultiplied by a term capturing
the probability of becoming employed, which is higher at higher z.

All in all, the cyclicality of reallocation of unemployed workers really depends on the underly-
ing causes of unemployment, and their relative importance: the implications for the cyclicality of the
longer unemployment spells of occupational movers differ among cases where this is caused mostly
by search unemployment, a time cost of reallocation, or, more generally also, the time in rest un-
employment before the worker starts looking in other occupations. This means that the quantitative
investigation must be judicious about the quantitative importance of search, rest and reallocation un-
employment.

Cyclicality of Job Separations The reallocation decision interacts with the separation decision. If
zr > zs, workers separate endogenously to reallocate; on the other hand, if zs > zr, workers separate
into rest unemployment. In the case of permanent z, and a one-time unexpected permanent shock to p,
these two cases are very different. First, consider ‘rest unemployment’, in this case, workers compare
productivity in the match with ‘productivity in unemployment’, where all resting workers get b forever.
At separation indifference y(p, zs(p)) = b, and hence

dzs(p)

dp
= −yp(p, z

s(p))

yz(p, zs(p))
< 0; (20)

separations are countercyclical.
In the second case of zr > zs, workers compare productivity in the match with productivity after

unemployment, after reallocation (taking into account a limited time of ‘productivity in unemploy-
ment’.)

Lemma 5. With permanent occupational specific productivities z, and zs(p) < zr(p) for p, it holds
that

−yp(p, z
s(p))

yp(p, zr(p))
+

βλ(θ(p, zr(p)))

1− β(1− δ) + βλ(θ(p, zr(p))

(
1 +

yz(p, z
r(p))

yp(p, zr(p))

dzr(p)

dp

)
=
yz(p, z

s(p))

yp(p, zr(p))

dzs(p)

dp
.

(21)

The first term on the LHS captures the same effect in the case of rest unemployment. Indeed if
λ(.) = 0, the two implied slopes of the separation cutoff would be identical. The entire second term
on the LHS captures the change in the gains of reallocation, dR(p)/dp, which become more promi-
nent, the less time is spent in unemployment when keeping constant dzr(p)/dp. The more responsive
the gains of reallocation are to the business cycle, the more separations are pushed towards a less
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countercyclical, perhaps even procyclical territory.
Incorporating endogenous reallocation thus affects the cyclicality of separations differently de-

pending on which kind of unemployment is prominent. Thus, relative to theories that create am-
plification of unemployment fluctuations with endogenous separations but without reallocation (or
with exogenous reallocation, as Shimer, 2007), allowing for endogenous reallocations can dampen
the cyclicality of separations and therefore unemployment fluctuations; however, crucially, this force
decreases with the importance of rest unemployment. Once again, the underlying cause of unemploy-
ment shapes cyclical behavior, here of separations.

The Occurrence of Rest Unemployment Since the relative importance of search, rest and real-
location unemployment affects the behavior of unemployment over the business cycle (and over the
life cycle), it is important to understand how the model and its parameters affect the different kinds
of unemployment. Reallocation unemployment is straightforwardly linked to reallocation technology,
i.e. the time and resource costs of sampling. Search unemployment is directly linked to the matching
function and vacancy costs. For rest unemployment, the link with the model environment is perhaps a
little less direct. Let us highlight some of the forces and tradeoffs that affect the relative position of the
reservation productivities zr(p) and zs(p), to understand the conditions under which rest unemploy-
ment is more likely to occur. For simplicity, we do this for a constant level of aggregate productivity
p, while instead incorporating time-variation in the occupation specific productivities, z. Allowing for
the latter is crucial to understand the occurrence of rest unemployment because a worker decides to
stay unemployed in his occupation, even though there are no jobs currently available for him, when
there is a high enough probability that his productivity will become sufficiently high in the future.
Since the arguments below hold for any p, they tell us how the entire reservation functions zr(p) and
zs(p) move relative to each other.

An analytically tractable way to allow for time-varying productivities z, is to introduce a shock
that triggers a new z, randomly redrawn from F (z).32 Using this setup we study how the expected
lifetime values of remaining in an occupation, or sampling a new island in a different occupation, are
affected by permanent and unexpected changes in the sampling cost c, unemployment benefit flow b,
and the degree of persistence of the z shocks. Given that we hold p constant, we abuse notation slightly
and re-label zs(p) and zr(p) such that zs describes the reservation productivity below which workers
separate and zr the reservation productivity below which workers start the reallocation process, and
drop the explicit reference to p elsewhere.

In this environment, the value of sampling is given by R = E[WU(z)] − c in (13). Noting that
the expected value of unemployment does not change if the z-shock arrives at the beginning of period
t + 1 or at the beginning of the production stage in period t, the expected value of an unemployed
worker with productivity z (measured at the production stage) is given by

WU(z)=γ
(
b+βmax

{
R,WU+max{λ(θ)(1−η)(M(z)−WU(z)), 0}

})
+(1−γ)E[WU(z)], (22)

where (1 − γ) is the probability of drawing a new productivity z. Equation (22) shows that there are

32This is a process similar to the one in Mortensen and Pissarides (1994), but now it shocks workers’ occupational specific produc-
tivities instead of firms. In the calibration below we will use an autoregressive process for these shocks. In our calibration, the same
properties as derived below apply.
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two ways in which an unemployed worker below zs can return to production. Passively, he can wait
until his current z-productivity increases exogenously. Or, actively, by paying c and sampling a new
productivity in a different occupation. In the former case, max{.} = WU(zs), while in the latter case
max{.} = R.33 Letting WU(zs) ≡ W s, the difference W s−R then captures the net gain of passively
waiting unemployed for one period over actively sampling a new z immediately. If W s ≥ R, then
zs ≥ zr and there is rest unemployment; while if R > W s, then zr > zs, and endogenously separated
workers reallocate immediately. From the expression for R and (22) it follows that

(1− βγA(zr))(W s −R) = (1− βγ)c− βγ
∫
zr
λ(θ(z))(1− η)(M(z)−WU(z))dF (z), (23)

where A(zr) = F (zr) if zr > zs ≥ z, and A(zr) = 1 if zr ≤ zs. The key trade-off in rest unemploy-
ment is between waiting, and (immediate) reallocating. The net gain of waiting instead of reallocating
is that it saves the reallocation cost c, in the first term on the RHS of (23); on the other side, if the cur-
rent z-productivity persist, the worker has missed his opportunity to have sampled another occupation
and start applying for jobs if the productivity in the other occupation is high enough, in the second
term on the RHS. Changing the sampling cost, the unemployment benefit flows, or the persistence of
the occupational specific productivity will affect the relative gain of waiting. In the following lemma
we derive the direction of the change, where we need to take fully into account the feedback effect of
these changes on the surpluses M(z)−WU(z) as well.

Lemma 6. The expected values of sampling, waiting, job surplus and unemployment, and the reallo-
cation and separation reservation productivities, respond to changes in parameters as follows

d(W s −R)

dc
> 0,

d(W s −R)

db
> 0,

d(W s −R)

dγ
< 0.

Raising the cost of reallocation changes raises the relative gains of waiting.34 A rise in b lowers
the effective cost of waiting for the productivity to improve exogenously (through (1 − γ)), and thus
drives up W s−R, and decreases the surplus of employment at every z-productivity. It is worth noting
that an increase in b unambiguously, independent of e.g. assumptions on the production function,
leads to an increase in W s − R. Finally, a rise in persistence γ decreases the upside of waiting, i.e.
experiencing a z-shock without paying c, while it increases the value of being at good z-productivities,
thus decreasing the relative value of waiting. In the Appendix, we further prove that an increase in
W s − R leads to an increase in zs − zr when zr and zs are interior: for a sufficiently large c, b and
persistence γ, rest unemployment occurs.

Rest Unemployment and Occupational Human Capital Occupational human capital makes a
worker more productive in his current occupation. As a result, workers are willing to accept employ-

33The cost of sampling is important here. If there was only the time cost of sampling alternative occupations an unemployed worker
on an inactive island has no opportunity cost of sampling new islands.

34The direct effect is very intuitive. To illustrate the complications arising from the feedback effect: an increase in the sampling cost
also leads to a larger surplus, M(z)−WU (z), making employed workers less likely to separate and pushes to reduce rest unemployment.
This occurs because a bad productivity shock affects employed and unemployed workers differently. If an employed worker receives
a low productivity, he has to wait one period before deciding whether to sample a new z; while if an unemployed worker receives the
same productivity shock, he can sample a new island immediately. This implies that the value of waiting for an exogenous increase in
z has increased and the utility loss experienced by an employed worker is smaller than that of an unemployed worker, raising the value
of employment relative to unemployment. In the proof of Lemma 6 we show that the first effect dominates, leading to a increase in
W s −R after an increase in c.
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ment at worse productivities because then they can capitalize immediately on a good shock. They are
also willing to hang on longer in their occupation unemployed, because they know that at a given pro-
ductive z, they now can find jobs more quickly and receive higher wages. In the next lemma, we show
that the second force is stronger: an increase in occupational human capital, in some sense, increases
the attachment to the current occupation more than to employment.

Lemma 7. Consider a setting where p is fixed, z redrawn with probability (1 − γ), and production
is given by y = xz. Consider an unexpected, one-time, permanent increase in occupation-specific
human capital x from x = 1. Then

d(W s(x)−R)

dx
> 0 (24)

Moreover, we also show that this means that the cutoffs the difference zr − zs becomes smaller
when human capital increases and zr and zs are interior. More occupational human capital thus can
lead to rest unemployment.35 This increase in rest unemployment (or, if zr > zs, a diminished dif-
ference between cutoffs) can potentially explain differences in unemployment and reallocation in
unemployment over the life cycle as well. We will discuss this more, as well as the importance of
the different kinds of unemployment, and the resulting quantitative implications for the business and
life-cycle, in the section below.

6 Quantitative Analysis
To study aggregate outcomes of unemployment and reallocation, we compute and calibrate the version
of the model that incorporates occupational human capital. Below we will discuss our calibration
strategy, the resulting parameters and fit, the implications for rest unemployment, and the implications
for unemployment of human capital accumulation and business cycle shocks.

The block recursive structure implies our model has essentially three superimposed layers, where
each layer is affected only by the layer(s) below it. The exogenous shock processes constitute the
lowest layer. They are the deep causes of differences among workers in the cross section and over
time. These exogenous processes are (i) the aggregate productivity process; (ii) the worker-occupation
specific productivity process that creates a stationary cross-sectional distribution of ‘islands’; (iii) the
birth and death of workers, in conjunction with the stochastic acquisition of occupation-specific human
capital for employed workers. We parameterize these processes below.

Workers and firms optimization decisions in response to these exogenous processes form the mid-
dle layer of the model. Key are the separation and reallocation decisions, derived without reference to
the distribution of workers over islands and -also in the more general case- characterized by simple
z-reservation productivity rules that depend on aggregate productivity and human capital. In the pre-
vious section, for simplified settings, we were able to characterize analytically the behavior of these
functions. Here, the shock processes are generalized to capture further aspects of the data (discussed
further below).

35It furthermore hints that in case of more general autoregressive shock processes, more rest unemployment can be created when x

increases. Being rest unemployed means receiving b until either the worker experiences a z < zr , in which case the continuation value
is R, unchanged; or experiencing z > zs, in this case, more human capital has increased the continuation value has increased along the
lines of Lemma 7. This hints that the value of unemployment in rest unemployment, keeping the chance of returning above zs constant,
is raised.
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The evolution of the distribution of workers over islands, occupations, human capital levels and
employment status forms the final layer. It is determined by the above shock processes and the work-
ers’ decisions in response. Aggregate statistics are affected by the levels of worker-occupation specific
productivity and human capital of unemployed workers, which, because of endogenous separation and
reallocation, are the levels of a selected subset of workers in all markets.

Calibration Strategy To capture the heterogeneity among labor markets, in ‘space’ and in time, we
model the worker-occupation specific productivity process as an AR(1) process with autoregressive
parameter ρz and dispersion parameter σz. The reallocation between different markets is obstructed
by the fixed cost c, identical for all workers. Occupation-specific human capital acquisition creates
increasing attachment to occupations, captured by a three-level human capital process, in which the
next level is stochastically acquired after five years on average. The productivity of the initial level of
human capital is normalized to one, the productivity in the second stage and third stage are parame-
terized by x2 and x3.

Since selection among markets and human capital acquisition moves the average productivity away
from one, we add a normalization parameter znorm that moves the z-distribution downwards and will
be set such that measured total productivity in the model averages one. This facilitates the comparison
with standard calibrations, in which average productivity typically equals one. The remaining param-
eters are inherited from the standard calibrated Pissarides model as in Shimer (2005) and Hagedorn
and Manovskii (2008). Namely the vacancy cost k, the elasticity of the matching function η, the flow
benefits in unemployment b, the exogenous separation rate δ, and the persistence and dispersion pa-
rameters of the aggregate productivity process, ρp and σp, which we assume also follows an AR(1)
process.

Before delving into the details of the estimation, let us note the choices that are made from the
outset. The model period is one week. We set the discount rate β and the exit rate from the labor force d
to match a yearly real interest rate of 4% and an average working life of 40 years. Young, unemployed
workers replace those that leave the labor force. The production function is multiplicative and given by
y = pxz, chosen to keep close to a ‘Mincerian’ formulation in which a time effect, worker-occupation
specific effect, and a function of experience are additive in logs.

The above choices mean we have a set Θ = {δ, k, b, ρp, σp, η, znorm, ρz, σz, c, x2, x3}, with 12
parameters, to estimate. We estimate these parameters by minimizing the distance between a set of
simulated moments from the model and their counterparts in the data.

Targeted Moments We target 20 moments based on the long-run behavior of the economy. These
are described in Table 5. The parameters the model shares with the standard Pissarides model, δ, k, b,
ρp, σp and η, are informed by moments that are also typically used in the conventional ‘representative-
market’ calibrations of this model. In our setting, however, the mapping from these data moments to
the parameters is affected by the heterogeneity and endogenous nature of reallocations and separations.

The monthly aggregate job finding rate, for example, typically informs us about the search fric-
tions and vacancy cost k. Here, however, it is affected negatively by the mass of rest unemployed
workers. The average unemployment rate, given the job finding rate, informs us about the separation
rate, but now there are two sources of separation, exogenous separation with parameter δ, and en-
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dogenous separations. Since the endogeneity of separations is an interesting dimension of our model,
we will discuss this in more detail below. The empirical elasticity of the aggregate job finding rate,
which we take to be 0.5, in the range of Petrongolo and Pissarides (2001), relates to η, the elasticity
of the matching function in each island, but the aggregation might drive a wedge between the two.
Furthermore, the total aggregate productivity per worker in the model is partially endogenous, be-
cause workers reallocation to more productive markets is endogenous, as is workers separation in less
productive markets.

A feature of our calibration is that we use several age-related moments to help in the estimation
of b, were the link between the two arises due to the accumulation of occupational human capital. For
example, if the percentage change in surplus for a given change in human capital is large, workers
become much more attractive to employ, become more attachment to their occupations and face better
labor market prospects (wages, job finding and separation rates, etc), keeping everything else constant.
Hence, for given productivity changes, the relative change in surplus depends one the average size of
the surplus, which is a direct function of b. The observed extent to which reallocation decreases with
age and the extent to which prime age workers have a lower unemployment rate, gives information
about the size of the surplus, and thus about b. We find that it will be a considerable success if the
estimated value of b driven by the large productivity gains from experience accumulation over the
life cycle, is also consistent with the cyclical volatility of unemployment found in models where
the unemployment fluctuations are driven by aggregate productivity fluctuations of a much smaller
magnitude.

The returns to experience in the model, x2 and x3, are closely linked to the measured returns to
occupation-specific experience. However, young workers tend to select good islands (with high z) to
work on, but their worker-occupation specific productivities can have a (potentially slow) tendency
to revert to the mean. Thus measured returns are a result of two opposing forces: human capital
acquisition and worker-occupation specific productivity mean reversion. Since occupation selection
occurs both in model and in data, we use the OLS measured returns to occupational experience for
both. Further, as the panel structure in the SIPP is relatively short, it is difficult to estimate returns to
occupational experience accurately in this data. For this reason we use the OLS estimates for 1-digit
occupations reported in Kambourov and Manovskii (2009b), which are a 15% return to five years of
occupational experience, and a 23% return to ten years of occupational experience.

The worker-occupation specific productivity parameters ρz, σz and the reallocation cost c are fur-
ther informed by the remaining set of 10 moments. The extent of duration dependence (captured in the
3 unemployment survival moments) informs us about the persistence of the z-process: the higher is
the persistence is this process, the higher is the degree of duration dependence.36 A lower reallocation
cost naturally leads to more reallocation, and hence the average level of reallocation helps determine
c. The difference in reallocation rates between prime-aged and young workers, informs us about how
much higher in the z-distribution are the cutoffs productivities for young workers. The higher the
dispersion of the z-process, the lower, relative to the z-productivity differences, are the differences in
productivities derived form occupational human capital. This implies that a higher σz brings closer

36Because of seam bias in the SIPP, we prefer to pick the cumulative survival rates at intervals of 4 months, the length of a data
wave.
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Table 5: Targeted Moments. Data and Model Comparison

Moments Data Model Data Model
ave. job finding rate 0.269 0.258 Unemployment Survival
matching function: η̂ 0.500 0.512 ≤ 4 months 0.373 0.395

Aggregate Productivity ≤ 8 months 0.130 0.133
y (normalised) 1 0.999 ≤ 12 months 0.055 0.047
ρy 0.691 0.689 Cm by Unemployment Duration
σy 0.009 0.009 Cm 1 month 0.519 0.405

Life-cycle Moments Cm 3 months 0.556 0.536
uratey 0.067 0.074 Cm 6 months 0.582 0.584
uratep 0.040 0.043 Cm 9 months 0.614 0.625
l(cmy/cmp) 0.134 0.146 Cm 12 months 0.610 0.640

Returns to Occupational Tenure Mobility in Subsequent Unemp. Spells
5 years 0.154 0.140 cs after occ. stay 0.621 0.610
10 years 0.232 0.242 Employed with Us-spell within 3 years

proportion of empl. 0.1441 0.167

together the separation and reallocation flow patterns for young and prime-aged workers.
The remainder set of moments are meant to capture the empirical dynamics of the reallocation

process and its interaction with separations and unemployment as closely as possible. First, we would
like to capture how the empirical reallocation process changes with unemployment duration as anal-
ysed in section 2. Concretely, we look at the slope of the cm(d) profile; when combined with the
cumulative survival function, it also tells us about the size of the outflow of the subset of occupational
movers, resp. stayers, from unemployment as a function of duration. It is of particular interest that
long-term unemployment arises among both (those who are ex-post assigned to) occupational stayers
and occupational movers.

