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Non-technical summary

There is growing evidence that differences in children’s intellectual, emotional and personal
development by parental education and socioeconomic status emerge at very early ages and that
these differences are likely to cast a long shadow over subsequent achievements. To understand
how such differences arise and develop, much of the recent social science research has focused
on the effects of a variety of parental behaviors and, in particular, early parental investments on
child outcomes. Examples of early parental behaviors that have been analyzed include maternal
employment, child care choices and parenting styles, as well as other family background factors,
such as childhood family structure and parental income. More recently, among economists there
has been an increasing interest in understanding the effect of pregnancy-specific behaviors like
dieting, smoking and alcohol consumption on birth outcomes and subsequent development.

In this paper we estimate the impact of parental inputs, such as parental smoking and mother’s
employment during pregnancy, on children’s birth weight and fetal growth. Biomedical and
epidemiological studies which have estimated similar relationships usually fail to account for
the fact that most of the determinants of birth outcomes are chosen by parents and thus reflect
parents’ preferences. Instead, economists have used a variety of methods to account for the fact
that parental behaviors and child outcomes can be influenced by common and unobservable
factors. Typically, this implies the use of mother fixed-effects estimators, which use variation in
inputs and birth outcomes for the same mother over time, and instrumental variable estimators,
which exploit other information (e.g., the price of cigarettes) to explain changes in individual
behavior (e.g., smoking).

Here, we are also concerned with the correlation between parental inputs and child health en-
dowments which may arise when parents adapt their prenatal choices after observing the health
endowments of the children already born. To control for this, we implement a method which
combines a mother fixed-effects and an instrumental variable estimator, and use the parental
inputs associated with a specific pregnancy to explain changes in prenatal inputs between that
pregnancy and the following one. We can then estimate the true effect of a certain input
on birth weight or fetal growth, and obtain an indication of how parents respond to existing
children’s health endowments in choosing inputs for the next child. Using economic theory,
we suggest a way in which these dynamic decisions can be interpreted in terms of equity or
efficiency arguments. We also consider the way in which parents choose postnatal investments
(breastfeeding) after observing the health endowments of their children. The analysis is per-
formed on two countries (the United States and Britain) with three large-scale representative
samples.

Our estimates indicate that maternal smoking during pregnancy reduces birth weight by 140-
160 grams in the US sample and by 190 grams in the British sample, and reduces fetal growth
by about 4 grams per week in both countries. There is evidence of a positive effect on birth
weight and fetal growth of mothers’ work interruptions before pregnancy, although the size
of this effect is small for US mothers. The impact of father’s smoking on birth outcomes is
quite small and becomes tiny when dynamic effects are taken into account. Most importantly,
we find evidence that previous children outcomes affect parental prenatal and, more modestly,
postnatal behavior in a way which is consistent with the presence of equity concerns.



Intrafamily Resource Allocations:
A Dynamic Model of Birth Weight

Emilia Del Bono, John Ermisch, and Marco Francesconi

University of Essex

September 2008

Abstract

This paper estimates a model of dynamic intrahousehold investment behavior which incor-
porates family fixed effects and child endowment heterogeneity. This framework is applied
to large American and British survey data on birth outcomes, with focus on the effects
of antenatal parental smoking and maternal labor supply net of other maternal behavior
and child characteristics. We find that maternal smoking during pregnancy reduces birth
weight and fetal growth, while paternal smoking has virtually no effect. Mothers’ work
interruptions of up to two months before birth have a positive effect on birth outcomes,
especially among British children. Parental behavior appears to respond to permanent
family-specific unobservables and to child idiosyncratic endowments in a way that sug-
gests that parents have equal concerns, rather than efficiency motives, in allocating their
prenatal inputs across children. Evidence of equal concerns emerges also from the analysis
of breastfeeding decisions, although the effects in this case are weaker.
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1. Introduction

There is growing evidence that differences in children’s intellectual, emotional and personal

development by parental education and socioeconomic status emerge at very early ages

and that these differences are likely to cast a long shadow over subsequent achievements

(Plomin 1999; Illsey 2002; Case et al. 2002; Feinstein 2003; Heckman 2000 and 2008).

