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Quantile regression with aggregated data  



Non technical summary 

Administrative data can contain a wealth of information for empirical research. Just to cite 

two examples, administrative data on schools can be used to study pupils’ educational 

attainments while hospital data can be useful for health research. However, access to 

administrative information is often restricted to aggregated data and this can lead to biased 

results.  The estimation bias caused by using aggregated rather than individual data is known 

as the ecological bias.  

In this paper we consider for the first time this issue in the context of quantile regressions. 

We show how data can be aggregated to obtain unbiased estimation of quantile regressions 

with categorical covariates and how the bias can be reduced when researchers are interested 

to estimate quantile regression where some of the covariates are continuous.  

 



 
 

Quantile regression with aggregated data 

 

Cheti Nicoletti 

ISER, University of Essex 

Nicky Best 

Imperial College London 

 

 2011 

 

 

Abstract 

Analyses using aggregated data may bias inference. In this work we show how to avoid or at 

least reduce this bias when estimating quantile regressions using aggregated information. 

This is possible by considering the unconditional quantile regression recently introduced by 

Firpo et al (2009) and using a specific strategy to aggregate the data.  
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1. Introduction  

 

One of the main advantages of administrative and census data is that they usually cover the 

whole population of interest and have substantially larger sizes than sample surveys, 

therefore providing more precise estimation. The use of administrative and census data in 

applied research has increased in recent years, but the access to individual information is still 

frequently limited because of confidentiality reasons. The question is then: how can we make 

correct inference on individual behaviour when data are available only at aggregated level? 

This is the fundamental question posed by the literature on ecological inference. Most of the 

research has focused on methods providing point identification of the parameters (or 

distribution) characterizing individual behaviour, but this comes at the cost of imposing 

untestable assumptions (see for example King 1997 and King et al 2004). On the contrary, 

some research has focused on partial identification, i.e. on the identification of bounds on the 

parameters of interests relaxing any untestable assumption (see Duncan and Davis 1953 and 

Cho and Manski 2008). This paper adds to the literature on ecological inference by looking 

for the first time at the aggregation problem for quantile regressions. Nevertheless, we do not 

suggest new methods to point or partially identify the parameters of interest, but rather a 

strategy to aggregate data to minimize the potential ecological bias.  

 

Let us consider an administrative dataset with information on individual categorical variables 

and assume we are interested in the regression of Y on a set of variables X, where both Y and 

X are categorical variables. Then individual data can be aggregated without any loss of 

information by simply considering the frequency of individuals for each of the possible 

combinations of values taken by the categorical variables Y and X. This way to aggregate 

administrative data allows preserving the whole information provided by individual data and 

avoiding any confidentiality issue, as long as the number of all possible combinations of 

values taken by Y and X is small. We propose an extension of this type of aggregation to the 

case where Y is a continuous variable and we are interested in the quantile regression of Y on 

X. To make possible this extension we utilize the unconditional quantile regression recently 

proposed by Firpo et al (2009). Additionally, we consider the case where the explanatory 

variables are a mix of categorical variables X and continuous variables Z. In this case 

aggregation always implies a loss of information. We suggest some methods to aggregate the 
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continuous variables Z and a test to verify which of these methods minimize the potential 

aggregation bias for the X-coefficients.  

The paper structure is organized as follows. Section 2 defines the unconditional quantile 

regression and the unconditional partial quantile effect. Section 3 shows how to aggregate 

data to produce unbiased estimation of unconditional quantile regressions when using 

categorical covariates; while section 4 shows how to reduce the aggregation bias when the 

covariates also include continuous variables. In section 5 we suggest a test to verify whether 

the aggregation bias cancels out. Finally, we draw some conclusion in section 6.  

2. Unconditional quantile regression  

 

Researchers are often interested in evaluating the effect of a variable T, e.g. an intervention or 

an individual decision, on a continuous outcome variable Y. Examples of evaluation studies 

include the effect of smoking during pregnancy on birth weight and  of  school programs on 

exam scores. Most of the empirical research focuses on the average effect of T, i.e. on the 

effect at the mean. But, since the effect of a variable can vary across the Y-distribution and 

very low (or high) levels of outcomes can be associated with especially negative 

consequences, it is important to study the effect also at lower (higher) quantiles. For this 

reason recent research has begun to estimate quantile effects rather than only mean effects. 

For example, Bitler et al (2006) have analysed the effect of welfare reforms on income and 

earnings allowing for a heterogeneous effect across the Y-distribution, while Abrevaya and 

Dahl (2008) have evaluated the effect of birth inputs on birth weight at different quantiles. 