Second, we also would like to capture the subsequent outcomes after unemployed workers have
found a job in the same occupation reported in section 2, with the aim of incorporating the persistence
of occupational attachment among the selected group of occupational stayers. This can further inform
us about the persistence of the z-process, and the role of occupational human capital in creating ad-
dition attachment to occupations.37 Third, we add the empirical proportion of employed workers who
will experience an unemployment spell during the subsequent three years. Given a fixed number of
spells, this gives a sense about how much an unemployment spell ‘begets’ subsequent unemployment
spells. This moment will give additional information on the importance of endogenous separations
and rest unemployment, which we discuss in more detail below.

Fit of the Model We take logarithms of the moments discussed above and minimize the distance
between logged data moments and their simulated model counterparts (using the identity matrix as
weighting matrix). In Table 5, we report the fit between the model and the targeted moments. The
model appears to fit the data remarkably well, given the extent of over-identification, with 20 moments
informing 12 parameters. In fact, for the moments capturing unemployment duration dependence, re-

37It is important to emphasize that those workers who experience a second spell of unemployment within a SIPP panel are not
necessarily a random selection from workers who experience an unemployment spell, but neither will they be in the model: separations
are more likely in worse labor markets. We use the model, and the implied selection as a measurement tool: in generating the statistics,
we take care to calculate these in the model precisely as we calculate these in the data: in simulated SIPP-like panels of 4 years. We also
calculated these statistics in 3.5-year panels instead; this doesn’t appear to make much difference.
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allocation patterns with spell duration, repeat mobility and the concentration of unemployment inci-
dence, the simulated moments are close to the data, even though all this, including the underlying
endogeneity of reallocations and separations, is driven mostly by just three parameters: ρz, σz and
c. The moments used commonly in the standard calibrations of the Pissarides model are matched
closely. Unemployment among the young is a bit larger than in the data, while for prime-aged workers
it is closely matched. Together these two moments also imply an overall unemployment rate close
to the data. The OLS returns to occupational experience are aligned with the data as well, as is the
differential occupational mobility pattern between the prime-aged and the young workers.

The model captures the duration dependence of unemployment very well, creating close to the
empirical amount of long-term unemployment, and at the same time it produces a large amount of
occupational mobility. All this is achieved with a large proportion of occupational stayers among the
unemployed at all durations. A too-quick conjecture that substantial occupational mobility is prin-
cipally inconsistent with long-term unemployment, in particular for occupational stayers, is wrong.
On the contrary, substantial mobility does not imply a reallocation cost so low that all bound-to-be
long-term unemployed workers find it too profitable to move to better markets, leaving only as stayers
those with the fastest job finding rates. Moreover, as spell duration goes up beyond two months, the
proportion of eventual occupational movers in the stock goes up in the model, at a similarly slow rate
as in the data (while the magnitude of this proportion is also in line with the data).

The model also captures well the evolution of occupational mobility with the progression of un-
employment duration, except at the very beginning: the proportion of occupational movers at after
one month of unemployment is too low in the model. This feature is due to several aspects of the
model: (i) Occupational sampling with a uniform time cost per sample for all workers suppresses very
early outflows into employment for occupational movers; (ii) Exogenous and immediate separations
of workers with high z-productivities, lead to a set of occupational stayers quickly dipping in and
out of unemployment, who with a notice period before the actual separation would conceivably be
moving job-to-job; (iii) Since the endogenous separation productivity cutoff is also a vacancy posting
cutoff, this induces sometimes too quick rehiring upon a small positive z-shock. These forces over-
emphasize occupational staying and de-emphasize occupational moving at the lowest unemployment
spell lengths, but, importantly, the aforementioned effects diminish quickly with unemployment spell
duration. Hence, we are able to match closely the proportions of occupational movers for durations
above two months. As spells longer than a month contribute most to the stock of unemployment and
its fluctuations, we chose our targets to emphasize these spells.38

The model is also able to match the proportion of employed workers that will become unem-
ployed within a three-year window very closely. This implies that the model can produce a concen-
tration of unemployment incidence in line with the data, which is driven by a z-shock process that
is also consistent with the other targeted reallocation and unemployment patterns. Furthermore, the

38Some additional realism, by adding measurement errors or heterogeneity in the reallocation cost, could improve the fit at these
very low unemployment durations. We have opted to keep the model as clean and parsimonious as possible. In our calibration, one key
result is that the outflow rate for occupational stayers and movers become closer at longer durations, and thus, for example, measurement
error in occupational assignment will bring the outflow rates closer at low durations, while not changing much the outflows at higher
durations. Low reallocation costs will trigger quicker reallocation for some, instead of an interval of z-productivities in which worker
are ‘resting’ that is identical for each and every worker.
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‘repeat mobility’ of those unemployed that recently were occupational stayer in their recent previous
spell is also closely matched. Those workers are staying with their occupation in 61% of the cases in
the model, versus 62% in the data. Overall, we think it remarkable that (i) the unemployment flow
and occupation flow behavior during unemployment spells, (ii) the occupational mobility in subse-
quent unemployment spells and, (iii) the incidence of unemployment spells across workers, all can be
approximated closely by incorporating a small number of further parameters to the standard model
which add cross-sectional and time-series heterogeneity in individual workers’ occupation-specific
productivity.

We now turn to discuss in more detail some important implications of the estimation.

Duration Dependence The negative duration dependence of unemployment in the data is closely
linked to the persistence of the z-process in the model, as persistence of a low z-productivity maps
into persistence of a low job finding probability. However, the mapping between duration dependence
and the z-process is affected by endogenous reallocation and endogenous separations. Endogenous
separation affects duration dependence because it determines the distribution of z-productivities with
which the unemployed start their spell. Reallocation affects duration dependence because it consumes
the unemployed’s time, and because it resets the z of the reallocating unemployed from a lower to a
higher z-productivity.

An important consideration is that the conditions for duration dependence can be generated ex
ante, i.e. before the beginning of the unemployment spell, or ex post during the unemployment spell.
To which extent these two channels are relevant in our calibration, depends on the (endogenous)
relative position of zr and zs, and on the degree to which separations are endogenous. To see this,
abstract from differences in the acquired human capital for a moment. In principle, heterogeneity in the
initial z-productivity at the ‘birth’ of the unemployment spell could drive all of the observed pattern of
duration dependence. This, though, requires that separations are occurring exogenously across a range
of z-productivities. On the other hand, if all separations are endogenous then all duration dependence
must be created ex post, by workers receiving different shocks. In this case, with some persistence in
the z-process, the distribution of z-productivities of the unemployed will fan out with unemployment
duration from a distribution concentrated around zs. Those who are shocked back above zs can be
hired into employment with positive probability; those who are shocked to lower z-productivities, will
come closer to zr – making, on one hand, reallocation more likely, and, on the other hand, requiring
more positive shocks to recover to above zs, when not reallocating. Since at higher unemployment
durations, workers are on average further away from zs, the outflow from unemployment will be
lower; more so for occupational stayers.

Attachment in Employment or in Unemployment (Rest Unemployment)? To understand the
forces behind duration dependence, but also for life cycle and business cycle implications, it is im-
portant to establish whether zs is above or below zr. If zr > zs, employed workers stay attached to
occupations at z-productivities that would make unemployed workers leave. Workers, in some sense,
are relatively more attached to employment than to their occupation. If, zs > zr on the other hand,
unemployed workers are more attached to their occupation than to their employment matches. In the
theory section, we have argued that this relative position depends on the z-process, and given this pro-
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cess, in a most straightforward way, on the size of the reallocation cost c: a larger c pushes zr down,
also relatively to zs.

The targeted moments argue in favor of zs > zr, i.e. the prevalence of rest unemployment, in at
least three ways. First, consider the extent of reallocation in combination with the cumulative survival
in unemployment and its composition. As argued above, this implies that there is a significant amount
of occupational stayers at high unemployment durations. If zr > zs, the long-term unemployed among
the occupational stayers must be in islands persistently close to zr: as soon as workers are shocked
below zr, they reallocate. This leads to a drop in the outflow into employment in the same occupation,
and translates into a drop, with duration, in the (ex-post) constructed stock of eventual occupational
stayers. A slow decrease in this stock then implies a shock process that pushes very few of the un-
employed workers with a z just above zr below it, even at long durations. However, this implies that
long-term unemployment among stayers is in direct tension with the overall extent of reallocation.
The latter requires that enough mass of workers becomes unemployed below zr, which requires that
enough workers move over time from a z from the entire range above zr to a z below zr. When
zs > zr, this tension diminishes, as in this case long-term unemployed stayers can be found in the
entire interval between zs and zr, while in this interval these workers all face the same zero outflow
probability to employment.

Second, consider the repeat mobility patterns (while abstracting from human capital accumulation
for now). Those workers who have two unemployment spells within a SIPP(-like) window and are
occupational stayers in the first spell, must come from the workers in the interval [zr, z̄]. If zr > zs,
a larger difference between zr and zs implies that a higher number of occupational stayers comes
from the best z-productivities. This makes it more likely, everything else equal, that these workers
will remain in their occupation in a second unemployment spell, in particular when it occurs within a
relatively short period. If zs > zr, and all separations are endogenous (occurring at zs), the subsequent
reallocation behavior of occupational stayers looks like the unconditional reallocation behavior of all
unemployed. The degree of similarity of the repeat mobility behavior of occupational stayers to the
overall mobility of all unemployed workers in the data is linked closely to the position of zr relative
to zs in the model, and the extent of endogenous separations.39

Third, consider the distribution of unemployment spells across workers. In the data, current un-
employment appears to beget future unemployment for the same worker. If zr > zs, those employed
workers below zr are more at risk of an endogenous separation, and after reallocating these workers
will end up above zr, where they will face a strictly lower probability of endogenous separation. In this
case, where employed workers remain attached to an occupation and unemployed workers are more
free to move and hence are more picky about their occupation, current unemployment makes future
unemployment less likely. If on the other hand, zs > zr and the extent of endogenous separations
is significant (necessary in this case to get the large extent of occupational mobility), occupational
stayers will be hired back at often marginal productivities, and are consequently more likely to sepa-
rate again in the future. Likewise, the post-reallocation unemployment risk does not diminish to the
same extent as for the case zr > zs: occupational movers will be distributed over the entire range of
z-productivities above zs, instead of subset of best z-productivities. Thus, the extent of rest unemploy-

39Acquired human capital also creates a degree of repeat staying, taken into account in the calibration.
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ment (with zs > zr) is closely linked to the degree of concentration of unemployment spells across
workers.

The same moments that point in favor of ‘attached unemployment’ also imply that time spent in
the actual reallocation process should be relatively small. The model is flexible to accommodate a
large time spent in sampling different occupations, by, for example, locating both reallocation and
separation cutoffs very high in the stationary z-distribution, while scaling down the downward pull of
mean reversion.40 In the estimation, we observe a relative small amount of reallocation unemployment.
The moderate increase in the cm(d) with duration is created by rest unemployment, which emphasizes
the option value of recovery and is naturally consistent with a stock of occupational stayers –who are
rewarded for waiting– at long durations. It appears that replacing rest unemployment with reallocation
unemployment would easily create a too-steep profile of cm(d). The explicit time spent reallocating
can hamper the early outflow to employment of occupational movers, while reallocations that began
at high unemployment duration would weigh in the measured stock of occupational movers from the
beginning, contributing zero outflow probability for extended time. To match the overall decline in
the cumulative survival at lower durations, occupational stayers need to flow out faster, steepening the
cm(d) profile.41 Further, to prevent late-duration starts of reallocation, the shock process would again
need to be very persistent, creating the inconsistencies with repeat mobility discussed above, as well
as the overall level of reallocation.42

Endogenous Separations Endogenously separated workers face different outcomes than exoge-
nously separated workers. In the calibration, with zs > zr, endogenously separated workers become
rest unemployed rather than search unemployed; their fate as occupational stayers or movers will only
be determined later, depending on the further realizations of the z-process. Thus the extent of rest
unemployment is directly linked to the importance of endogenous separations, as is the concentration
of unemployment spells across workers. With rest unemployment, endogenously separated workers
are the ones most likely to reallocate, since of all separations, these separations occur closest to zr.
Then, the extent of endogenous separations must be large, because of the extent of reallocation in the
data, the significant concentration of unemployment spells, and the other reasons laid out above. In
the calibration, as a result, much of unemployment takes place (endogenously) between these cutoffs
zs(p, x) and zr(p, x), and the way these cutoffs vary with aggregate conditions and human capital ac-
cumulated play a important role in shaping the different unemployment outcomes over the life cycle
and business cycle.

40In this case, mean-reversion will not draw productivities below these cutoffs any faster than it would do when these cutoffs would
be situated lower in the distribution. This argument applies as long as the cutoffs would be placed in the upper half of the distribution
in either case: where there is downward pull, instead of upward pull of mean reversion. In our calibration, cutoffs are approximately in
the upper half of the z-distribution.

41Additionally, to make the outflow rates of occupational stayers low enough at long durations, search or rest unemployment should
be extensive, which by the same token also adds additional time to the outflow rates of occupational movers who have moved to a better,
but barely acceptable productivity in a new occupation – making it harder to match the survival hazard without giving up on the duration
profile cm(d).

42Since these reasons would be applicable, a fortiori, also if we added further time costs of reallocation by increasing the time
interval between sampling of occupations, we have not included an additional parameter in the estimation that would capture the
additional length of time of sampling above one period.
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Table 6: Calibrated Parameters

δ k b c η ρp σp ρz σz zcorr x2 x3

0.0002 3.582 0.738 14.54 0.048 0.981 0.003 0.9992 0.0078 0.513 1.104 1.487
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Figure 5: Reservation functions by occupational human capital

Parameters Table 6 reports the resulting parameter values implied by the calibration. The value of
b represents 74% of total average output, y, in line with Hall and Milgrom (2008), though estimated
using different information. Reallocation, from the value of c and the sampling process, costs in ex-
pectation about 10 months of output. Our calibration also implies that the z-productivity process is, in
relative terms (i.e. in the log), more persistent than the aggregate shock process driving the business
cycle.43 However, the larger variance of the shock process creates significantly more dispersion across
z-productivities and more extensive movements measured in absolute terms. The component of exoge-
nous separations, δ, is small. Finally, observe that the parameter linked to the actual returns to tenure
at 10 years is significantly higher at ten years than the OLS returns: the best z-productivities mean
revert over time, and at the same time, experienced workers find it still profitable to work at worse
z-productivities, dampening the composite xz-productivity on which measurement of the returns to
occupational tenure is based.44

6.1 Quantitative Implications

In this section we analyse the business cycle and the life cycle implications of our calibrated model,
and also look at ‘repeat mobility’ patterns produced by the model.

Business Cycle Patterns To start, we consider the decisions rules that result from our calibration.
Figure 5 depicts the three sets of zs(p) and zr(p) functions, each corresponding to an occupational
human capital level. The job separation productivity cutoff is downward sloping and the reallocation
productivity cutoff is upward sloping, making reallocations procyclical and separations countercycli-
cal at all occupational human capital levels. Further, since zs > zr in all the three cases, rest un-
employment occurs at each level of occupational human capital. This implies very limited feedback
effect from reallocations to separations, rendering the latter always countercyclical.

43The high persistence of z is in line with the high persistence typically estimated for individual earnings processes, and also, for
example, with the autoregressive component of the process in Bils et al. (2012).

44The increasing range of viable z-productivities with experience implies that the model is also consistent with an increasing
variance of earnings across workers with experience.
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Table 7: Logged and HP-filtered Business Cycle Statistics. Data and Model
Data: 1986-2011 Model

u v θ s f y Cm u v θ s f y Cm

σ 0.13 0.11 0.23 0.13 0.10 0.01 0.03 0.15 0.08 0.21 0.10 0.13 0.01 0.06
ρt−1 0.97 0.93 0.94 0.83 0.93 0.69 0.85 0.74 0.25 0.64 0.06 0.55 0.69 0.81

Correlation Matrix
u 1.00 -0.84 -0.96 0.67 -0.78 -0.52 -0.26 1.00 -0.61 -0.96 0.32 -0.80 -0.98 -0.77
v 1.00 0.95 -0.69 0.46 0.66 0.30 1.00 0.82 -0.38 0.67 0.68 0.6
θ 1.00 -0.72 0.47 0.63 0.30 1.00 -0.37 0.83 0.97 0.71
s 1.00 -0.67 -0.68 -0.32 1.00 -0.79 -0.39 -0.27
f 1.00 0.45 0.40 1.00 0.84 0.59
y 1.00 0.26 1.00 0.72

Cyclical fluctuations in unemployment are driven by both fluctuations in workers’ inflows and
outflows, whose cyclical response we can be already gauged in Figure 5. In a downturn, larger inflows
arise because the separation cutoff increases when p decreases, leading those matches closely above
the margin to break up. Decreased outflows in a recession occur due to three reasons. First, surpluses
at a given z-productivity that remains above zs becomes smaller, leading to less vacancy posting,
and lower labor market tightnesses. Second, this also means that reallocating workers who arrive
in a market above zr will take longer to find a job in a different occupation. Third, existing rest
unemployed workers will tend to persist in this state longer as they will need more improvements to
their z-productivities to rise above zs and experience positive job finding rates in the same occupation,
while at the same time they face a lower zr making them less likely to end their rest unemployment
by reallocation.