To understand how such differences arise and develop, much of the recent social science

research has focused on the effects of a variety of parental behaviors and, in particular, early

(often preschool) investments on early child outcomes, such as cognitive and noncognitive

development and psychological wellbeing. Examples of early parental post-birth behavior

include childhood family structure (McLanahan and Sandefur 1994; Amato 2000; Hofferth

2006), maternal employment (Brooks-Gunn et al. 2002; Ruhm 2004; James-Burdumy

2005), child care choices (Blau 1999a; NICHD Early Child Care Research Network and

Duncan 2003; Bernal and Keane 2008), parental income (Mayer 1997; Duncan and Brooks-

Gunn 1997; Blau 1999b; Dahl and Lochner 2005), and parenting styles (Belsky and Fearon

2004; Aunola and Nurmi 2005).1 The idea that early investments are effective in alleviating

inequality and raising life chances for the less advantaged has already generated many

public policy programs around the globe, such as Head Start in the United States (Currie

and Thomas 1995 and 2000) and Sure Start in Britain (Belsky et al. 2006). The belief that

even earlier investments, such as preschool interventions aimed at improving cognitive and

noncognitive skill formation, is also becoming increasingly influential (Heckman 2000 and

2008; Carneiro and Heckman 2003; Cunha and Heckman 2007).

By continuity, one can imagine that parental pre-birth decisions are also likely to be

consequential, ranging from choices made long before the birth — such as educational

achievement and occupational success of the parents — to other pregnancy-specific deci-

sions — such as diet, smoking, alcohol consumption and choosing the baby’s name (Fryer

and Levitt 2004). Gaining insights into the way in which parents make their prenatal

decisions is as essential to our understanding of how the family works and to policy as it

is in the case of postnatal investments.

There is an economics literature on the effect of prenatal investments on child human

capital. In recent years, however, this line of research has slowed down, with only a hand-

1A substantial body of research spanning several disciplines has also investigated the association of in-
fant and early childhood parents’ investments with later child outcomes (e.g., final educational attainment,
teenage childbearing, labor market performance, family formation, and adult health). For comprehensive
surveys, see Haveman and Wolfe (1995) and, more recently, Currie (2004), Cunha et al. (2006) and
references therein.
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ful of studies published since the mid 1990s. In addition, and perhaps more importantly,

less effort has been devoted to uncover the nature of parental preferences that drive such

investments. However, knowing whether parents allocate resources to their children effi-

ciently, so that they invest more in the better endowed children (Becker and Tomes 1976),

rather than according to equity considerations, so that they compensate for low initial

endowments by investing more in their worse endowed children (Behrman et al. 1982),

has implications for the intergenerational transmission of human capital and the effective-

ness of policies aimed at affecting initial endowments (Behrman 1997). For example, if

the widening in the educational gap by parents’ socioeconomic status is accompanied by

parental investments that reinforce disparities in child endowments, then early intervention

programs which disregard this feature of intrahousehold allocations are likely to be inef-

fective. That is, despite public policy, we may still observe large and persistent disparities

in child outcomes because of the way in which parents respond to their children’s human

capital endowments.

These two areas of study — the emphasis on prenatal pregnancy-specific investments

and intrahousehold allocation of resources — constitute the main focus of this paper. Our

measures of child’s human capital at birth are two widely used birth outcomes, birth weight

and fetal growth. Biomedical, demographic and economic research has revealed that fetal

growth is strongly related to the nutritional environment in utero and maternal cigarette

smoking during pregnancy, and these, in turn, are associated with mother’s health status

and social class (Marmot 2005 and references therein; see also Currie and Hyson 1999).

Nutrition in utero then affects brain growth and child’s health (Barker 1995), and the

existing evidence is that it continues to shape many realms of life — from infant mortality

to later educational attainment and from earnings to health status — although there is

some controversy on the exact size of such effects (e.g., Bartley et al. 1994; Behrman and

Rosenzweig 2004; Case et al. 2005; Almond et al. 2005; Black et al. 2007).