More generally, the evaluation of quantile effects is important every time there is a concern 

that low (or high) levels of outcomes may have negative consequences, as in the case of low 

birth weight, poor educational attainments and low income. In all these cases, the evaluation 

of the effects at low quantiles helps in understanding what can cause a change in Y for people 

who are at the low (upper) end of the Y-distribution, i.e. for people who are more at risk of 

negative consequences.   

 

Since the effect of a variable T on Y could be due to confounding, empirical researchers 

usually estimate quantile effects of T on Y by controlling for potential cofounding variables, 

W, using conditional quantile regressions (see Koenker and Bassett, 1978 and Koenker and 



3 
 

Hallock, 2001). In a conditional quantile regression the τ-quantile of the conditional 

distribution of Y given X =(W,T), yτ, is usually expressed as a linear function of these 

variables and a set of parameters θ and α,  

yτ =X θ + U, 

where U is an error term independent of X and with τ-quantile equal to zero.  

This conditional quantile regression allows estimating the effect of a variable T on the 

conditional quantile, but it does not allow inferring its effect on the unconditional quantile,1 

i.e. the effect of a change in T on the marginal quantile of Y if all other variables, W,  were 

kept unchanged. Firpo et al (2009) propose a method to estimate the unconditional quantile 

effect and it is based on what they call unconditional quantile regression.  

This method consists of the regression of the recentered influence function (RIF) for the 

unconditional τ-quantile, qτ, on the explanatory variables X. The RIF for the τ-quantile is 

given by RIF(Y,qτ)= qτ+[τ-dτ]/fY(qτ), where fY(qτ) is the density distribution function of Y 

computed at the quantile qτ, and dτ is a dummy variable taking value one if Y≤qτ and zero 

otherwise. The RIF(Y,qτ) satisfies the following properties: 2  

• its mean is equal to the actual τ-quantile, Ey[RIF(Y,qτ)]= qτ; 

• the mean of its conditional expectation, Ey[RIF(Y,qτ)|X], is again equal to the actual 

statistic qτ, i.e. Ex{Ey[RIF(Y,qτ)|X]}= qτ. 

The conditional expectation Ey[RIF(y,qτ)|X] is a function of X and it is what Firpo et al (2009) 

define as the unconditional quantile regression.  

Assuming a linear relationship between RIF(Y,qτ) and X, we have a linear regression model  

 RIF(Y,qτ)=X β+u, (1)  

   

where u is an error term, which we assume to be identically and independently distributed 

with mean zero and variance ��
�  and independent of X, and β is a vector of coefficients which 

                                                 

1 The unconditional τ-quantile is the quantile of the marginal distribution of Y. 
2 For a more detailed definition of the recentered influence function and a full list of properties we refer to Firpo 
et al (2009). 
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can be estimated by ordinary least squares (RIF-OLS regression)3. β is equal to the 

unconditional quantile partial effect of the variables X, i.e. E[dE[RIF(Y,qτ)|X]/dx]. 

 

3. Unconditional quantile regression with categorical covariates  

 

Assuming that we can observe Yi and Xi, for each individual i (i=1,…,N) in the population 

(using register or census data) and that Xi is a vector of categorical variables Xk,i with 

k=1,…,K, we can use these N individual observations to estimate the unconditional quantile 

regression, 

 RIF(Yi,qτ)=Xi β+ui,  (2)  

   

where RIF(Yi,qτ)= qτ+[τ-dτ,i]/fY(qτ) and dτi is a dummy variable taking value one if Yi≤qτ and 

zero otherwise. 

On the contrary, let us assume that we are unable to observe RIF(Yi,qτ) and Xi at individual 

level, but we observe their average values over individuals belonging to each of S groups,4 

which are mutually exclusive and collectively exhaustive (s=1,…,S), i.e. we observe  

��������s=1/Ns ∑i=1,…N RIF(Yi,qτ)ds,i= qτ+[τ-	

τs]/fY(qτ) 

��s=1/Ns ∑i=1,…N (Xids,i), 

where ds,i is equal to one if individual i belongs to the group s and zero otherwise, Ns is the 

number of individual in group s and ∑ NN
s=1 s=N, 	


τs =[1/Ns ∑i=1,…Ns ds,i dτi] is the proportion of 

individuals with values of Yi equal or below qτ in group s. With these aggregated data we can 

estimate the following regression, which is usually called an ecological regression, 

 ��������s=��
�� +εs, s=1,…,S; (3)  

But the estimated �� is generally a biased estimation of the parameter of interest β in equation 

(2). This bias is known as aggregation or ecological bias.  