Table 7 shows the resulting business cycle patterns. The model successfully reproduces many of
the key labor market statistics, amplifying productivity shocks sufficiently for all variables, in partic-
ular unemployment, and creating procyclical reallocations, while separations and unemployment are
countercyclical. We now analyse in detail these and the underlying patterns.

First note that we do not achieve these successes by worsening the performance of the model
along dimensions that are very successfully matched in the standard search and matching model.
Shimer (2007) and Mortensen (2009) show that aggregation across heterogeneous markets can still
produce aggregate behavior that is fundamental in the representative-market Pissarides model. With
endogenous vacancy creation separately in each market, and endogenous separation and reallocation,
we show that this conclusion still holds in our calibration with significant rest unemployment. In
particular, the model does produce a high (and positive) correlation between aggregate labor market
tightness and the aggregate job finding rate. Likewise, even though endogenous separations typically
creates a trade off with achieving a strong negative correlation between unemployment and vacancies
(the Beveridge curve), this does not appear the case in our model. In our calibration, this correlation is
-0.61, relative to -0.84 in the data.45 The underlying reason is the unprofitability of creating additional

45The discreteness of the p-productivity and z-productivity grids creates some jumpiness in vacancies. For example, when aggregate
productivity moves one grid point up, it increases vacancies discretely, reducing their autocorrelation and the absolute value of the v-u
correlation. We find that increasing the grid size improves these statistics, and hence with more computational power and time, we
expect that these correlations can be even closer. One needs a very fine grid for smooth cutoffs, as these cutoffs are located in a small
subset of the z-productivity space, making even a detailed grid, in a sense, relatively coarse. It is not immediately beneficial to make the
grid finer around the cutoffs only, z-productivities away from the cutoffs are still relevant for search unemployment, option values and
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Figure 6: Unemployment decomposition and aggregate productivity

vacancies for newly unemployed workers in precisely those markets for which existing matches are
terminated. This is in contrast to most other models with endogenous separations, which are typically
build with a ‘representative market’, where – since at any point in time it must be profitable to hire
some workers – it must also still be profitable to hire these newly-unemployed workers. There, espe-
cially when the tightness is independent of the unemployment rate (when the usual constant returns
to scale assumptions are made), additional vacancy posting is triggered when unemployment inflow
is higher, which presses the Beveridge curve in the direction of becoming positively-sloped.46 Het-
erogeneity of markets, and separation occurring in the worst markets, can naturally ‘prevent’ such a
counterfactual response.

The model is successful in creating the somewhat elusive amplification of productivity shocks
for unemployment fluctuations. The standard deviation of logged and HP-filtered unemployment is
0.15 versus 0.13 in the data. It does so while the flow benefits of unemployment are only 74% of
average productivity (close to with the preferred value of Hall and Milgrom, 2008), and meanwhile
consistent with substantial returns to human capital, which would conceivably create trouble in small-
surplus explanations of this volatility. Moreover, the reallocation rate of the unemployed is procyclical,
with a larger standard deviation and more persistence than output and less than half as volatile as
unemployment fluctuations in model and data, though the model over-predicts reallocation volatility
to some extent.

To gain insight into the underlying patterns, we now decompose aggregate unemployment over the
business cycle. The resulting decomposition is depicted in Figure 6a. It shows that rest unemployment
is predominant over the entire business cycle. On average, rest unemployment constitutes a little below
68.6% of aggregate unemployment, while search and reallocation unemployment account for 20.6%

and 10.8%, respectively. Alvarez and Shimer (2011) have recently evaluated the importance of rest
unemployment in US data. Using a very different estimation procedure and relying mostly on wage
data and sectoral mobility, they also obtain that rest unemployment explains around three quarters of

returns to tenure.
46Adding on-the-job search can be helpful in this respect. See Fujita and Ramey (2012).

37



0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aggregate Productivity 

z
−

p
ro

d
u

c
ti
v
it
y
 

(a) Distribution of unemployed workers
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(b) Distribution of employed workers

Figure 7: Distribution of workers over island and aggregate productivities

aggregate unemployment. They attribute the remainder to reallocation unemployment. Our analysis
shows that once we incorporate search unemployment, it takes up more than 60% of the remaining
non-rest unemployment, diminishing the importance of reallocation unemployment, as we have de-
fined it (the time spent in unemployment because of a time-costly reallocation technology).

Assessing how the contributions of rest, search and reallocation unemployment change with ag-
gregate productivity, we see that changes in the amount of rest unemployment are the largest drivers
of the unemployment fluctuations over the business cycle. When the unemployment rate is high, close
to 9%, rest unemployment in the calibrated model contributes a full 83% of it; when the unemploy-
ment rate is below 3%, its contribution drops to 49% of total unemployment. Search unemployment
is countercyclical as well, though it does not change as much in absolute terms, while reallocation
unemployment is small but procyclical.

Why is the overall contribution of search and reallocation unemployment to aggregate unemploy-
ment so much lower than that of rest unemployment? Figure 7 helps us understand the underlying
reasons. It depicts a heat map of the density of unemployed and employed workers over values of
z and p. Figure 7a shows that indeed most of the unemployed are situated in productivities between
zs(p, x1) and zr(p, x1), and between zs(p, x3) and zr(p, x3), and also (less visible) just above sepa-
ration productivity cutoffs zs(p, x1) and zs(p, x3). The same happens for zs(p, x2) and zr(p, x2), but
because there is a smaller amount of workers in this transitory state, this is less visible in the figure.

When p decreases, the mass of workers caught between the new wider ‘band’ between zs and zr

increases substantially. Those employed workers that are just above the separation cutoff zs now fall
below this cutoff and separate into rest unemployment. This increases the overall inflow into unem-
ployment and decreases the outflow. Additionally the mass of employed at risk of separation is higher
in bad times, as shown in Figure 7b. Together these forces imply that as p decreases, the mass of un-
employed workers just below the cutoff zs, increases substantially. The aggregate job finding rate also
decreases after a negative productivity shock as existing unemployed workers with z-productivities
further below zs now face a higher expected unemployment duration. This occurs for two reasons: (i)
these workers need a sequences of positive shocks, which occurs with a lower probability, to get an
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actual positive job finding rate above the now-higher zs, and, (ii) because the reallocation cutoff has
decreased, they also would need a sequences of negative shocks before their z-productivity decreases
sufficiently such that it is now worthwhile reallocating, after which they would find jobs with a de-
creased probability as well. As a result, more workers will on average spend more time unemployed
between the cutoffs.

Search unemployment does not appear to respond as much with aggregate productivity in the de-
composition due to a composition effect. As productivity improves, islands where many unemployed
were previously searching for jobs are often those closely above the separation cutoff. An increase in
aggregate productivity improves the job finding rates at these islands substantially, lowering search
unemployment. However, the same increase in aggregate productivity implies that those rest unem-
ployed workers on islands which were just below the separation cutoff before, but after the produc-
tivity increase above it, now become search unemployed, dampening the overall decrease in search
unemployment.

The cyclical response of rest unemployment, and largely of unemployment in general, is deter-
mined by the steepness of the reservation functions zs(p, x) and zr(p, x), by the z-shock process,
which drives both separations and reallocations, and by the distribution of employed and unemployed
workers over z-productivities. Table 7 shows that the calibrated model creates substantial volatility in
the aggregate separation rate. As can be expected from the decision rule zs(p, x), the separation rate
has the right cyclical properties: it is negatively correlated with productivity and reallocation, and pos-
itively with unemployment.47 Note that our heterogeneous-market model does not appear to exhibit
the unfortunate trade-off between wage (growth) dispersion and, on the other hand, separation and un-
employment fluctuations, laid bare in the standard represented-market Pissarides model in Bils et al.
(2011). In our model, we are close to the empirical fluctuations in the unemployment and separation
rates and, at the same time, wages can vary from below 0.65 to 0.95 for inexperienced workers and
from 0.7 to 1.4 for experienced workers.

Now consider the aggregate job finding rate. In this case the model generates a slightly higher
volatility than in the data. Again, as aggregate productivity improves and the band between zs and zr

narrows, there will be a faster outflow from unemployment. This leads to a strong negative correlation
between the job finding rate and unemployment (around -0.8 in both model and data), a positive cor-
relation with output as in the data, and with the proportion of occupational movers in the outflow from
unemployment (0.6 in the model versus 0.4 in the data). Moreover, the job finding rate is strongly neg-
atively correlated with the separation rate (at -0.8 in the model vs. -0.7 in the data). Overall, it appears
that the model not only produces sufficient amplification of productivity shocks for unemployment
fluctuations, but also by-and-large allocates correctly the relative importance of outflows and inflows
in determining unemployment fluctuations.

Since our framework presents a theory of unemployment fluctuations delivered to a large extent
by the widening and contracting interval between zs and zr as times get worse, resp. better; we use the
model’s implications on the duration distribution of unemployment spells to further test our theory.

47The coarseness of the grid means that the autocorrelation of separations is low, and correlations in the model not as high as
in the data. When considering measures that are less sensitive to noise, e.g. the semi-elasticity of the separation rate with respect to
contemporaneous productivity, we also find a strong relationship: the model gives rise to three-quarters of the empirical relation (-0.06,
against -0.08 in the data).
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Table 8: Semi-elasticities of the share of unemployed workers by duration

Unemp. Duration Mean Std. Deviation Semi-elas. wrt outpw Semi-elas. wrt unemp
Model Data Model Data Model Data Model Data

unemp < 3m 0.53 0.47 0.080 0.071 4.17 3.78 −0.28 −0.24
unemp < 5m 0.74 0.72 0.081 0.085 3.45 1.46 −0.24 −0.23

unemp 5− 8m 0.17 0.19 0.041 0.033 −2.14 −1.22 0.14 0.13
unemp 9− 12m 0.06 0.05 0.027 0.028 −0.93 −0.52 0.07 0.09

Above, we have discussed that the interval between cutoffs creates duration dependence in unem-
ployment, which we calibrate to the data. As the interval of rest unemployment between zs and zr

widens with adverse productivity shocks, we naturally expect more long-term unemployment, but
is the increase as strong as in the data? Table 8 evaluates the ability of the model to reproduce the
shifts in the incomplete unemployment duration distribution with the business cycle. First, note that
the model matches the incomplete duration distribution well.48 Untargeted, the shares of the different
durations in the unemployment duration distribution exhibit nearly the same extent of fluctuations
in the model as in the data. HP-filtering the shares, and calculating the semi-elasticity of the shares
with respect to the aggregate (filtered) unemployment rate, we see that the model reproduces nearly
perfectly the movements of the duration shares with the overall unemployment rate in the data. Thus,
as the unemployment rate increases by 10% (i.e. about half a percentage point), it increases the share
of incomplete unemployment spells between five and eight months by 1.4 percentage points (versus
1.3 percentage points in the data), while it increases the share of unemployment spells by 0.7 percent-
age points (versus 0.9 in the data). Thus, the widening of the band creates an increase in long-term
unemployment with the overall unemployment rate that is very close to the data.49

Overall, given the slopes of the zs(p, x) and zr(p, x), and the resulting ‘band’ of rest unemploy-
ment between these cutoffs, which narrows in good times and widens in bad times, the model can
reproduce to a large extent, the business cycle volatilities of the unemployment, job finding, realloca-
tion and separation rates; and, it can reproduce the shifts in unemployment duration distribution over
the business cycle.

Life Cycle Patterns As workers age, they are likely to spent long enough time in their occupations
to acquire some specific human capital. The latter affects their separation, job finding and reallocations
rates. We now evaluate the ability of the calibrated model to reproduce the separation, job finding and
reallocation patterns observed across age groups, taking averages over the business cycle. We discuss
the business cycle patterns across age groups below.

48This is almost implied by targeting the cumulative survival rate. The main statistics are the proportions of unemployment spells
0-4 months, 5-8 months, 9-12 months, since this division of durations also takes care of seam bias. We observe that the average shares
are well-matched. Additionally, we have added the measure of the share of very short durations, 0-2 months. This measure is not robust
to seam bias, nor to any non-reporting of very short unemployment spells in the SIPP. As a result, we see that our model generates a
measure of unemployment spells with very short duration that does not quite match the on in the SIPP (overall 0.53 in the model vs.
0.45 in the SIPP). To the extent that the inclusion of spells which will be completed within a month, simply shifts up the average share
of short spells (< 3months), using the semi-elasticity instead of the elasticity is also helpful. This being said, we still find that the model
makes predictions for the cyclical behavior of very short spells that are in line with the data.

49Given the tight match of the responsiveness with respect to the unemployment rate, it is then not surprising that the model over-
predicts the semi-elasticity of the shares with respect to output. In the data, at times when productivity has recovered but unemployment
is still high, the share of long-term unemployment is also still high. This leads to a measured responsiveness of duration shares lower in
the data than in the model, where, almost by construction, productivity and unemployment move much closer together.
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Table 9: Life-cycle Separation and Job Finding Rates

f data f model s data s model
young (20-30yo) 0.288 0.302 0.011 0.018
prime (35-55yo) 0.234 0.239 0.006 0.011
all 0.269 0.259 0.009 0.013

At this stage, it is important to reiterate that all differences between the two age groups we con-
sider, young (20-30yo) and prime-aged (35-55yo) workers, are created by adding just two additional
occupation-specific productivity levels to the model. Moreover, besides the observed returns to occu-
pational experience, we have used only two specific life-cycle moments in our estimation: the differ-
ence in occupational mobility at two months unemployment duration, and the difference in unemploy-
ment rates across these age groups. All the other differences between young and prime-aged workers
are un-targeted outcomes of our model.

Table 9 shows the separation and job finding rates from the model and their counterparts in the
data. Both the separation rates and job finding rates are lower for prime-aged workers than for young
workers, by more or less the same amount in the data and in the model. While we target differences
in unemployment rates across age groups, this does not determine separation and job finding rates, as
one degree of freedom remains for given unemployment rates, which the model fills in very success-
fully.50 In levels, the model closely reproduces the job finding rates with ages, but overestimates the
separation rates. This is a straightforward consequence of our abstraction: in this model, as in many
other models, the only way to enter unemployment during the working life is from employment. In
reality, workers enter unemployment from non-participation as well (see, for example, Elsby et al.
2012). Since workers who come from non-participation contribute to the unemployment rate, which
we target, but are not necessarily are recorded in the separation rate into unemployment, we naturally
expect the model to produce a higher separation rate.

To understand why the model is able to generate these outcomes, consider again Figure 5. We see
that the separation cutoff zs(p, x) is lower for higher occupational human capital x, and the distance
between zr(p, x) and zs(p, x) is larger as we increase x. These differences, captured by the shifts in
the productivity cutoffs, can explain both the lower inflow and outflow from unemployment across
age groups. The inflow into unemployment is lower for experienced workers for two reasons: perhaps
most importantly, the mass of experienced employed workers close to their zs-cutoff is lower because
these employed workers are distributed across more z-productivities, and hence spread more thinly,
as implied by Figure 7b. Second, more technically, at low z-productivities the pull of mean-reversion
becomes weaker, leading to comparatively less and slower transitions to z-productivities in which
there is a danger of endogenous separations, and then to z-productivities that will trigger a separation.
Once unemployed, the greater distance between zs(p, x) and zr(p, x), in combination with the slower
pull of mean-reversion, lead the unemployed experienced worker to spend more time on average in

50It is perhaps also interesting to note that in a representative-market setting the explanation for the decline in job finding rate over
the life cycle is not straightforward, and part of on-going research. The finite horizon of a working life can contribute to the decline,
(Cheron et al. 2012, Menzio et al. 2012), however, this effect is relevant mostly in the last ten years of the working life. Esteban-Pretel
and Fujimoto (2011) and Gorry (2012) have proposed that as workers age they can better distinguish good from bad jobs, leading them
to reject bad jobs more often as they become prime-aged, reducing the separation rate and job finding rate. Here, in a heterogeneous
market setting with endogenous reallocation, occupational returns to tenure can explain both.
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Figure 8: Unemployment duration and occupational mobility by age groups

unemployment, immediately implying a lower job finding rate for more experienced workers.
Given the estimated importance of rest unemployment, the lower job finding rate, the separation

and also the reallocation rate of the prime-aged all have to do with the distance between the cutoffs
zs and zr, and where these cutoffs lie in the z-spectrum. When discussing our estimation procedure
above, we have highlighted how the z-shock process creates duration dependence and affects the
proportion of future occupational movers in the unemployment pool. It is an interesting test of the
model to see whether the differences in the distance and location of the productivity cutoffs between
less and more experienced workers imply we are able to reproduce the empirical differences with age
both in the survival function with unemployment duration, and in the proportion of future reallocators,
evolving with spell duration.

Figure 8a shows that the cumulative survival in unemployment for both young and prime-aged
workers is very similar in the model and in the data. For both age groups in the data, finding a job be-
comes less likely when unemployment duration grows longer, but the job finding probability is higher
for younger workers at any given duration. The model reproduces this feature. Duration dependence
occurs as the distribution of unemployed workers shifts downwards away from zs with increased un-
employment duration. Intuitively, at any spell duration inexperienced workers are closer to an exit
from the rest unemployment ‘band’ (either through the bottom, into reallocation, or through the top,
into employment in the same occupation), and hence job finding rates are higher at any unemploy-
ment duration. For young workers, relative to prime-aged workers, this implies the model generates
a higher outflow rate for occupational stayers (and movers) of about 2%-4% at almost all durations.
This is very much in line with the data, and hence the implied cumulative survival functions for the
two age groups closely track the empirical ones.