Similar to biomedical and epidemiological research (e.g., Dougherty and Jones 1982;

Kramer 1987; Lang et al. 1996), our aim is to estimate the technological determinants

(production functions) of birth weight and fetal growth. This literature, however, usually

fails to account for the fact that most of the determinants of birth outcomes are chosen by

parents and thus reflect not only parents’ productivities but also preferences.2 Economists

have used a variety of methods to account for the endogeneity of parental inputs in health

2Some recent studies in the medical sciences recognize this endogeneity issue and use laboratory proce-
dures to examine the effect of parental behavior on birth outcomes, such as examinations of human tissues,
controlled trials of smoking cessations, and animal experiments. See Walsh (1994) and Slotkin (1998).
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production functions, from instrumental variables to sister and mother fixed effects. In

this study, we use a ‘method of moments’ estimator, which nests the mother fixed effects

estimator and an instrumental variables estimator that uses prenatal inputs during earlier

pregnancies as instruments for differences in inputs between pregnancies. Similar esti-

mation procedures have been used by Rosenzweig (1986), Rosenzweig and Wolpin (1988

and 1995) and Currie and Cole (1991 and 1993). In our analysis, as well as in those

studies, identification relies on the key assumption that prenatal inputs associated with

a specific pregnancy are uncorrelated with the idiosyncratic child endowment associated

with that pregnancy. This allows us to estimate not only the direct effect of inputs on

birth weigh/fetal growth, but also the parameters that govern the way in which parents

respond to child endowments sequentially from one pregnancy to the next. In doing so, we

use economic theory to interpret such dynamic responses as a result of efficient/equitable

intrahousehold resource allocation decisions.

Our empirical analysis uses three different data sets, two from the United Kingdom —

the British Household Panel Survey and the Millennium Cohort Study — and one from the

United States — the National Survey of Family Growth. We find that maternal smoking

during pregnancy reduces both birth weight and fetal growth, while taking maternity leave

or stopping work up to two months before birth improves both outcomes, especially in

Britain. Paternal smoking has virtually no effect. But, when father’s smoking is used as an

instrument for mother’s smoking rather than as a direct input, the effects of both mother’s

smoking and stopping work become larger in absolute value and precisely estimated. The

results also indicate that parental behavior responds to child-specific unobserved health

endowments and is correlated with persistent factors that are unrecorded in the data and

vary across families. Therefore, estimation of child health production functions through

either mother fixed effects models or instrumental variables techniques applied to cross-

sectional data are likely to yield biased results. Regardless of birth outcome and sample,

there is consistent evidence of parents’ choice over prenatal inputs across siblings that is

driven by equity considerations. This emerges also in the case of postnatal investments,

although the effects of unanticipated health shocks on breastfeeding decisions are generally

small.

The next section discusses the related literature and the background against which our

contribution can be assessed. Section 3 defines our analytical framework that hinges on

birth weight production functions and describes our estimation strategy. Section 4 presents

an optimizing model of parental investment decisions in children’s human capital, which
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gives us an interpretation of parents’ dynamic responses to the heterogenous idiosyncratic

endowments of their children. Section 5 describes the three data sources and samples, while

Section 6 reports our main empirical results. We first present the estimates of the effects of

the endogenous inputs on birth outcomes and then turn to the estimates of the parameters

capturing intrafamily responses. We next examine the effect of father’s smoking, analyze

the extent of heterogenous input effects along some observable characteristics (such as

mother’s education and age at birth), and look at the extent of sample selectivity bias.

Section 7 discusses the key identification issues for (and presents results on) postnatal

investment decisions, which are focused on breastfeeding behavior. Section 8 concludes

and discusses some new directions for further research in this area.

2. Background

A. Related Literature

A well established empirical literature in economics has analyzed the effect of prenatal in-

vestments on birth outcomes.3 The distinction between prenatal investments and postnatal

investments is important: for the former, parents have, if any, only a limited knowledge

of that child’s endowment. Examples of pregnancy-specific prenatal investments are ma-

ternal age at birth, parental smoking, and antenatal care. Postnatal investments include

breastfeeding, playing, reading, visiting museums, and choosing specific types of daycare

arrangements and schools. Note that the prenatal investments made during all the preg-

nancies subsequent to the first birth have a postnatal component for the children who are

already born. For example, smoking during the second pregnancy is a prenatal investment

that is likely to affect the birth weight of the second child, but is also a postnatal decision

affecting the first child’s human capital, if only indirectly through the budget constraint.