                                                 

3 Firpo et al (2009) show also two alternative methods to estimate the relationship between the RIF and the 
covariates: the RIF-logit regression and nonparametric-RIF regression.  
4 For example, data can be aggregated by geographical areas.  
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We can avoid this ecological bias if we divide individuals into groups based on their 

observed X-values, i.e. if we consider separate groups for each of the possible combinations 

of the X-values. Let the number of possible combinations (groups) be S, and assume that we 

observe qτ and fY(qτ),
5 and 	


τs, ��s and Ns for each s=1,...,S. Then, for any group s we know 

• the exact values of X, which we denote ��s =[X1,s,X2,s,…,XK,s], 

• the number of individuals who have values of Y equal or below qτ, which is ns=Ns 	

τs,  

• the number of individuals who have values of Y above qτ, i.e. (Ns-ns). 

In other words, we know that in group s there are  

• ns individuals with RIF(Yi,qτ)=qτ+[τ-1]/fY(qτ) and Xi=[X1,s,X2,s,…,XK,s] and  

• (Ns-ns) individuals with RIF(Yi,qτ)=qτ+τ/fY(qτ) and Xi =[X1,s,X2,s,…,XK,s].  

By pooling together the information on individuals from each of the S groups, we can 

reproduce the complete dataset with observations on RIF(Yi,qτ) and Xi for all N individuals, 

and we can use this dataset to estimate the unconditional quantile regression without any 

ecological bias.  

To summarize, it is possible estimate the unconditional quantile regression using aggregated 

data without any loss of information or ecological bias if we can observe: 

• qτ, the τ-quantile for the whole population; 

• fY(qτ), the density of Y at the τ-quantile again computed using the whole population;  

• the percentage of individuals with a value of Y below the τ-quantile for each of the 

possible combinations of values of the set of explanatory variables X; 

• the absolute frequency of individuals for each of the possible combinations of values 

of X. 

When the numbers of variables X and combinations of their possible values are small, then 

this aggregation method helps in avoiding both confidentiality issues and ecological bias. 

Nevertheless, there can be situations where the variables X are large in number or contain 

continuous and categorical variables which can take many or even infinite different values. 

When the number of possible combinations of the variables X is too large to preserve 

confidentiality, then we need to discretise the continuous variables and to group the 

                                                 

5 qτ and fY(qτ) are constant across individuals and can be estimated using the sample quantile and the non-
parametric (kernel) estimation of the density distribution of Y computed at the sample quantile.  
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categorical variables in fewer categories. In this situation aggregating the data implies a 

trade-off between between estimation bias and confidentiality.  

 

4. Unconditional quantile regression with categorical and continuous covariates 

 

Let us consider an administrative dataset with individual information on a continuous 

variable Y, a set of categorical variables X and an additional set continuous variables Z, and 

let us be interested in estimating the coefficients β0 in the following individual regression  

 RIF(Yi,qτ)=Xi β0+Zi γ0+u0i, i=1,…,N, (4)  

Assuming that for each individual i we can observe Yi, Xi and Zi, we can estimate β0 by 

simply regressing RIF(Yi,qτ)= qτ+[τ-dτ,i]/fY(qτ) on the covariates Xi and Zi. On the contrary, if 

we can access only aggregated data, then the estimation of β0 will be potentially biased. The 

question is then how to aggregate data to minimize this bias.  

An aggregation method often used to release administrative data is the averaging of each 

variable by geographic areas, i.e. the computation of ��������j, ��j and �
 j for each area j, where 

j=1,…,J. These aggregated data can be used to estimate the following ecological regression,  

 ��������� � ���  �� � �

� �� � ��� ,    � � 1, … , �; 

(5)  

but the estimated β1 and γ1 are generally a biased estimation of the parameters β0 and γ0 in (4).  

An alternative aggregation method consists of the following steps:  

• dividing individuals into groups by considering the set of S possible combinations 

of values for X for each of the J possible geographic areas;  

• for each of these (S x J) groups computing the percentage of individuals with a 

value of Yi below the τ-quantile, the absolute frequency of individuals, the actual 

values assumed by Xi and the average value assumed by Zi for individuals 

belonging to the corresponding area j, �
 j.  
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These observations together with the knowledge of qτ and fY(qτ) allows us the reconstruct the 

data necessary to compute an unbiased estimation of the following semi-individual 

regression6  

 RIF(Yi,qτ)=Xi β2+�∑ �
�
� � j dij] γ2+v2i, i=1,…,N, (6)  

where j indexes the geographic areas, dij is a dummy variable taking value one if individual i 

lives in area j and zero otherwise, and �
 j is the average of the characteristics Zi observed in 

areas j where the individual i lives.  