A smaller ‘band’ between zs and zr does not only affect the job finding rates (with duration), it
also makes reallocation more likely. We have targeted the difference in the proportion of occupational
movers in the stock of the two-month unemployed between young and prime-aged workers. We now
analyse the ability of the model to reproduce the subsequent evolution of occupation mobility as un-
employment duration increases, for young and prime-aged workers. Figure 8b show that the model
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produces a persistent, slightly growing difference in the occupational mobility with duration between
the two age groups, which stays close to the corresponding difference in the data. In levels, the real-
location patterns for these age groups follows closely the data (maximally deviating 3-4 percentage
points) between 2 and 10 months; thereafter, the empirical pattern is non-monotone, especially for the
young. This captures that a larger proportion of those workers who will be unemployed for over a year
tend to eventually find a job in their own occupation, while the calibration predicts a monotone re-
lationship that is flattening out.51 Nevertheless, eventual occupational staying remains elevated in the
model even among those young unemployed for close to a year. At 12 months duration the remain-
ing stock of young unemployed has more than 30% stayers, and close to 40% for the corresponding
prime-aged workers, both in the model and in the data.

In summary, the model produces age differences in the unemployment, separation and job finding
rates close to do the data, while at the same time the returns to occupational tenure are substantial:
those who become unemployed at later age are a subset of workers who have been ‘unlucky’ in the
realization of the z-productivity. Importantly, our model suggest that unemployment of the young
is not driven by a different mechanism than prime-aged unemployment. Rather, the strength of the
forces within the mechanism are quantitatively different. Rest unemployment also shapes unemploy-
ment outcomes for the young, however, the difference between their separation and reallocation cutoff
is on average smaller, which simultaneously can rationalize higher outflow rates – while keeping du-
ration dependence as in the data– and higher reallocation rates, while keeping a large proportion of
occupational stayers at high unemployment duration.

Repeat Mobility Patterns In Section 2, we analysed how subsequent outcomes in unemployment
depend on reallocation outcomes in a previous unemployment spell. In the calibration, we have used
one of these statistics, the reallocation outcome of unemployed workers who were previously occu-
pational stayers, to inform us about the shock process. We now analyse the ability of the model to
reproduce the remaining (un-targeted) statistics described in Section 2.

First, consider the measure of subsequent occupational staying of those who in the previous un-
employment spell were occupational movers. As argued in Section 2, this measure (unlike the other
statistics) is sensitive to its definition, ranging from 44%-54%. The corresponding statistic in the model
is 57%, close to the higher incarnation of this measure, which acknowledges returns to occupations
which were held before the previous occupation as also occupational stays. Selection is important
here, because of the extent of endogenous separations: those occupational movers who become un-
employed again are a group, of those who found themselves -again- at marginal z-productivities and
therefore do not necessarily stay in their new occupation.

Second, consider the life cycle behavior of the measure of subsequent occupational staying of
those who were occupational stayers before. For young workers, we observe 58% of unemployed
workers staying in their occupation at the end of the second spell, versus 56% in the data. For prime-
aged workers we observe 62% versus 65% in the data. Thus, in both model and in the data, the

51Theoretically, the model can produce a non-monotone relationship between reallocation and duration. This occurs when at the
highest human capital levels workers become very, very attached to their occupation, and these workers form a significant part of the
long-term unemployed. However, with three levels of occupational human capital in the calibration, and significant mobility even for
the prime-aged, this behavior is not exhibited.
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increase in occupational staying with age is relatively small, though somewhat stronger in the data.
The reason that in our model occupational moving remains elevated, even at prime age, is again
consistent with the endogeneity of separations. Those who become unemployed twice in a relatively
short period are likely to have a marginal z-productivity, which often leads to occupational mobility,
also for experienced workers.52

Third, consider the unemployment outflow rates of workers who have a second spell of unem-
ployment within a SIPP panel (or pseudo-SIPP panel, in the model). In the data, two statistics were
highlighted. (i) Those workers who have changed occupations in the first spell and are subsequently
staying in their now-current occupation have the highest outflow rates. The model reproduces pre-
cisely this behavior: the outflow rate of occupational staying after occupational moving before is
31.5%, and the difference between this outflow rate and the outflow rate of those who stayed in their
occupation twice in two sequential unemployment spells is between 2.5-4% in the data versus 2.5-5%
in the model, for both young and prime-aged workers. In the model, this occurs mainly because after
losing any occupational human capital at the end of the first spell, these workers now face a smaller
‘band’ of rest unemployment. This implies that ex-post occupational stayers who were occupational
movers in the previous spell spend less time between the two productivity cutoffs on average, and
thus, equivalently, have a higher outflow rate. (ii) Of those workers who change occupations the sec-
ond time around, those who were occupational stayers in their first spell have a lower outflow flow
in the second spell. The model also reproduces this, with a 4% difference in the model versus a 2%
difference in the data, and for prime-aged workers a larger 5%, and 8% difference, resp. in model and
data. This occurs because those who are occupational stayers the first time around are more likely to
face the large ‘band’ of rest unemployment in the second spell, while those that moved the first time
around, face the smaller ‘band’ associated with low levels of occupational human capital.

In summary, we interpret the repeat mobility patterns produced in the calibrated model and their
closeness to the data as further pieces of evidence supporting that we have captured well the environ-
ment in which workers make their reallocation decisions. As a result of this environment rest unem-
ployment and endogenous separations underlie an important part of the behavior of unemployment in
our model.

The Business Cycle and the Life Cycle We now consider the business cycle implications of the
model for young and prime-aged workers. These are completely untargeted moments, not even the
volatility averaged over the ages is targeted, nor the level of transition rates, averaged over time. In the
data, the volatilities of the job finding and separation rates of both age categories are rather close to
each other, as can be seen in table 10.53 Thus, a good theory about the impact of the business cycle on
the unemployment of young and prime-aged workers should incorporate substantial age-differences in
transition rates averaged over the business cycle, but simultaneously predict business cycle responses
of these that are reasonably similar to each other. In general, these observations appear to suggest
that the fluctuations in the transition rates is shaped by a process shared across age groups, as in our

52In the model, there is no life cycle profile behavior for the repeat unemployed who were occupational movers in their first spell,
because both young and prime-aged were reset to the initial human capital level, and thus look the same from that moment on.

53One must not overlook that these are relative volatilities taken with respect to a base that differs between young and prime-aged
workers: both average separation rates and job finding rates are higher for young workers.
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Table 10: Volatilities of Separation, Job finding and Reallocation Rates, per age group

σ: s model s data f model f data cm model cm data
Young 0.093 0.133 0.080 0.107 0.051 0.040
Prime 0.113 0.127 0.090 0.100 0.066 0.045

model.54 Focussing on the two separate age categories, the model is able to reproduce the similarity
in their business cycle volatilities reasonably well, in table 10, though the young experience a bit less
volatility than in the data. This indicates that the smaller (resp. larger) ‘band’ of rest unemployment
for inexperienced (resp. experienced) workers, which explain the difference in average separation and
job finding rates across age groups, also captures a larger part of the business cycle behavior per
age group in the data. Specifically, when hit by a recession, the increase in the width of the ‘bands’
between separation and reallocation cutoffs for all experience groups works to create more and longer-
duration unemployment for young and prime-aged workers alike. This also produces a more volatile
reallocation rate for prime-aged workers in the model, which is also the case in the data, though not
as distinct as in the model.

Finally, when aggregate productivity p is low, the distance between zs and zr for inexperienced
workers is substantial, leading to long-term unemployment for young workers that is driven mostly
by an increase in rest unemployment. Indeed, when decomposing the three types of unemployment
among young and prime age workers, we find that for both age groups rest unemployment is the most
prominent type of unemployment (accounting for a little over 70% for both groups), both increasing
in tandem in the decomposition when times are bad, and decreasing when times are good.55

7 Conclusions
We have presented a tractable equilibrium framework with heterogenous labor markets to study the
evolution of unemployment over the business cycle. Our analysis is motivated by new evidence on
the occupational reallocation patterns of unemployed workers. This evidence allowed us to estimate
an idiosyncratic shock process that is very important in shaping the types of unemployment workers
experience. We focused on workers’ decisions to search, reallocate and separate in response to this
process; these are described by simple cutoff rules, and vary with aggregate productivity and human
capital. The three kinds of unemployment, search, rest and reallocation, are determined by the (rela-
tive) position of these cutoffs. Both the life cycle and business cycle patterns are shaped, in an intuitive
way, by the response of these cutoffs to aggregate productivity and human capital accumulated.

Our quantitative evaluation shows that our model successfully captures important business cycle
and life cycle patterns among the unemployed in the US. In particular, the procylicality of reallo-
cations, the high cyclical volatility of unemployment, the Beveridge curve and countercyclicality of
separations. It highlights the importance of occupational human capital in explaining life cycle differ-
ences in workers’ search, reallocation and separation outcomes. It also reveals that rest unemployment
is not only a major source of unemployment, but can both intuitively and quantitatively be linked to
many of the observed patterns over the business cycle and across age groups.

54Given the different unemployment rates, and different average transition rates, fluctuations in e.g. hours over the business cycle
will be different for different age groups. See e.g. Gomme et al. (2005).

55In the Supplementary Appendix we provide a graphical decomposition of unemployment by age groups.
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Appendix
In this section, we have collected the proofs of the lemmas, propositions and results in the paper.

We show all results (except for the reservation property in separation) in section 4 for the general case,
including human capital. The value functions, for this case are given by

WU(p, x, z) = b+ βEp′,z′
[

max
ρ(p′,x,z′)

{
ρ(p′, x, z′)

[
−c+

∫ z

z

WU(p′, x1, z̃)dF (z̃)

]
+ (25)

(1− ρ(p′, x, z′))

[
max
WE ′

{
λ(θ(p′, x, z′,WE ′))WE ′ + (1− λ(θ(p, x, z,WE ′)))WU(p′, x, z′)

}]}]
WE(p, x, z) = w(p, x, z) (26)

+ βEp′,x′,z′
{[

max
d(p′,x′,z′)

(1− d(p′, x′, z′))WE(p′, x′, z′) + d(p′, x′, z′)WU(p′, x′, z′)

]
J(p, x, z, W̃E) = max

{w,W̃E ′}

{
y(p, x, z)− w + βEp′,x′,z′

[
max

σ(p′,x′,z′)
{(1− σ(p′, x′, z′))J(p′, x′, z′, W̃E ′)}

]}
(27)

V (p, x, z, W̃ ) = −k + q(θ(p, x, z, , W̃ ))J(p, x, z, W̃ ) = 0, (28)

where we have left implicit the time subscripts denoting the following period with a prime, z̃ refers to
new draws of z in different occupations, W̃E, w and WE ′ must satisfy (26) and the first maximization
in (27) is subject to the participation constraint (5).

Proof of Lemma 1 Fix any occupation o and consider a firm that promised W ≥ WU(p, x, zo)

to the worker with productivity zo, delivers this value in such a way that his profit J(p, x, zo,W ) is
maximized, i.e. solving (4). Now consider an alternative offer Ŵ 6= W , which is also acceptable to
the unemployed worker, and likewise maximizes the profit given Ŵ for the firm, J(p, x, zo, Ŵ ). Then
an alternative policy that delivers W by using the optimal policy for Ŵ , but transfers additionally
W − Ŵ to the worker in the first period must be weakly less optimal, which using the risk neutrality
of the worker, results in

J(p, x, zo,W ) ≥ J(p, x, zo, Ŵ )− (W − Ŵ )

Likewise, an analogue reasoning implies J(p, x, zo, Ŵ ) ≥ J(p, x, zo,W )− (Ŵ −W ), which together
with the previous equation implies

J(p, x, zo,W ) ≥ J(p, x, zo, Ŵ )− (W − Ŵ ) ≥ J(p, x, zo,W )− (Ŵ −W )−−(W − Ŵ ),

and hence it must be that J(p, x, zo,W ) = J(p, x, zo, Ŵ )− (W − Ŵ ), for all M(p, x, zo) ≥ W, Ŵ ≥
WU . Differentiability of J with slope -1 follows immediately. Moreover, M(p, x, zo,W ) = W +

J(p, x, zo, Ŵ ) + Ŵ −W = M(p, x, zo, Ŵ ) ≡M(p, x, zo). Finally, if W ′(p′, x, z′o) < WU(p′, x, z′o) is
offered tomorrow whileM(p′, x, z′o) > WU(p′, x, z′o), it is a profitable deviation to offerWU(p′, x, z′o),
since M(p′, x, z′o) −WU(p′, z′o) = J(p′, z′o,W

U(p′, x, z′o)) > 0 is feasible. This completes the proof
of Lemma 1.

Proof of Lemma 2 Fix any occupation o and consider an island (x, zo) for those who of human cap-
ital x, with occupation-worker-match specific productivity zo, such that M(p, x, zo)−WU(p, x, zo) >

0. Since we confine ourselves to this island, with known continuation values J(p, x, zo,W ) and
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WU(p, x, zo) in the production stage, we drop the dependence on p, x, zo for ease of notation. Free
entry implies k = q(θ)J(W ) ⇒ dW

dθ
< 0. Notice that it follows that the maximand of workers in (2),

subject to (6) is continuous inW , and providedM > WU , has a zero atW = M and atW = WU , and
a strictly positive value for intermediate W : hence the problem has an interior maximum on [WU ,M ].
What remains to be shown is that the first order conditions are sufficient for the maximum, and the set
of maximizers is singular.

Solving the worker’s problem of posting an optimal value subject to tightness implied by the free
entry condition yields the following first order conditions (with multiplier µ):

λ′(θ)[W −WU ]− µq′(θ)J(W ) = 0

λ(θ)− µq(θ)J ′(W ) = 0

k − q(θ)J(W ) = 0

Using the constant returns to scale property of the matching function, one has q(θ) = λ(θ)/θ. This
implies, combining the three equations above, to solve out µ and J(W ),

0 = λ′(θ)[W (θ)−WU ] +
θq′(θ)

q(θ)
k ≡ G(θ),

where we have written W as a function of θ, as implied by the free entry condition. Then, one can
derive G′(θ) as

G′(θ) = λ′′(θ)[W (θ)−WU ] + λ′(θ)W ′(θ) +
dεq,θ(θ)

dθ
,

where εq,θ(θ) denotes the elasticity of the vacancy filling rate with respect to θ and

dεq,θ(θ)

dθ
=
q′(θ)k

q(θ)
+
θ[q′′(θ)q(θ)− q′(θ)2]k

q(θ)2
.

Since the first two terms in the RHS are strictly negative, G′ is strictly negative when εq,θ(θ) ≤ 0. The
latter then guarantees there is a unique W̃f and corresponding θ that maximizes the worker’s problem.
This completes the proof of Lemma 2.

Proof of Lemma 3 First we show that the operator T maps continuous functions into continuous
functions. Note that θ ∈ [0, 1], for all p, x, z andWU(p, x, z),M(p, x, z) and λ(θ) are continuous func-
tions. The Theorem of the Maximum then implies that S(p, z) is also a continuous function. That T
maps continuous functions into continuous functions then follows as the max{M(p′, x′, z′),WU(p′, x′, z′)}
is also a continuous function. Moreover, since the domain of p, x, z is bounded, the resulting continu-
ous functions are also bounded.

To show that T defines a contraction, consider two functions M̃, M̃ ′, such that ‖M̃ − M̃ ′‖sup < ε.
Then it follows that ‖WU(p, x, z) − WU ′(p, x, z)‖sup < ε and ‖M(p, x, z) −M ′(p, x, z)‖sup < ε,
where WU ,M are part of M̃ as defined in the text. Since ‖max{a, b} − max{a′, b′}‖ < max{‖a −
a′‖, ‖b− b′‖}, as long as the terms over which to maximize do not change by more than ε in absolute
value, the maximized value does not change by more ε. The only maximization for which it is nontriv-
ial to establish this is max{

∫
WU(p, x1, z)dF (z)− c, S(p, x, z) +WU(p, x, z)}. The first part can be

established readily: ‖
∫ (

WU(p, x1, z) −WU ′(p, x, z)
)
dF (z)‖ < ε. We now show that this property

holds for ‖S(p, x, z) +WU(p, x, z)− S ′(p, x, z)−WU ′(p, x, z)‖.
Consider first the case thatM−W > M ′−W ′. Then, we must have ε > W ′−W ≥M ′−M > −ε.
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Construct M ′′ = W ′ + (M −W ) > M ′ and W ′′ = M ′ − (M −W ) < W ′. Call S(M −W ) the
maximized surplus maxθ{λ(θ)(M −W ) − θk} and θ the maximizer; likewise S(M ′ −W ′) and θ′.
Then

−ε < S(M ′ −W ′′) +W ′′ − S(M −W )−W ≤ S(M ′ −W ′) +W ′ − S(M −W )−W
≤ S(M ′′ −W ′) +W ′ − S(M −W )−W < ε

where S(M ′ −W ′′) = S(M −W ) = S(M ′′ −W ′) by construction. Note that the outer inequalities
follow because M −M ′ > −ε,W ′ −W < ε.

Likewise, consider the case where M ′ −W ′ > M −W ≥ 0. Then

ε > S(M ′ −W ′′) +W ′′ − S(M −W )−W > S(M ′ −W ′) +W ′ − S(M −W )−W
> S(M ′′ −W ′) +W ′ − S(M −W )−W > −ε

Hence ‖S(p, z)+WU(p, x, z)−S ′(p, x, z)−WU ′(p, z)‖ < ε. It then follows that ‖T (M̃(p, x, z, 1))−
T (M̃ ′(p, x, z, 1)‖ < βε for all p, z, and ‖M̃ − M̃ ′‖ < ε. Hence, the operator is a contraction.