Only a handful of studies have allowed for such dynamic (or feedback) effects and these

shall be the focus of our brief overview. In contrast, all postnatal investments are inherently

dynamic, that is, parents are likely to respond to the idiosyncratic endowment of all existing

children and, in turn, this response is likely to affect subsequent births. Moreover, with

the exception of breastfeeding, the postnatal investments that are observed in large-scale

surveys cannot be easily assigned to one child: for instance, a parent can read to one child

while playing with another or take all children to the museum. We shall return to these

3Reviewing the vast biomedical and epidemiological literature on this topic is beyond the scope of this
study. For reviews, see Walsh (1994) and Valero de Bernabé et al. (2004).
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issues in Section 7.

Our analysis is closely related to the work of Rosenzweig and Wolpin (1995). This is one

of the very few studies on the technological determinants of birth outcomes that analyzes

a dynamic intrafamily investment model with endowment heterogeneity. Their main focus

is on the effects of mother’s age at birth net of other maternal behavior and characteristics,

including smoking, antenatal care, and birth spacing. Using data from the 1979 National

Longitudinal Survey of Youth (NLSY) and prenatal inputs during previous pregnancies as

instruments for the differenced inputs, they find that teen mothers have lower-gestation

births, but have fetal growth rates that are greater than those of nonteen mothers. Due to

large standard errors, the estimates of their dynamic model are not statistically different

from those obtained through cross-sectional and mother fixed effects models. But their

results offer strong evidence on the presence of intrafamily endowment responses, suggest-

ing that intrafamily allocation decisions are driven by equity considerations, as mothers of

a high-endowment first or second child are more likely to have the following child earlier

and, as a consequence, these will tend to be low-gestation and high-fetal-growth births.

The empirical focus, however, does not make this interpretation straightforward in their

context. Likewise, the fact that they provide no analysis of postnatal investments does not

allow us to see whether equity concerns are also reflected in parental decisions taken after

the birth of each child.

Evidence of an equitable allocation of prenatal inputs across siblings has instead been

explicitly found by Rosenzweig (1986), who looks at the relationship between birth spacing

and gestation for a sample of US women and their children from the 1970 and 1975 National

Fertility Surveys, and by Rosenzweig and Wolpin (1988), who consider the effect of birth

spacing on birth weight and weight at 6 months for a sample of families in Columbia.

Besides prenatal inputs, both these studies use family background variables as instruments

for the differenced inputs. But this is not necessary, and in fact many parental and family

background characteristics may be problematic as instrumental variables, because they can

be either endogenous or weakly correlated with sibling input differences. These arguments

can be extended to the many economic studies that employ family background variables as

instruments for endogenous inputs in child health production functions (e.g., Rosenzweig

and Schultz 1983a; Grossman and Joyce 1990; Currie and Cole 1993; see also below).

While the works by Rosenzweig (1986) and Rosenzweig and Wolpin (1988 and 1995)

are concerned, at different degrees, with intrahousehold allocation decisions and estimate

models that account for within-family and across-family variation in endowments, most of
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the existing studies of birth outcomes have analyzed the effect of specific determinants in

the context of birth technology. One of the most commonly analyzed inputs in birth weight

production functions is maternal smoking, which is often considered the single most impor-

tant, modifiable factor affecting birth outcomes (Kramer 1987). Biomedical research has

documented that smoking reduces birth weight by about 150 to 200 grams, that the longer

the mother smokes during pregnancy the greater the effect on the baby’s birth weight,

and that smoking effects are weaker on gestation than on actual birth weight (Kramer

1987; Valero de Bernabé et al. 2004). But, as mentioned earlier, most of these studies

are cross-sectional, ignoring family-specific unobservables and relying on the assumption

that all children have the same idiosyncratic endowments or that child endowments do not

affect parental behavior. Economists instead have been explicitly concerned with the issue

of obtaining consistent estimates of child health production functions when all inputs (and

not only mother’s smoking) are correlated with unobservables.