A further possible aggregation method consists in discretising or grouping the continuous 

variables Zi. For example, let us consider a variable measuring individual income, then we 

can discretise it into a categorical variable indicating whether the individual income is above 

or below the 25th percentile, between the 25th and 75th percentiles, or above the 75th percentile 

(where the percentiles refer to the whole population). Given D possible values of the 

discredited variable, we can consider D corresponding dummy variables which we denote 

with Zdi, d=1,…,D. Observations on Yi, Xi and Zdi do not allow to estimate regression (4), but 

they allow to estimate without bias the following regression  

 RIF(Yi,qτ)=Xi β3+∑ !�"
# � di γ3d)+v3i, i=1,…,N. (7)  

Furthermore, we can estimate without bias equation (7) using aggregated data or more 

specifically information on: 

• qτ, the τ-quantile for the whole population in the administrative data; 

• fY(qτ), the density of Y at the τ-quantile again computed using the whole 

administrative data;  

• the percentage of individuals with a value of Y below the τ-quantile for each of the 

possible combinations of values of the set of explanatory variables X and Zd; 

• the absolute frequency of individuals for each of the possible combinations of values 

of X and and Zd. 

The last two aggregation methods allows for better estimation because they allow estimating 

models (6) and (7), where only Z is measured with aggregation error. On the contrary, in the 

ecological model (5) the variables Y, X and Z are all observed with aggregation error (see 

                                                 

6 A semi-individual regression is a model with all variables observed at individual level except for some of the 
covariates (see Kunzli and Tager, 1997).  
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Kunzli and Tager 1997). The fact that we use �
 j (Z1…,ZD) rather than Z can bias the 

estimation of the coefficient Z, γ0, as well as of the coefficients of the remaining explanatory 

variables X, β0. In the following section we prove that this last bias cancels when X and Z are 

uncorrelated conditional on �
 j (the set of dummy variables [Z1…,ZD]).  

 

5. Testing aggregation bias  

 

As in the last section, assume we are interested in estimating the coefficient β0 in the 

regression 

 RIF=Xβ0+Zγ0+u0, (8)  

where u0 is assumed to be uncorrelated with X and Z. Model (8) is identical to model (4) 

except for the fact that we have dropped the subscript i to simplify notation. Let Za be the 

aggregated or grouped variable Z, corresponding to �
 j or the set of dummy variables 

[Z1…,ZD], and let us consider the regression of Z on Za  

 Z=Zaρ+ν, (9)  

then Z can be written as the sum of its projection in the space generated by the columns Za, 

PZaZ= Za$%, and its projection in the orthogonal space, MZaZ=&̂. If we regress RIF(Y,qτ) on X 

and Za then equation (8) becomes 

 RIF=Xβ0+Za $%γ0+&̂γ0+u0 (10)  

where &̂ is uncorrelated with Za by construction and β0 is consistently estimated if 

Cov(&̂,X)=0. Since Cov(&̂,X)=Cov(MZaZ,X)=Cov(MZaZ, MZaX), regressing RIF(Y,qτ) on X and 

Za produces a consistent estimation for β0 if Cov(MZaZ, MZaX)=0 i.e. if Z and X are 

uncorrelated conditioning on Za, Cov(Z,X|Za). 

To test the assumption that Cov(Z,X|Za)=0 we can consider the following regression  

 Z=Xη+Zaθ+ν (11)  
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and check whether η=0 using a Wald test. Comparing different methods to aggregate or 

discretise the variables Z, we can choose the one which minimizes the Wald test and 

presumably reduces the bias of β0.  

A similar testing procedure has been proposes also by Geronimus et al (1996) for the case 

where the model of interest is a mean regression and the continuous covariates are 

approximated using geocoded variables.  

 

6. Conclusions  

 

In this paper we show how to aggregate individual register or census data to estimate 

unconditional quantile regressions avoiding both the confidentiality issue and ecological bias. 

This is feasible when the covariates are categorical variables with a small number of possible 

values. On the contrary, when some of the covariates are continuous any aggregation strategy 

leads to some loss of information and a potential ecological bias. However, it is still possible 

to aggregate the data in a way such that we can estimate without bias a semi-individual 

quantile regression model, i.e. a regression where the dependent variable and categorical 

variables are measured without aggregation error, while the continuous variables are 

approximated by their area-mean or by a set dummy variables corresponding to each possible 

value assumed by their discretised version. Finally, we suggest a test to check the potential 

bias caused by approximating these continuous variables. 
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