It is now trivial to show that if M and WU are increasing in z, T maps them into increasing
functions. This follows since the max{M(p′, x′, z′),WU(p′, x′, z′)} is also an increasing function.
Assumption 1 is needed so higher z today implies (on average) higher z tomorrow. Since the value
of reallocation is constant in z, the reservation policy for reallocation follows immediately. This com-
pletes the proof of Lemma 3.

Proof of Lemma 4 T maps the subspace of functions M̃ into itself with M(p, z) increasing weakly
faster in z than WU(p, z). To show this take (M(p, z),W u(p, z) such that M(p, z) − WU(p, z) is
weakly increasing in z and zs denote the reservation productivity such that for and z < zs a firm-
worker match decide to terminate the match, and investigate whether the mapping T preserves the
increasing difference. Using maxθ{λ(θ)(M−WU)−θk} = λ(θ∗)(M−WU)−λ′(θ∗)(M−WU)θ∗ =

λ(θ∗)(1− η)(M −WU), we construct the following difference

TM̃(p, z, 0)− TM̃(p, z, 1) = (29)

y(p, z)− b+ βEp′,z′
[
(1− δ) max{M(p′, z′)−WU(p′, z′), 0}−

max

{∫
WU(p′, z̃)dF (z̃)− c−WU(p′, z′), λ(θ∗)(1− η)

(
M(p′, z′)−WU(p′, z′)

)} ]
.

The first part of the proof shows the conditions under which TM̃(p, z, 0) − TM̃(p, z, 1) is weakly
increasing in z. Because the elements of the our relevant domain are restricted to have W u(p, z)

increasing in z, and M(p, z) −W u(p, z) increasing in z, we can start to study the value of the term
under the expectation sign, by cutting a number of different cases to consider depending on where z′

is relative to the implied reservation cutoffs.
– Case 1. Consider the range of tomorrow’s z′ ∈ [z(p′), zr(p′, )), where zr(p′) < zs(p′. In this case,
the term under the expectation sign in the above equation reduces to −

∫
WU(p′, x1, z̃)dF (z̃) + c +

WU(p′, z′), which is increasing in z′.
– Case 2. Now suppose tomorrow’s z′ ∈ [zr(p′), zs(p′)). In this case, the term under the expectation

sign becomes zero (as M(p′, z′)−WU(p′, z′) = 0), and is therefore constant in z′.
– Case 3. Next suppose that z′ ∈ [zs(p′), zr(p′)). In this case, the entire term under the expectation
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sign reduces to

(1− δ)(M(p′, z′)−WU(p′, z′))−
∫
WU(p′, z̃)dF (z̃) + c+WU(p′, z′),

and, once again, is weakly increasing in z′, because by supposition M(p′, z′) −WU(p′, z′) is weakly
increasing in z′, and so is W u(p′, z′) by lemma 3.
– Case 4. Finally consider the range of z′ ≥ max{zr(p′), zs(p′)}, such that in this range employed
workers do not quit nor reallocate. In this case the term under the expectation sign equals

(1− δ)[M(p′, z′)−WU(p′, z′)]− λ(θ∗(p′, z′))(1− η)[M(p′, z′)−WU(p′, z′)]. (30)

It is easy to show using the free entry condition that d/d(M −W )(λ(θ∗(p′, z′))(1 − η)[M(p′, z′) −
WU(p′, z′)]) = λ(θ∗(p′, z′)), and hence that the derivative of (30) with respect to z′ is positive when-
ever 1− δ − λ(θ∗) ≥ 0.

Given assumption 1, the independence of z of x, p, and the just-established increasingness in z′

of the term under the expectation sign, given any p′, it follows that the integral in (29) is increasing
in today’s z. Together with y(p, z) increasing in z, it must be that TM̃(p, z, 1) − TM̃(p, z, 0) is also
increasing in z.

To establish that the fixed point also has increasing differences in z between the first and sec-
ond coordinate, we have to show that space of this functions is closed in the space of bounded and
continuous functions. In particular, consider the set of functions F def

= {f ∈ C|f : X × Y →
R2, |f(x, y, 1) − f(x, y, 2)| increasing in y}, where f(., ., 1), f(., ., 2) denote the first and second co-
ordinate, respectively, and C the metric space of bounded and continuous functions endowed with the
sup-norm.

The next step in the proof is to show that fixed point of TM̃(p, z, 0)− TM̃(p, z, 1) is also weakly
increasing in z. To show we first establish the following result.

Lemma A.1: F is a closed set in C

Proof. Consider an f ′ /∈ F that is the limit of a sequence {fn}, fn ∈ F, ∀n ∈ N. Then there exists an
y1 < y such that f ′(x, y1, 1)−f ′(x, y1, 2) > f ′(x, y, 1)−f ′(x, y, 2),while fn(x, y1, 1)−fn(x, y1, 2) ≤
fn(x, y, 1) − fn(x, y, 2), for every n. Define a sequence {sn} with sn = fn(x, y1, 1) − fn(x, y1, 2) −
(fn(x, y, 1) − fn(x, y, 2)). Then sn ≥ 0, ∀n ∈ N. A standard result in real analysis guarantees that
for any limit s of this sequence, sn → s, it holds that s ≥ 0. Hence f ′(x, y1, 1) − f ′(x, y1, 2) ≤
f ′(x, y, 1)− f ′(x, y, 2), contradicting the premise.

Thus, the fixed point exhibits this property as well and the optimal quit policy is a reservation-z
policy given 1 − δ − λ(θ∗) > 0. Since y(p, z) is strictly increasing in z, the fixed point difference
M − W u must also be strictly increasing in z. Furthermore, since λ(θ) is concave and positively
valued, λ′(θ)(M − WU) = k implies that job finding rate is also (weakly) increasing in z. This
completes the proof of Lemma 4.

Proof of Proposition 2 Consider the mapping T SP , where the values are measured at the production
stage of the period, and the following period is denoted by a prime, and the entire aggregate state of
aggregate productivity p, and the distribution of workers over employment status, human capital level,
and individual occupation-specific productivities z is summarized in Ωj , where j is s, r,m, p for the
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corresponding four stages of a period, and P (x′|x) denotes the Markov transition probability for the
human capital process.

T SPW SP (Ωp) = max
{d(p′,x′,z′,Ωs′),ρ(p′,x′,z′,Ωr ′),v(p′,x′,z′,Ωm′)}

∑
X

O∑
o=1

∫ z

z

(u(x, zo)b+ e(x, zo)y(p, x, zo))dzo

+ βEp′,x′,z′
[
−

(
c
∑
X

O∑
o=1

∫ z

z

ρ(p′, x′, z′o,Ω
r ′)u(x′, z′o)dz

′
o + k

∑
X

O∑
o=1

∫ z

z

v(p′, x′, z′o,Ω
m′)dz′o

)

+W SP (Ωp′)

]
subject to laws of motion as detailed in the Supplementary Appendix, here we highlight the laws of
motion from production stage to production stage, to give an impression.

u′(x′, zo)dzo =
∑
X

(∫ z

z

[(1− λ(θ(p′, x′, zo,Ω
s′)))(1− ρ(p, x, z̃o,Ω

r ′))u(x, z̃o)

+ d(p′, x′, zo,Ω
s′)e(x, z̃o)] dF (zo|z̃o)dz̃o

)
P (x′|x)

+ (1x′=x1)
∑
x̃∈X

∑
x∈X

∑
õ 6=o

[ ∫ z

z

ρ(p′, x̃, ẑo)dF (ẑo|z̃o)u(x, z̃o)dz̃o

]
P (x̃|x)

dF (zo)

O − 1

e′(x, zo)dzo =

∫ z

z

[
λ(θ(p′, x, zo,Ω

m′))(1−ρ(p′, x, zo,Ω
r ′))u(x, z̃o)

+
∑
x̃∈X

((1−d(p, x, zo,Ω
s′))P(x|x̃)e(x̃, z̃o))

]
dF (zo|z̃o)dz̃o

For each island (x, zo) the social planner must decide whether to (i) reallocate workers, ρ(.), (ii)
break up job matches, d(.), and (iii) set the number of vacancies for the unemployed, v(.), given
aggregate productivity p and the values of z, and potentially the distribution of workers over individual
states. With v(.) = θ(.)(1−ρ(.))u(x, zo), we can substitute the vacancy creation decision by a decision
on labour market tightness.

The next step is to show that asW SP is linear in u(x, z) and e(x, z), where u(x, z) =
∑

o∈O u(x, z0)

and e(x, z) is analogously defined, T SP maps these linear functions into a function that is likewise lin-
ear in these variables. Linearity of W SP implies that we can define W u(p, x, z) and M(p, x, z) such
that W SP can be written as

W SP (p,Ω) =
∑
X

∫ z

z

(
WU(p, x, z)u(x, z) +M(p, x, z)e(x, z)

)
dz.

Moreover, substituting in the flow equations, under linearity (combined with the random sampling
technology, also captured in the flow equations) the expected value of sampling a new z in a different
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occupation for u workers is
∫ z
z
WU(p, z̃)udz̃ − uc and hence we can write

T SPW SP (p,Ω) =

max
d(.),ρ(.),θ(.)

∑
X

∫ z

z

(
u(x, z)b+ βEp′,x′,z′

[(∫ z

z

WU(p′, x1, z̃)dz̃ − c
)
ρ(p′, x′, z′)u(x, z′)

+ (1− ρ(p′, x′, z′))
[
λ (θ(p′, x′, z′))M(p′, x′, z′)− θ(p′, x′, z′)k

+ (1− λ (θ(p′, x′, z′)))WU(p′, x′, z′)
]∣∣∣∣p, x, z

]
u(x, z)

+ e(x, z)y(p, x, z) + βEp′,x′,z′
[[

(1− d(p′, x′, z′))M(p′, x′, z′)+

+ d(p′, x′, z′)WU(p′, x′, z′)
]∣∣∣∣p, x, z]e(x, z)

)
dz,

where implicitly we have already used the notion that when W SP is linear in e(x, z) and u(x, z), then
decisions ρ(.), d(.), θ(.) are only functions of (p, x, z). Further, we can completely isolate the terms
with u(x, z) and e(x, z) and take the maximization over the remaining terms such that

T SPW SP (p,Ω) =
∑
X

∫ z

z

[
WU
max(p, x, z)u(x, z) +Mmax(p, x, z)e(x, z)

]
dz

where

WU
max(p, x, z) =

max
ρ(p′,x′,z′),v(p′,x′,z′)

{
b+ βEp′,x′,z′

[(∫ z

z

WU(p′, x1, z̃)dz̃ − c
)
ρ(p′, x′, z′)

+ (1− ρ(p, x′, z′))
[
λ(θ(p′, x′, z′)

[
M(p′, x′, z′)−WU(p′, x′, z′)

]
− θ(p′, x′, z′)k +WU(p′, x′, z′)

]}
Mmax(p, x, z) =

max
d(p′,x′,z′)

{
y(p, x, z) + βEp′,x′,z′

[ (
d(p′, x′, z′)WU(p′, x′, z′) + (1− d(p′, x′, z′))M(p′, x′, z′)

) ]}
The maximized value depends only on p and zo, and hence T SP maps a value function that is linear
in u(zo) and e(zo) into a value function with the same properties. Moreover, using the definitions of
WU
max and Mmax it follows that from the fixed point of the mapping T SP we can derive a WU∗

max and
M∗

max that constitutes a fixed point to T , and vice versa. Hence, the allocations of the fixed point
of T are allocations of the fixed point of T SP , and hence the equilibrium allocation is the efficient
allocation. This completes the proof of Proposition 2.
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Proof of Proposition 3 The reservation island productivity for the competitive and search case,
satisfies, respectively,

b+ β

∫ z̄

z

max{y(p, z), y(p, zrc )}
1− β

dF (z)− y(p, zrc )

1− β
− cc = 0 (31)

(1− η)k

η

(
β

∫ z̄

z

max{θ(p, z), θ(p, zr)}
1− β

dF (z)− θ(p, zr)

1− β

)
− cs = 0 (32)

Using (16), the response of the reservation island productivity, for the competitive, and the frictional
case, is then given by

dzrc
dp

=
βF (zrc )

yp(p,zrc )

yz(p,zrc )
+ β

∫ z̄
zrc

yp(p,z)

yz(p,zrc )
dF (z)− yp(p,zrc )

yz(p,zrc )

1− βF (zrc )
(33)

dzr

dp
=
βF (zr)yp(p,zr)

yz(p,zr)
+ β

∫ z̄
zr

θ(p,z)(w(p,zr)−b)
θ(p,zr)(w(p,z)−b)

yp(p,z)

yz(p,zr)
dF (z)− yp(p,zr)

yz(p,zr)

1− βF (zr)
(34)

Choosing cc, cs appropriately such that zrc = zr, the above expressions imply that dzr

dp
> dzrc

dp
if

θ(p,z)
w(p,z)−b >

θ(p,zr)
w(p,zr)−b , ∀ z > zr. Hence we now need to show that θ(p,z)

w(p,z)−b is increasing in z.

d
(

θ(p,z)
w(p,z)−b

)
dz

=
θyz(p, z)

(w − b)2
− θ

(
(1− η) + (1− η)β θ

w−bk

(w − b)2

)
yz(p, z),

which has the same sign as η − (1− η)βk θ
w−b and the same sign as

η(1− η)(y(p, z)− b) + η(1− η)βθk − (1− η)βθk

= (1− η)(η(y(p, z)− b)− (1− η)βθk).

But η(y(p, z) − b) − (1 − η)βθk = y(p, z) − w > 0 and thus we have established Part 1 of the
Proposition.

For Part 2, note that modularity implies that yp(p, z) = yp(p, z̃), ∀z > z̃; while supermodularity
implies yp(p, z) ≥ yp(p, z̃), ∀z > z̃. Hence modularity implies

dzrc
dp

=
1

1− βF (zrc )

yp(p, z
r
c )

yz(p, zrc )

(
βF (zrc ) + β

∫ z̄

zrc

yp(p, z)

yp(p, zrc )
dF (z)− 1

)
< 0, ∀ β < 1.

In the case with frictions,
dzr

dp
=

1

1− βF (zr)

yp(p, z
r)

yz(p, zr)

(
βF (zr) + β

∫ z̄

zr

θ(p, z)(w(p, zr)− b)
θ(p, zr)(w(p, z)− b)

yp(p, z)

yp(p, zr)
dF (z)− 1

)
.

If we can show that the integral becomes large enough, for c large enough, to dominate the other
terms, we have established the claim. First note that yp(p,z)

yp(p,zr)
is weakly larger than 1, for z > zr by the

(super)modularity of the production function. Next consider the term θ(p,z)(w(p,zr)−b)
θ(p,zr)(w(p,z)−b) . Note that

lim
z↓y−1(b;p)

θ(p, z)

w(p, z)− b
=

λ(θ(p, z))

1− β + βλ(θ(p, z))
= 0,

because θ(p, z) ↓ 0, as y(p, zr) ↓ b. Hence, fixing a z such that y(p, z) > b, θ(p,z)(w(p,zr)−b)
θ(p,zr)(w(p,z)−b) →

∞, as y(p, zr) ↓ b. Since this holds for any z over which is integrated, the integral term becomes
unboundedly large, making dzr/dp strictly positive if reservation zr is low enough. Since the integral
rises continuously but slower in zr than the also continuous term θ(p,zr)

1−β , it can be readily be established
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that zr depends continuously on c, and strictly negatively so as long as y(p, zr) > b and F (z) has full
support. Moreover, for some c̄ large enough, y(p, zr) = b. Hence, as c ↑ zr, dzr

dp
> 0. This completes

the proof of Proposition 3.

Proof of Lemma 5 Note that R(p) = b+βθ(p,zr(p))k(1−η)/η
1−β . The derivative of this function with re-

spect to p equals
βk(1− η)

(1− β)η

θ

w(p, zr(p))− b

(
yp(p, z

r(p)) + yz(p, z
r(p))

dzr(p)

dp

)
. (35)

Sincew(p, zr(p))−b = (WE(p, zr(p))−WU(p, zr(p)))(1−β(1−δ)+βλ(θ(p, zr(p)))) and θβk(1−η)
(1−β)η

=

βλ(θ(p, zr(p)))(WE(p, zr(p))−WU(p, zr(p)), we find that (35) reduces to
βλ(θ(p, zr(p)))

1− β(1− δ) + βλ(θ(p, zr(p))

(
yp(p, z

r(p)) + yz(p, z
r(p))

dzr(p)

dp

)
. (36)

From the cutoff condition for separation, we find (1−β)R(p) = y(p, zs(p)). Taking the derivative
with respect to p implies the left side equals (36) and the right side equals yp(p, zs(p))+yz(p, zs(p))

dzs(p)
dp

.
Rearranging yields (21). This completes the proof of Lemma 5.

Proof of Lemma 6 First, we state the detailed version of lemma 6, as lemma 8.

Lemma 8. The expected values of sampling, waiting, job surplus and unemployment, and the reallo-
cation and separation reservation productivities, respond to changes in parameters as follows

1. (i)d(W s−R)
dc

> 0, (ii) d(M(z)−WU (z))
dc

> 0 for all active islands; and (iii) zr− zs is decreasing in c,
strictly if zr > zs.

2. (i)d(W s−R)
db

> 0, (ii) d(M(z)−WU (z))
db

< 0 for all active islands; and (iii) zr − zs is decreasing in b
(while both zr and zs are increasing in b).

3. (i)d(W s−R)
dγ

< 0, (ii) there exists a cutoff zγ > max{zr, zs} such that for all z > zγ , d(M(z)−WU (z))
dγ

>

0 and dWU (z)
dγ

> 0; while d(M(z)−WU (z))
dγ

< 0 and dWU (z)
dγ

< 0 for zγ > z > max{zr, zs}. In

expectation, d(Ez [M(z)−WU (z)])
dγ

> 0 and dEz [WU (z)]
dγ

> 0. And (iii), if zr > zs and R −W s is not
too large, or if zs > zr, then zr − zs is increasing in γ.

First, consider the link between W s − R and zs − zr: the difference W s − R directly affects the
distance between zs and zr. An increase in the former often leads directly to an increase in the latter.
To see this formally, denote the parameter of interest generically by ω; for example, c, b or γ. The
reservation productivities for separation and reallocation then implicitly satisfy

M(ω, zs(ω))−W s(ω) = 0 (37)

λ(θ(ω, zr(ω)))(1− η)(M(ω, zr(ω))−W s) + (W s(ω)−R(ω)) = 0, (38)

where (38) only applies when R(ω) > W s(ω) since with the assumed process for z we have that
W s(ω) > R(ω) implies zr(ω) = z.

To obtain the derivatives of zs(ω) and zr(ω) wrt ω, we can take the derivative of (37)-(38), where
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we make explicit the dependence on ω if and only if the derivative is taken with respect to it.
dzs(ω)

dω
= − d

dω

[
zs − b+ β(1− γ)Ez[max{M(ω, z)−W (ω, z),W s(ω)−R(ω)}]

+ βγ(W s −R)

]
− βγd(W s(ω)−R(ω))

dω
(39)

dzr(ω)

dω
= − d

dω

[
zr − b+ β(1− γ)Ez[max{M(ω, z)−W (ω, z),W s(ω)−R(ω)}]

+ βγ(1− λ(θ)(1− η))(M(zr)−W s)

]
− 1− βγ(1− λ(θ))

λ(θ)

d(W s(ω)−R(ω))

dω
.

(40)

These equations imply that the sign of the derivative of zr − zs with respect to b or c is the opposite
of the sign of the corresponding derivatives of W s −R. This is because βγ < 1−βγ(1−λ(θ))

λ(θ)
and, when

taking derivatives, the differential terms within the squared brackets are identical.
We divide the proof into three sections. To simplify notation we consider the transformation y =

y(z), where y(.) is the common production function, and let F denote the cdf of y. Accordingly, let
yr = y(zr) and ys = y(zs).

Comparative statics wrt c Consider the difference W s − R and values of c such that R ≥ W s. In
this case we have that

W s = (1− γ)(R + c) + γ(b+ βR),

W s −R = −γ(1− β)R + (1− γ)c+ γb.

Suppose towards a contradiction that d(W s − R)/dc < 0. The above equations imply that dR
dc

>
(1−γ)
γ(1−β)

> 0. We will proceed by showing that under d(W s−R)/dc < 0 both the expected surplus (after
a z-shock) and the surplus for active islands (those with productivities that entail positive surplus)
decrease, which implies that the value of unemployment decreases, which in turn implies dR

dc
< 0,

which is our contradiction.
Consider an active island with WU(y) > R, the surplus on this island is given by

M(y)−WU(y) = γ(y − b+ β(1− λ(θ(y))(1− η))(M(y)−WU(y)))

+ (1− γ)(Ey[M(y)−WU(y)] + (y − E[y])), (41)

where Ey[M(y)−WU(y)] describes the expected surplus after a z-shock (after the search stage). Note
that d

d(M(y)−WU (y))
(λ(θ(y))(1 − η)(M(y) −WU(y))) = λ(θ(y)), since (dropping the y argument for

brevity) (1−η)(M−WU) = (1−η)
η
J = 1−η

η
k
q(θ)

, and hence λ(θ)(1−η)(M−WU) = 1−η
η
kθ. Moreover,

dθ
d(M−WU )

= η
1−η

λ(θ)
k

. Putting the last two expressions together, we find that the above derivative equals
λ(θ). From (41), it follows that

0 <
d(M −WU)

d(Ey[M(y)−WU(y)])
=

1− γ
1− γβ(1− λ(θ))

< 1. (42)
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Expected match surplus measured after the search stage is

Ey[M(y)−WU(y)] =

∫
yr
y − b+ β(1− λ(θ(y))(1− η))(M(y)−WU(y))dF (y)

+

∫ yr

ys
y − b+ β(M(y)−R)dF (y) +

∫ ys

y − b+ β(W s −R)dF (y),

(43)

note that the (1 − γ) shock integrates out. The third term of the expression above is decreasing in c,
by our contradiction supposition. The second term,

∫ yr
ys

[M(y)−WU(y)]dF (y), can be rewritten as

M −W s = γ(y − b+ β(M −W s +W s −R)) + (1− γ)(Ey[M(y)−WU(y)] + y − E[y]),

and rearranging yields

M −W s =
γ

1− γβ
(y − b+ β(W s −R)) +

1− γ
1− γβ

Ey[M(y)−WU(y)],

where γ
1−γβ (y − b+ β(W s −R)) is decreasing. For the first term, note that M(y)−WU(y) responds

to c through Ey[M(y) −WU(y)], from (42). Combining all the elements (42), (43) and the last two
equations, we find that

dEy[M(y)−WU(y)]

dc
=

∫
yr

(1− γ)β(1− λ(θ(y)))

1− γβ(1− λ(θ))
dF (y)

dEy[M(y)−WU(y)]

dc

+ (F (yr)− F (ys))

(
γβ

1− γβ
d(W s −R)

dc
+

1− γ
1− γβ

dEy[M(y)−WU(y)]

dc

)
+ F (ys)β

d(W s −R)

dc

⇐⇒ dEy[M(y)−WU(y)]

dc
= C · d(W s −R)

dc
< 0, (44)

where C is a positive constant. From this it follows that d[M(y)−WU (y)]
dc

< 0, by (42).
Next consider dW

U

dc
, and dE[WU ]

dc
. For y ≤ yr,WU(y) = W s = (1−γ)E[WU ]+γ(b+βE[WU ]−βc).

For y > yr,WU(y) = (1−γ)E[WU ]+γ(b+β(λ(θ(y))(1−η)(M(y)−WU(y))+βWU(y))). It follows
that E[WU ] = F (yr)(b+βE[WU ]−βc)+

∫
yr

(b+βλ(θ(y))(1−η)(M(y)−WU(y))+βWU(y))dF (y).
Combining the latter equation with

WU =
1− γ

1− βγ
E[WU ] +

γ

1− βγ
(b+ βλ(θ(y))(1− η)(M(y)−WU(y))),

we have that (
1− βF (yr)− β 1− γ

1− βγ
(1− F (yr))

)
E[WU ]

= F (yr)(b− βc) +

∫
yr

b+ βλ(θ(y))(1− η)(M(y)−WU(y))

1− βγ
dF (y)

Taking the derivative with respect to c, we find that both the first and second terms on the RHS are
negative, the latter because we have established that d(M(y)−WU (y))

dc
< 0. It then follows that dE[WU ]

dc
<

0, which implies that dR
dc

= dE[WU ]
dc
− 1 < 0, which contradicts our premise.

Now consider values of c such that R < W s. Here there is rest unemployment. In this case,
W s = γ(b+βW s) + (1− γ)E[WU ] and dW s

dc
= 0, since workers in islands with productivities y ≤ ys
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will never reallocate. Doing so implies paying a cost c > 0 and randomly drawing a new island from
the productivity distribution, while by not sampling a worker obtains (with probability 1 − γ) a free
draw from the productivity distribution. Hence, d(R − W s)/dc = dR/dc. Noting that workers in
islands y > ys prefer employment in their current occupation, the above arguments imply WU is
independent of the value of sampling for any y. It then follows that dR

dc
= dE[WU ]

dc
− 1 = −1 < 0,

which contradicts our premise.

Comparative Statics with respect to b. Here we proceed in the same way as in the previous case.
Once again consider the difference W s − R such that R ≥ W s. Writing W s and WU , for islands
above the separation reservation productivity, as

W s = (1− γ)E[WU ] + γ(b+ β(R−W s)) + γβW s (45)

WU(y) = (1− γ)E[WU ] + γ(b+ β(λ(θ)(1− η)(M(y)−WU(y)))) + γβWU(y), (46)

we find that W s − E[WU ] =
∫
yr

(W s −WU(y))dF (y), which in turn implies

W s −R =
1

1− γβF (yr)

(
−βγ

∫
yr
λ(θ)(1− η)(M(y)−WU(y))dF (y) + (1− γβ)c

)
. (47)

That is, the difference between waiting one period to sample and sampling a new island now is the
forgone possibility of searching for a job in the new island next period, but on the other hand, the
sampling cost only has to be incurred next period with probability γ, and discounted at rate β.

Next consider the relationship between M(y) −WU(y) and E[M(y) −WU(y)]. From (41) and
(42) , we find that

d(M(y)−WU(y))

db
=

1− γ
1− γβ(1− λ(θ))

dE[M(y)−WU(y)]

db
− γ

1− γβ(1− λ(θ))
. (48)

Note that d(M(y)−WU (y))
db

must have the same sign for all y, which is positive if and only if

dE[M(y)−WU(y)]

db
>

γ

1− γ
.

Towards a contradiction, suppose d(W s−R)
db

< 0. Then, we have d(W s−R)
db

= d(W s−E[WU ])
db

, which

equals d
db

(
−
∫
yr

max{WU(y)−W s, 0}dF (y)
)

. By the envelope condition, the effect dy
r

db
disappears.

By the previous argument and (45) subtracted by (46), it follows that d(M(y)−WU (y))
db

> 0 and by (48),
dE[M(y)−WU (y)]

db
> 0.

Along the lines of (44), we find
dEy[M(y)−WU(y)]

db
= −1 +

∫
yr

β(1− λ(θ(y)))− γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dF (y)

dEy[M(y)−WU(y)]

db

−
∫
yr

γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dF (y)

dEy[M(y)−WU(y)]

db

+ (F (yr)− F (ys))

(
γβ2

1− γβ
d(W s −R)

db
+
β(1− γ)

1− γβ
dEy[M(y)−WU(y)]

db

)
− (F (yr)− F (ys))

γβ

1− γβ
+ F (ys)β

d(W s −R)

db
(49)

=⇒ dEy[M(y)−WU(y)]

db
= C2 ·

d(W s −R)

db
− C3 < 0,
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with C2, C3 are positive-valued terms. This is the desired contradiction.
Next consider the case that W s > R. Then, equation (47) becomes instead

W s − E[WU ] = − βγ

1− βγ

∫
ys
λ(θ)(1− η)(M(y)−WU(y))dF (y) (50)

Similarly, if we start from the premise that d(W s−R)
db

< 0, this will imply again by (48) that dEy [M(y)−WU (y)]

db
>

0. Note that in this case, in equation (43) reduces to

Ey[M(y)−WU(y)] =

∫
ys
y − b+ βλ(θ(y))(1− η)(M(y)−WU(y))dF (y), (51)

and (49) reduces to
dEy[M(y)−WU(y)]

db
= −1 +

∫
ys

β(1− λ(θ(y)))− γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dF (y)

dEy[M(y)−WU(y)]

db

−
∫
ys

γβ(1− λ(θ(y)))

1− γβ(1− λ(θ))
dF (y)

dEy[M(y)−WU(y)]

db
, (52)

which again implies that dE[M−WU ]
db

< 0, a contradiction.

Comparative statics with respect to γ As in the previous cases we start with the case where R >

W s. Towards a contradiction, assume that d(W s−R)
dγ

> 0. From equation (47), we find that

d(W s −R)

dγ
=
βF (yr)

1− βγ
(W s −R) +

1

1− βγF (yr)

(
−
∫
yr
λ(θ)(1− η)(M(y)−WU(y)dF (y)− βc

)
−
∫
yr
βγλ(θ)

d(M(y)−WU(y))

dγ
dF (y) (53)

From our premise it follows that

−
∫
yr
βγλ(θ)

d(M(y)−WU(y))

dγ
dF (y) ≥ βF (yr)

1− βγ
(R−W s)

+
1

1− βγF (yr)

(∫
yr
λ(θ)(1− η)(M(y)−WU(y))dF (y) + βc

)
> 0 (54)

Now, let us look at the implications for dE[M(y)−WU (y)]
dγ

. We can rewrite (43), bringing tomorrow’s
continuation values to the LHS as

(1− β)Ey[M(y)−WU(y)] =

∫
yr
y − b− βλ(θ(y))(1− η)(M(y)−WU(y))dF (y)

+

∫ yr

ys
y − b+ β(W s −R))dF (y)

+

∫ ys

y − b+ β(W s −R)− β(M(y)−W s)dF (y) (55)
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Taking derivatives with respect to γ, we find

(1− β)
dEy[M(y)−WU(y)]

dγ
=− β

∫
yr
λ(θ(y))

d(M(y)−WU(y))

dγ
dF (y)

+

∫ yr

ys
β
d(W s −R)

dγ
)dF (y)

+

∫ ys

β
d(W s −R)

dγ
− βd(M(y)−W s)

dγ
dF (y) (56)

> 0

For y < ys it holds that
d(M(y)−W s)

dγ
=(1− γ)

dE[M(y)−WU(y)]

dγ
+ γβ

d(W s −R)

dγ

+ (y − b+ β(W s −R)− E[M(y)−WU(y)]). (57)

The first two terms on the RHS are positive, the last term on the RHS negative. In the RHS of (56)
all terms are positive, except for F (ys)(1 − γ)dE[M(y)−WU (y)]

dγ
and F (ys)γβ d(W s−R)

dγ
associated with

d(M(y)−W s)
dγ

. However, one can see that −F (ys)γβ d(W s−R)
dγ

is more than offset by β d(W s−R)
dγ

on the

same line, while we can bring F (ys)(1 − γ)dE[M(y)−WU (y)]
dγ

to the LHS, to find that dE[M(y)−WU (y)]
dγ

is

premultiplied by (1− F (ys)βγ) > 0. Hence, it follows that dE[M(y)−WU (y)]
dγ

> 0.
FromM(y)−WU(y) = (1−γ)E[M(y)−WU(y)]+γ(y−b+β(1−λ(θ)(1−η))(M(y)−WU(y)),

it follows that for y > yr

βγλ(θ)
dM(y)−WU(y)

dγ
=

βγλ(θ)

1− βγ(1− λ(θ))

((
y − b+ β(1− λ(θ)(1− η))(M(y)−WU(y))

− E[M(y)−WU(y)]
)

+ (1− γ)
dE[M(y)−WU(y)]

dγ
(58)

Integrating this term over all y > yr, we have

βγ

∫
yr
λ(θ(y))

d(M(y)−WU(y))

dγ
dF (y) ≥ βγλ(θ(yr))

1− βγ + βγλ(θ(yr))

(∫
yr

(1− γ)
dE[M(y)−WU(y)]

dγ
dF (y)

+
1

γ

∫
yr
M(y)−WU(y)− E[M(y)−WU(y)]dF (y)

)
> 0,

(59)

where the last inequality follows from the fact thatM(y)−WU(y)−E[M(y)−WU(y)] is increasing in
y, and βλ(θ(y))

1−βγ+βγλ(θ(y))
similarly is increasing in y. Then

∫
yr
M(y)−WU(y)−E[M(y)−WU(y)]dF (y)

is larger than zero. The LHS of (59) is positive, but this contradicts our premise in (54).
For the case that W s > R, we can derive directly that

(1− β)
dEy[M(y)−WU(y)]

dγ
=− β

∫
yr
λ(θ(y))

d(M(y)−WU(y))

dγ
dF (y); (60)

62



with this in hand, we can derive from (58) that

−(1− β)
dEy[M(y)−WU(y)]

dγ
=

∫
ys

(
βγλ(θ)

1− βγ(1− λ(θ))

((
y − b+ β(1− λ(θ)(1− η))(M(y)−WU(y))

− E[M(y)−WU(y)]
)

+ (1− γ)
dE[M(y)−WU(y)]

dγ

))
dF (y).

(61)

Isolating dE[M(y)−WU (y)]
dγ

on the LHS, we find

dEy[M(y)−WU(y)]

dγ

(
(1− β) +

F (ys)βγλ(θ)(1− γ)

1− βγ + βγλ(θ)

)
=

−
∫
ys

(
βγλ(θ)

1− βγ(1− λ(θ))

(
y − b+ β(1− λ(θ)(1− η))(M(y)−WU(y))

− E[M(y)−WU(y)]
))
dF (y) < 0. (62)

From (62), it follows that dEy [M(y)−WU (y)]

dγ
< 0, and therefore that, from (23) - for the case in which

W s > R- , the above equation, and equation (60), W s −R is decreasing in γ:
d(W s −R)

dγ
=
d(W s − E[WU ])

dγ
= − 1

1− β

∫
ys
γλ
d(M(y)−WU(y))

dγ
< 0. (63)

Proof of lemma 7 In the same setting as in Lemma 6, we introduce human capital x premultiplying
productivity y. We once again let y be distributed with cdf F . Normalize (without a loss of generality,
for the results we are deriving here) x = 1. If we have an incremental improvement in x that is
occupational specific, the value of sampling will stay constant, at R = Ey[WU(1, y)]− c, where now
we denote WU(x, y) by the productivity component that is enjoyed by every worker on the island.
However, the value of W s increases, since W s = (1−γ)E[WU(x, y)]+γ(b+βmax{R,W s} implies
that W s is increasing in E[WU(x, y)].

Suppose that R > W s. The value of unemployment for the cases in which y ≥ yr(x) and yr >
y ≥ ys is given by

WU(x, y) = (1− γ)Ey[WU(x, y)] + γ(b+ βλ(θ)(1− η)(M(x, y)−WU(x, y)) + βWU(x, y))

W s(x) = (1− γ)Ey[WU(x, y)] + γ(b+ βR).

When comparing the expected value of separating with the expected value of sampling (and hence, a
reset to x = 1), we see that the difference W s(x)− Ey[WU(1, y)] is given by

(W s(x)− Ey[WU(1, y)]) = (1− γ)(Ey[WU(x, y)] + C,

where C denotes those terms that do not depends on x. As a result, d(W s(x)−Ey [WU (1,y)])

dx
= (1 −

γ)dEy [WU (x,y)]

dx
. Rewriting E[WU(x, y)], using WU(x, y) = (1 − γ)E[WU(x, y)] + γ(b + β

(
λ(θ)(1 −

η)(M(x, y)−WU(x, y))
)

+ βWU(x, y) we find

E[WU(x, y)] = (1− F (yr(x))(b+ βR) +

∫
yr

[
b+ βλ(θ)(M(x, y)−WU(x, y)) + βWU(x, y)

]
dF (y),
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from which it follows that

E[WU(x, y)]
(

1− β(1− γ)

1−βγ
(1−F (yr(x)))

)
= (64)

F (yr(x)(b+βR)+
βγ

1−βγ
b(1−F (yr(x))+

β

1−βγ

∫
yr(x)

[
λ(θ(x, y))(1−η)(M(x, y)−WU(x, y))

]
dF (y).

In turn, (using the envelope condition, which implies that the term premultiplying dyr(x)/dx again
equals zero), this means
dEy[WU(x, y)]

dx
= (65)

β

(1− βγ)− β(1− γ)(1− F (yr(x)))

d

dx

(∫
yr

[
λ(θ(x, y))(1− η)(M(x, y)−WU(x, y))

]
dF (y)

)
.

Let us now look at the behavior of the expected surplus, from

Ey[M(x, y)−WU(x, y)] =

∫ ȳ

y

(yx− b)dF (y) +

∫
yr(x)

βλ(θ(x, y))(1− η)(M(x, y)−WU(x, y))dF (y)

+

∫ yr(x)

ys(x)

β(M(x, y)−W s)dF (y) + β

∫ yr(x)

(W s(x)−R)dF (y). (66)

The surplus for islands with y ≥ yr(x) and yr > y ≥ ys, respectively, behaves as

d(M(x, y)−WU(x, y))

dx
= (1− γ)

dEy[M(x, y)−WU(x, y)]

dx
+ (1− γ)(y − E[y]) + γy

+ βγ(1− λ(θ(x, y)))
d(M(x, y)−WU(x, y))

dx
(67)

d(M(x, y)−W s(x))

dx
= (1− γ)

dEy[M(x, y)−WU(x, y)]

dx
+ (1− γ)(y − E[y]) + γy

+ βγ
d(M(x, y)−W s(x))

dx
+ βγ

d(W s(x)−R)

dx
(68)

The derivative of
∫
yr
βλ(θ(x, y))(1− η)(M(x, y)−WU(x, y))dF (y) wrt to x then equals∫

yr

(
βλ(θ(x, y))(1− γ)

1− βγ(1− λ(θ(x, y)))

(
dEy[M(x, y)−WU(x, y)]

dx
+ y − E[y]

)
+

βλ(θ(x, y))γ

1− βγ(1− λ(θ(x, y)))
y

)
dF (y),

(69)

where we note that
∫
yr

βλ(θ(x,y))(1−γ)
1−βγ(1−λ(θ(x,y)))

dF (y) ≤ βλ(θ(x,ȳ))(1−γ)
1−βγ(1−λ(x,ȳ))

(1− F (yr)) < 1− F (yr).
We now consider the behavior of the second line in (66). The derivative of β(W s(x)−R) is given

by
β(1− γ)

1− β + β(1− γ)F (yr(x))
× (70)∫

yr

(
βλ(θ(x, y))(1− γ)

1− βγ(1− λ(θ(x, y)))

(
dEy[M(x, y)−WU(x, y)]

dx
+ y − E[y]

)
+

βλ(θ(x, y))γ

1− βγ(1− λ(θ))
y

)
dF (y).
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The derivative of β(M(x, y)−WU(x, y)) + β(W s(x)−R) with respect to x is then

β(1− γ)

1− βγ

(
dEy[M(x, y)−WU(x, y)]

dx
+ y − E[y]

)
+

βγ

1− βγ
y +

(
1

1− βγ
β(1− γ)

1− β + β(1− γ)F (yr)
·∫

yr

(
βλ(θ(x, y))(1− γ)

1− βγ(1− λ(θ(x, y)))

(
dEy[M(x, y)−WU(x, y)]

dx
+ y − E[y]

)
+

βλ(θ(x, y))γ

1− βγ(1− λ(θ(x, y)))
y

)
dF (y)

)
(71)

We want to make sure that all terms premultiplying dEy [M(x,y)−WU (x,y)]

dx
+ y − E[y] on the RHS do not

add up to a number larger than 1. First, note that the terms premultiplying the derivative of the expected
surplus in (71) are larger than in (70). Hence if we can show that by replacing the premultiplication
term in (70) with the corresponding term in (71), we obtain that the entire term premultiplying the
derivative of the expected surplus on the RHS is less than one, we have established this step of the
proof. The contribution of these premultiplication terms in the second term on the RHS of (66) is
smaller than β(1− γ)(1− F (yr(x))). Hence, if(
β
d(M(x, y)−WU(x, y))

dx
+ β

d(M(x, y)−WU(x, y))

dx

)
F (yr(x)) < 1− β(1− γ)(1− F (yr(x)))

(72)

we have established the desired property. Starting from collecting the terms premultiplying the deriva-
tive of the expected surplus, dEy [M(x,y)−WU (x,y)]

dx
+y−E[y], and substituting these into the LHS of (72),

we can develop

F (yr)

(
β(1− γ)(1− β + β(1− γ)F (yr(x)))

(1− γβ)(1− β + β(1− γ)F (yr(x)))
+

β(1− γ)(β(1− γ)(1− F (yr(x))))

(1− γβ)(1− β + β(1− γ)F (yr(x)))

)
=

β(1− γ)(1− β + β(1− γ))

(1− γβ)(1− β + β(1− γ)F (yr(x)))
F (yr(x)) (73)

The RHS of (72) can be rewritten as 1− β+ βγ) + β(1− γ)F (yr(x)). We will show that βγ+ β(1−
γ)F (yr(x)) are larger than (73), from which the desired result follows (as the remaining term, 1− β,
is larger than zero, and therefore means that the desired inequality is additionally slack).

βγ >
βγ(β(1− γ))

(
1− β + β(1− γ)

)
F (yr(x))

(1− γβ)(1− β + β(1− γ)F (yr(x)))
(74)

β(1− γ)F (yr(x)) >
β(1− γ)(1− γβ)

(
1− β + β(1− γ)

)
F (yr(x))

(1− γβ)(1− β + βF (yr(x)))
(75)

Adding up (74) and (75), we find that the RHS equals precisely the term in (73).
Bringing all terms involving dEy [M(x,y)−WU (x,y)]

dx
+ y − E[y], it is now straightward to see that the

remaining terms on the RHS premultiplying y, are positive. (Integrating terms y−E[y], will also yield
a positive term.) Hence, dEy [M(x,y)−WU (x,y)]

dx
> 0. It follows from (67) that d(M(x,y)−WU (x,y))

dx
> 0, and

therefore, by (65), dEy [WU (x,y)]

dx
> 0, and subsequently, d(W s(x)−R)

dx
> 0.

Consider next the case that W s > R. In this case again d(R−W s(x))
dx

= (1 − γ)dEy [WU (x,y)]

dx
. In this

case

(1− β)
dEy[WU(x, y)]

dx
=

∫
ys(x)

βλ(θ(x, y))
d(M(x, y)−WU(x, y))

dx
dF (y) (76)
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The surplus M(x, y)−WU(x, y) responds to changes in x is given by

d(M(x, y)−WU(x, y))

dx
= (1− γ)

dEy[M(x, y)−WU(x, y)]

dx
+ (1− γ)(Ey[y]− y)

+ γ(y + β(1− λ(x, y))

(
d(M(x, y)−WU(x, y))

dx

)
, (77)

while the expected surplus evolves according to
dEy[M(x, y)−WU(x, y)]

dx
=

∫
ys(x)

y + β(1− λ(x, y))
d(M(x, y)−WU(x, y))

dx
, (78)

Substituting (77) into (78), it follows that dEy [M(x,y)−WU (x,y)]

dx
> 0, from which in turn it follows that

(76) is also positive.
Finally, let us look at the implications for the cutoff in terms of island productivities ys(x), yr(x).

Consider first the case that yr(x) > ys(x). The reservation quality for separation and reallocation
satisfy implicitly, respectively

M(x, ys(x))−W s = 0 (79)

λ(θ(x, yr(x)))(1− η)(M(x, yr(x))−WU(x, yr(x))) + (W s(x)−R) = 0. (80)

We can see this defines yr(x), ys(x) as implicit functions of M(x, y)−W s(x) and W s −R. The first
term is given by

M(x, ys(x))−W s = xys(x)− b+ β(1− γ)Ey[max{M(x, y)−WU(x, y),W s −R}]
+ βγ(W s(x)−R) (81)

M(x, yr(x))−W s = xyr(x)− b+ β(1− γ)Ey[max{M(x, y)−WU(x, y),W s −R}]
+ βγ(1− λ(θ(x, yr(x))(1− η)(M(x, yr(x))−W s(x)). (82)

Taking derivatives with respect to x (taking into account the implicit relationship ys(x), yr(x)), we
find

ys(x) + β(1− γ)
d

dx

(
Ey[max{M(x, y)−WU(x, y),W s −R}]

)
+ βγ

d(W s −R)

dx
+ x

dys(x)

dx
= 0

(83)

λ(θ)

1− βγ(1− λ(θ))

(
yr(x) + β(1− γ)

d

dx

(
Ey[max{M(x, y)−WU(x, y),W s −R}]

)
+ x

dyr(x)

dx

)
+
d(W s −R)

dx
= 0 (84)

Since d(W s−R)
dx

> 0, this implies that

ys(x) + x
dys(x)

dx
≥ yr(x) + x

dyr(x)

dx
+

1− βγ
λ(θ)

d(W s −R)

dx
, (85)

which implies that, evaluated at x = 1,
dys(x)

dx
− dyr(x)

dx
> yr(x)− ys(x).

This means that for yr > ys, more occupational human capital brings closer the two cutoffs. For
yr < ys, it holds in this simplified setting that yr jumps to the corner, yr = y, while ys is lowered for
an increase in x.

66



Supplementary Appendix
A Data Construction
The SIPP is a longitudinal data set based on a representative sample of the US civilian non-institutionalized
population. It is divided into multi-year panels. Each panel comprise a new sample of individuals and
is subdivided into four rotation groups. Individuals in a given rotation group are interviewed every
four months such that information for each rotation group is collected each month. At each interview
individuals are asked, among other things, about their employment status as well as their occupations
and industrial sectors during employment in the last four months.56

There are several advantages of using the SIPP to other data sets like the Current Population
Survey (CPS) or the Panel Study of Income Dynamics (PSID), which also have been used to measure
labor market flows and/or occupational and sectoral mobility. The SIPP’s longitudinal dimension,
high frequency interview schedule and explicit aim to collect information on worker turnover allows
us to construct reliable measures of occupational mobility and labor market flows. Further, its panel
dimension allows us, compared to the CPS, to follow workers over time and construct uninterrupted
spells of unemployment that started with an employment to unemployment transitions and ended in a
transition to employment. It’s panel dimension also allows us to analyse these workers’ occupational
mobility patterns conditional on unemployment duration and their post occupational (in) mobility
outcomes as outlined in Section 2.57

We consider the period 1986 - 2011. To cover this period we use the 1986-1988, 1990-1993,
1996, 2001, 2004 and 2008 panels. Although the SIPP started in 1984, our period of study reflects
two considerations. The first one is methodological. Since 1986 the US Census Bureau has been
using dependent interviewing in the SIPP’s survey design, which helps to reduce measurement error
problems. The second reason is that such a period allows us to study the behaviour of unemployment,
labor market flows between unemployment and employment and occupational mobility during two
recessions, the Great Moderation period and the Great Recession.

For the panels 1986-1988 and 1990-1993 we have used the Full Panel files as the basic data sets,
but appended the monthly weights obtained from the individual waves. We have used the Full Panel
files as the individual waves do not have clear indicators of the job identifier. Since the US Census
Bureau does not provide the Full Panel file for the 1989 data set, which was discontinued and only
three waves are available, we opted for not using this data set. This is at a minor cost as the 1988 panel
covers up to September 1989 and the 1990 panel collects data as from October 1989. For the panels
1996, 2001, 2004, 2008 there are no Full Panel files, but one can easily construct the full panel by
appending the individual wave information using the individual identifier “lgtkey”. In this case, the
job identifier information is clearly specified.

Two important differences between the post and pre-1996 panels are worth noting. The pre-1996
panels have an overlapping structure and a smaller sample size. Starting with the 1996 panel the sam-
ple size of each panel doubled in size and the overlapping structure was dropped. To overcome these

56See http://www.census.gov/sipp/ for a detailed description of the data set.
57See Mazumder (2007), Fujita, Nekarda and Ramey (2007) and Nagypal (2008) for recent studies that document labor market flows

and Xiong (2008) and Moscarini and Fujita (2012) for studies that document occupational mobility using the SIPP. To our knowledge
there is no study that uses the SIPP to jointly study labor market flow, occupational mobility and its cyclical patterns.
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differences and make the sample sizes somehow comparable, we constructed our pre-1996 indicators
by obtaining the average value of the indicators obtained from each of the overlapping panels. On the
other hand, the SIPP’s sample design implies that in all panels the first and last three months have
less than 4 rotation groups and hence a smaller sample size. For this reason we only consider months
that have information for all 4 rotation groups. The data also shows the presence of seams effects
between waves. To reduce the seam bias we average the value of the indicator over the four months
that involve the seam. Our indicators are based on the employment status variable at the second week
of each month, “wesr2” for the 1986-1988 and 1990-1993 panels and “rwkesr2” for the 1996-2008
panels. The choice of the second week is to approximate the CPS reference week when possible.58

For the 1986-2008 panels, a worker is considered employed if he/she was attached to a job.
Namely if the individual was (1) with job/business - working, (2) with job/business - not on layoff,
absent without pay and (3) with job/business - on layoff, absent without pay. A worker is considered
unemployed if he/she was not attached to a job and looking for work. Namely if the individual was
with (4) no job/business - looking for work or on layoff. A worker is then considered out of the labor
force (non-participant) if he/she was with (5) no job/business - not looking for work and not on layoff.

The SIPP collects information on a maximum of two jobs an individual might hold simultaneously.
For each of these jobs we have information on, among other things, hours worked, total earnings, 3-
digit occupation and 3-digit industry codes. If the individual did hold two jobs simultaneously, we
consider the main job as the one in which the worker spent more hours. We break a possible tie in
hours by using total earnings. The job with the highest total earnings will then be considered the main
job. In most cases individuals report to work in one job at any given moment. In the vast majority
of cases in which individuals report two jobs, the hours worked are sufficient to identify the main
job. Once the main job is identified, the worker is assigned the corresponding two, three or four digit
occupation.59

The SIPP uses the Standard Occupational Code (SOC). The 1986-1993 panels use the 1980 SOC
classification, while the 1996 and 2001 panels use the 1990 SOC classifications. These two classifica-
tions differ only slightly between them. The 2004 and 2008 panels use the 2000 SOC classification,
which differs more substantially from the previous classifications. Since we find continuity in both the
levels and cyclical patterns, we consider the full 1986-2010 period as our benchmark. At each step,
we calculate a separate set of statistics spanning the 1986-2001 panels for robustness purposes, but
have not find substantial differences, unless explicitly noted. We aggregate the information on “broad”
occupations (3-digit occupations) provided by the SIPP into “minor” and “major” occupational cate-
gories. Table A.1 shows the categories that constitute major occupations for the 1980, 1990 and 2000
SOC classification.60

Using the derived labor market status indicators and main job indicators we measure occupational

58See Fujita, Nekarda and Ramey (2007) for a similar approach. We have also performed our analysis by constructing the labor
market status of a worker based on the employment status monthly recode variable for all panels and our results do not change.

59For the 1990-1993 panels we correct the job identifier variable following the procedure suggested by Stinson (2003).
60In any of these classifications we have not included the Armed Forces. The 1980 and 1990 classifications

can be found in http://www.census.gov/hhes/www/ioindex/pdfio/techpaper2000.pdf. The 2000 classification can be
found in http://www.bls.gov/soc/socguide.htm. Additional information about these classifications can be found at
http://www.census.gov/hhes/www/ioindex/faqs.html.
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mobility in two ways: (i) by comparing the reported occupation at re-employment with the one per-
formed immediately before the unemployment spell and (ii) by comparing the reported occupation at
re-employment with all those occupations the individual had performed in past jobs. This distinction
only had a minor effect our results. The results presented in the paper are based on the first method for
two reasons. For (time-averaged) statistics calculated over the full SIPP dataset (1986-2011) we want
to focus on the set of unemployment spells that we can assign the occupational mobility unambigu-
ously. For time series (cyclical patterns), we do not take into account occupations not immediately
preceding the unemployment spell, as the length of the available data history varies between the start
and end of a panel, and could create spurious patterns. Since the occupational data is collected only
when the worker is employed, this procedure is valid only for job changes (with an intervening un-
employment spell) after the first observed employment spell. For these cases, we assume that after an
employment spell, the unemployed worker retains the occupation of the last job and stays with it until
he/she re-enters employment, were the worker might perform a new occupation. Under this procedure
we have allowed the unemployed worker to keep his/her occupation when he/she undergoes an inter-
vening spell of non-participation that leads back to unemployment. If this spell of non-participation
leads directly to employment, however, we do not count this change as it does not involve an unem-
ployment to employment transition. We also have allowed the worker to retain his/her occupation if
the employment spell is followed by a spell of non-participation that leads into unemployment. In
summary, the worker retains his/her occupation for transitions of the type: E-U-E, E-U-NP-U-E, E-
NP-U-E or combinations of these; and does not retain his/her occupation for transitions of the type:
E-NP-E, E-U-NP-E or combinations of these. For unemployment spells that precede the first em-
ployment spell we have not imputed an occupation and left it as missing to avoid over representing
non-occupational movers in our sample. Tables A.2, A.3 and A.4 report the transition matrices of oc-
cupational mobility for major occupational groups, where we have use the numbering in Table A.1 to
identify major occupations.

We construct monthly time series for the unemployment rate, employment to unemployment tran-
sition rate (job separation rate), unemployment to employment transition rate (job finding rate), and
the components of the decomposition of the job finding rate described in the main text. Since there are
months for which the SIPP does not provide data and we do not take into account months with less than
4 rotation groups, we have breaks in our time series. To cover the missing observations we interpo-
late the series using the TRAMO (Time Series Regression with ARIMA Noise, Missing Observations
and Outliers) procedure developed by Gomez and Maravall (1999).61 The periods with breaks are be-
tween 1989Q3-1989Q4, 1995Q4-1996Q1, 1999Q4-2000Q4, 2003Q4-2004Q1 and 2007Q4-2008Q2.
To construct Cm, however, we left out the last 8 months of each panel. Not doing so would have
biased downward this measure towards the end of the panel, as occupational stayers have a higher
outflow rate than occupational movers.

Given the interpolated series, we seasonally adjust them using the Census Bureau X12 program.
The cyclical components of these series are obtained by detrending the log of each of these series
based on quarterly averages and using the HP filter with smoothing parameter 1600. The same filter
is applied to the simulated series in the quantitative section of the paper. Our working series are not

61See also Fujita, Nekarda and Ramey (2007) for a similar procedure using the SIPP.
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adjusted for time aggregation error. The main reason for this choice is that when using the now ‘stan-
dard’ method to correct for time aggregation bias proposed by Shimer (2012) and extended by Elsby
et al. (2009) and Fujita and Ramey (2009), one can only get closed form solution for the adjusted job
finding and separation rates when only considering changes between two states (for example, employ-
ment and unemployment). Correcting for time aggregation when taking into account for occupational
changes then becomes extremely cumbersome. Using Fujita and Ramey’s (2009) extension, however,
we find that time aggregation has little effect on the cyclical behaviour of the aggregate job finding
and separation rates in the SIPP.62 Table A.5 presents a correlation matrix of the cyclical components
of our main reallocation measures for Major occupational categories and compares them with the
cyclical components of unemployment, output per worker and output.63

B Omitted Theoretical Material
B.1 Derivation of Workers Flows

Fix an occupation o and productivity zo. Assume that firms offer the same W̃ ∗
f (Ωm

t ) during the match-
ing stage to all unemployed workers with productivity zo. As shown later, this will be indeed the case
in equilibrium. Let ust(zo) and est(zo) denote the number of unemployed and employed workers with
productivity zo at the beginning of period t.

Given ust(zo) and est(zo), the number of unemployed workers at the beginning of the reallocation
stage is given by

urt (zo) = d(Ωs
t)e

s
t(zo) + ust(zo),

The first term takes into account that a measure δest(zo) of employed workers gets displaced when
W̃ ∗
f (Ωs

t) ≥ WU(Ωs
t), while all employed workers quit to unemployment if W̃ ∗

f (Ωs
t) < WU(Ωs

t). The
number of unemployed urt (zo) is obtained by summing this flow to the number of unemployed at the
beginning of the period. The number of employed at the beginning of the reallocation stage is simply
ert (zo) = est(zo)(1− d(Ωs

t)).
Now consider the number of unemployed and employed workers at the beginning of the matching

stage. It is important to remember that only those unemployed workers at the beginning of the period,
ust(zo), are allowed to sample a new z in a different occupation. Therefore, the outflow of workers with
productivity zo is given by ρ(Ωr

t )u
s
t(zo). Hence the number of unemployed workers at the beginning

of the matching stage is given by

umt (zo) = d(Ωs
t)e

s
t(zo) + (1− ρ(Ωr

t ))u
s
t(zo),

where only (1− ρ(Ωr
t ))u

s
t(zo) unemployed workers can apply for jobs during the matching stage and

the newly unemployed workers, d(Ωs
t)e

s
t(zo), must stay unemployed for the rest of the period. The

number of employed workers at the beginning of the matching period is the same as the number of
employed workers at the beginning of the reallocation stage; that is, emt (zo) = est(zo)(1− d(Ωs

t)).

62Fujita et al. (2007) arrived to a similar conclusion when analysing aggregate job finding and separations rates using the SIPP for
the period 1983-2003.

63Output refers to the seasonally adjusted series of non-farm business output provided by the BLS. Output per worker (outpw) is
constructed using this output measure and the seasonally adjusted employment series from the CPS obtained from the BLS website,
http://www.bls.gov.
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The number of unemployed workers at the beginning of the production stage is given by

upt (zo) = (1− λ(θ(Ωm
t )))(1− ρ(Ωr

t ))u
s
t(zo) + d(Ωs

t)e
s
t(zo),

where the first term refers to those unemployed workers that did not get a job during the matching
stage. The second term refers to those employed workers that got displaced or decided to quit their
jobs. The number of employed workers at the beginning of the production stage is given by

ept (zo) = λ(θ(Ωm
t ))(1− ρ(Ωr

t ))u
s
t(zo) + est(zo)(1− d(Ωs

t)).

At the beginning of next period the number of unemployed workers with productivity zo is given
by

ust+1(zo)dzo =

∫ z

z

upt (z̃o)dF (zo|z̃o)dz̃o +
∑
∀õ 6=o

[ ∫ z

z

ρ(Ω̃r
t )ut(z̃õ)dz̃õ

]dF (zo)

O − 1
,

where Ω̃r
t refers to the state space of workers with different productivities z̃ and occupations õ at the

start of the reallocation stage. The first term refers to all those unemployed workers with productivities
z̃o 6= zo in occupation o in period t that obtained productivity zo at the start of next period due to the
exogenous process govern the evolution of z. The second term refers to all those unemployed workers
that sampled the pair (z, o) from other occupations.

Note that to derive the expression for ust+1(zo) we have assumed that when a worker samples a
new productivity in a different occupation during period t, the value of the new productivity is the one
with which he starts the following period. This assumption is made purely for convenience as it will
make it easier to describe the planners’ problem. It is made without a loss of generality since there
are no decisions taken during the production stage and workers draw new productivities z in an i.i.d
fashion from the stationary distribution Fz.

Finally, the number of employed workers at the beginning of next period is given by

est+1(zo)dzo =

∫ z

z

ept (z̃o)dF (zo|z̃o)dz̃o,

where the first term in ept (z̃o) refers to those newly employed workers with productivities z̃o 6= zo in
occupation o in period t that obtain productivity zo at the start of next period. The second term refers to
those workers with productivities z̃o 6= zo in occupation o in period t that started the period employed
and obtained productivity zo at the start of next period.

B.2 Full Equilibrium Definition

Definition A Block Recursive Equilibrium (BRE) is a set of value functionsWU(p, x, zo),WE(p, x, zo),
J(p, x, zo,W

E), workers’ policy functions d(p, x, zo), ρ(p, x, zo), α(p, x, zo) (resp. separation, reallo-
cation and visiting strategies), firms’ policy functions W̃f (p, x, zo), σ(p, x, zo,W

E), w(p, x, zo,W
E),

W̃E ′(p, x, zo,W
E) (resp. contract posted, layoff decision, wages paid, and continuation values promised),

tightness function θ(W̃ , p, x, zo), matching probabilities λ(θ), q(θ), laws of motion of zot, pt for all is-
lands and occupations, a law of motion for human capital acquisition x, and a law of motion on the
distribution of unemployed and employed workers over islands and occupations ũ(.) : F [0,1] → F [0,1]

and ẽ(.) : F [0,1] → F [0,1], such that:
(i) θ(p, x, zo, W̃ ) results from the free entry condition V (p, x, zo, W̃ ) = 0 if θ(p, x, zo, W̃ ) >
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0 and V (p, x, zo, W̃ ) ≤ 0 if θ(p, x, zo, W̃ ) = 0, defined in (10), and given value function
J(p, x, zo, W̃ ).

(ii) Matching probabilities λ(.) and q(.) are only functions of labor market tightness θ(.), according
to the definitions in section 3.

(iii) Given firms’ policy functions, laws of motion of zot, pt and x, and implied matching probabilities
from λ(.), the value functions WE and WU satisfy (8) and (7), while d(.), ρ(.), α(.) are the
associated policy functions.

(iv) Given workers optimal separation, reallocation and application strategies, implied byWE(.) and
WU(.), and the laws of motions on pt, zot and human capital x, firms’ maximisation problem is
solved by J(.), with associated policy functions {σ(.), w(.), W̃E ′(.)}.

(v) W̃E ′(p, x, zo) = WE(p, x, zo).
(vi) ũ and ẽ map initial distributions of unemployed and employed workers (respectively) over is-

lands and occupations into next period’s distribution of unemployed and employed workers over
islands and occupations, according to the above policy functions and exogenous separations, and
then according to the flow equations.

B.3 Proof of Proposition 1

The proof is basically an exercise to construct candidate equilibrium functions from the fixed point
value and policy functions of T , and then verify these satisfy all equilibrium conditions. Since the
identity of an occupation does not affect the value functions or the policy functions we drop the sub-
script o. From the fixed point functions M(p, x, z) and WU(p, x, z) with policy functions γTθ (p, x, z)

and γTW (p, x, z) define the function J(p, x, z,W ) = max{M(p, x, z) − W, 0}, and the functions
θ(p, x, z,W ) and V (p, x, z,W ) from 0 = V (p, x, z,W ) = −k + q(θ(p, x, z,W ))J(p, x, z,W ). Also
define WE(p, x, z) = M(p, x, z) − k/q(γTθ (p, x, z)) = γTW (p, x, z) if M(p, x, z) > WU(p, x, z), and
WE(p, x, z) = M(p, x, z) if M(p, x, z) ≤ WU(p, x, z), using WU(p, x, z) from the fixed point. Fi-
nally, define δ(p, x, z) = δT (p, x, z), σ(p, x, z) = δT (p, x, z), ρ(p, x, z) = ρT (p, x, z), W̃E ′(p′, x, z′) =

γTW (p′, x, z′), W̃ f = γTW (p, x, z) and w(p, x, z) derived from (8) given all other functions.
Now (8) is satisfied by construction. Given the construction of J(p, x, z,W ), θ(p, x, z,W ) indeed

satisfies the free entry condition. J(p, x, z,W ) is satisfied if we ignore the maximization problem.
However, w(p, x, z,WE) and W̃E ′(p′, x, z′|p, z,WE) satisfying (8) all yield the same J(p, x, z,WE)

as long as M(p, x, z) ≥ WE > WU(p, x, z) and

M(p′, x, z′) ≥ W̃E ′(p′, x, z′|p, z,WE) ≥ WU(p, x, z),

which is indeed the case. Hence, J(p, x, z,W ) also satisfies (9), provided the separation decisions
coincide, which is the case as the matches are broken up if and only if it is efficient to do so according
to M(p, x, z) and WU(p, x, z).

Given the constructed WU(p, x, z), the constructed ρ(p, x, z) also solves the maximization deci-
sion in the decentralized setting. Finally, we have to verifyWU(p, x, z). It is easy to see that this occurs
if S(p, x, z) = ST (p, x, z). Consider the unemployed worker’s application maximization problem that
gives S(p, x, z),

max
{θ̃(p,x,z),W̃ (p,x,z)}

λ(θ̃(p, x, z))(W̃ (p, x, z)− W̃U(p, x, z)),
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subject to
J(p, x, z, W̃ (p, x, z))q(θ̃(p, x, z))− k = 0.

From Lemma 1, we know that W̃ (p, x, z) = M(p, x, z)−J(p, x, z,W (p, x, z)). Substitute in the latter
equation to eliminate J , and we see that the maximization problem for ST (p, x, z) is equivalent to the
problem for the worker in the competitive equilibrium. Finally, W̃ f (p, x, z) is consistent with profit
maximization and thus here with the free entry condition, since any W ∈ [WU(p, x, z),M(p, x, z)] by
construction of θ(p, x, z,W ) is made consistent with free entry. Hence, the constructed value functions
and decision rules satisfy all conditions of the equilibrium, and the implied evolution of the distribution
of employed and unemployed workers will also be the same.

Uniqueness follows from the same procedure in the opposite direction, by contradiction. Suppose
the block recursive equilibrium is not unique. Then a second set of functions exists that satisfy the
equilibrium conditions. Construct M̂ and ŴU from these. Since in any equilibrium the breakup de-
cisions have to be efficient and the reallocation and job application decisions are captured in T , M̂
and ŴU must be a fixed point of T , contradicting the uniqueness of the fixed point established by
Banach’s Fixed Point Theorem: hence, there is a unique BRE.

BRE gives unique equilibrium allocation We can show that in any equilibrium decisions and val-
ues are only functions of (p, x, z). One can show that in our BRE fixed point, the policy correspon-
dence has a single element for every state vector: there is a unique policy function. Suppose there is
an equilibrium in which values and decisions do not depend only on (p, x, z), then they depend on a
third factor – like the entire distribution of workers of employment status and productivities, or its en-
tire history of observables, Ht. Consider the associated value functions in the alternative equilibrium,
which we denote with state vector (p, x, z,Ht) to make this additional factor explicit. Consider two
cases: first, suppose in the alternative equilibrium all value functions are the same as in the BRE, i.e.
V (p, x, z,Ht) = V (p, x, z), but decisions differ at the same (p, x, z). This violates the property that,
in our setting, all maximizers in the BRE fixed point are unique. Hence, we are left with the second
case: a value function must differ depending on other variables at the same (p, x, z), and at least one
value function will therefore differ from the BRE value function V (p, x, z). Then also, in particular, it
can easily be shown that the values of unemployment must differ. Denote the non-BRE value function
that differs from the BRE at some (p, x, z) by WU(p, x, z,Ht), while we refer to the BRE equilibrium
value function as WU(p, x, z). In Proposition 2, we show that the BRE is constrained efficient; since
that proof nowhere relies on the uniqueness of the BRE in the broader set of all equilibria (the unique-
ness of the equilibrium within the class of BRE is establish just above), we can use the proved results
of Proposition 2 here.

We can use the fact thatWU(p, x, z) is the best the worker can do in any case, including the market
equilibrium (from Proposition 2). This implies thatWU(p, x, z)−WU(p, x, z,Ht) > 2ε > 0, for some
ε > 0. Now, write the implied sequential problem, with the maximizing policies dictated by the two
equilibria; take a time T such that βT ′E[WU(p(HT ′), x(HT ′), z(HT ′), HT ′)−WU(p(HT ′), x(HT ′), z(hT ′))] <

ε, over all histories HT ′; and all subsequent T ′ ≥ T . Since payments are bounded, and β < 1, this T
must exist. Consider the alternative policy W̆U(p, x, z,Ht) where from 0, . . . , T , the worker applies to
a market with a tightness (θ(p, x, z),W (p, x, z)) and reallocation policy function dictated by the block
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recursive policy functions, and also otherwise follows the separation policies dictated by the BRE until
becoming unemployed. Thus, the probability of a match, and the total discounted payments during the
match are the same as in the block-recursive equilibrium. By our off-equilibrium restriction workers
believe that they can visit any submarket that is consistent with zero expected profits, and here this is
the case, since firms are expected to do the same as in the block recursive equilibrium. Note that the
constant returns to scale in matching, production, and vacancy posting is crucial here. Construct the
value associated with this deviating behavior. This value must lie within ε of WU(p, x, z), since the
only difference with the block recursive policies occur after time T . Within the (supposed) non-BRE
equilibrium, the workers choose differently from the constructed deviating profile and must do weakly
better. Hence, the value W (p, x, z,Ht) > WU(p, x, z)− ε, which leads us to our desire contradiction.

B.4 Derivation of the ‘Pissarides wage equation’

Given that an employed worker value in steady state is

WE(p, z) = w(p, z) + β(1− δ)WE(p, z) + βδWU(p, z),

then

WE(p, z)−WU(p, z) = w(p, z)−b−βλ(θ(p, z))(WE(p, z)−WU(p, z))+β(1−δ)(WE(p, z)−WU(p, z)),

or

WE(p, z)−WU(p, z) =
w(p, z)− b

1− β(1− δ) + βλ(θ(p, z))
.

From the combination of the free entry condition and the Hosios condition, we have

η
w(p, z)− b

1− β(1− δ) + βλ(θ(p, z))
= (1− η)k/q(θ(p, z)). (86)

Moreover, from the value of the firm, we have
k

q(θ(p, z))
=
y(p, z)− w(p, z)

1− β(1− δ)
Solving the latter equation for w(z) gives

w(p, z) = y(p, z)− k

q(θ(p, z))
(1− β(1− δ)).

Substituting this in (86), we find

η(y(p, z)− b)− k

q(θ(p, z))
(1− β(1− δ))− βθ(p, z)(1− η)k = 0.

If we replace the middle term with y(p, z)− w(p, z), we get the desired wage equation.
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C Omitted Material from the Quantitative Section
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(a) Unemployment decomposition - Young Workers
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(b) Unemployment decomposition - Prime Age Workers

Figure 9: Unemployment decomposition and aggregate productivity by age groups
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