One classical method to deal with input endogeneity problems is to employ instrumental

variables. In the case of the effect of maternal smoking on child outcomes, identification is

achieved through changes in the price of cigarettes or tobacco taxes across states and over

time, parental characteristics (e.g., mother’s education), family background variables (e.g.,

grandmother’s schooling), or area characteristics (e.g., local government health expendi-

tures and number of local hospitals with family planning services). This approach therefore

relies on the assumption that cigarette price changes are independent of health endowments

of parents and children, or that parental schooling is orthogonal to the unobserved factors

associated with child health or, more generally, that there is no intergenerational transmis-

sion of endowments. The results from studies that use instrumental variables techniques

are generally larger in absolute value than those found with cross-sectional regressions

(Rosenzweig and Schultz 1983a; Grossman and Joyce 1990; Evans and Ringel 1999; Lien

and Evans 2005).

Another strategy to control for the correlation between unobservables and parental in-

puts in child health production functions is to employ fixed-effects sibling models, which

can be estimated only on mothers with multiple births (Rosenzweig and Wolpin 1991;

Currie and Cole 1993; Abrevaya 2006). This approach recognizes that constraints and

background characteristics cannot be used as instrumental variables and allows parental

behavior to respond to family-specific endowments which can be transmitted across gener-

ations. But, to achieve identification, it must be assumed that idiosyncratic endowments

of children in the same household do not affect parents’ behavior, that is, there are no in-
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trafamily responses. Studies that use this approach report smoking effects that are usually

lower in absolute value than the corresponding cross-sectional estimates (Abrevaya 2006;

Tominey 2007).

Besides smoking, another potentially relevant input is mother’s time off work during

pregnancy. There has been a huge research about the effect of maternal employment as a

postnatal investment on later child outcomes (e.g., Brooks-Gunn et al. 2002; Ruhm 2004;

James-Burdumy 2005) but virtually none that has focused on it as a prenatal decision.4

While some cross-sectional biomedical studies have observed adverse associations of long

hours of work, shift work, lifting loads, and high psychological stress on birth outcomes,

others have found little effect (Croteau at al. 2006; Bonzini et al. 2007). In addition,

comparing the labor supply responses of women from the United States and Britain, as

we do here, might pick up different responses and offer important insights on future policy

design because the two countries have different maternity leave policies (Waldfogel 1998).

Other determinants of birth outcomes that are included in our child health production

functions are maternal age, parity, and sex of the child. Older women are usually observed

to be at greater risk of preterm delivery, of giving birth to a child who subsequently

dies, and of bearing a child with abnormal conditions (Royer 2005). The evidence on

teenage childbearing instead is mixed, with some studies finding no association (Geronimus

and Korenman 1993; Strobino et al. 1995) and others reporting more positive effects

(Rosenzweig and Wolpin 1995). Both parity and child sex are inputs of the birth technology

that relate to placental and fetal determinants of growth in utero rather than factors

associated to maternal behavior. Most of the existing evidence on their effects comes

from the epidemiological literature, which documents better birth outcomes for boys and

for second and higher-order births (Butler and Alberman 1969; Love and Kinch 1965).

Several studies use other prenatal inputs, such as antenatal care in the first trimester of

pregnancy, alcohol consumption during pregnancy, and mother’s weight before pregnancy;

in this paper, however, we can analyze these inputs only in cross-sectional regressions.5

As mentioned in the Introduction, there is a huge social science literature analyzing

4Rosenzweig and Schultz (1983a) found that the number of months worked by a woman during preg-
nancy had no significant effect on birth outcomes, and thus excluded this variable from their published
specifications.

5Recent research based on instrumental variables or fixed-effects sibling models has found small and
insignificant effects of antenatal care (Abrevaya and Dahl 2005; Evans and Lien 2005) and of alcohol
consumption (Abrevaya and Dahl 2005). Maternal weight before pregnancy, instead, has a strong positive
effect on birth weight, even after accounting for intrafamily health heterogeneity and parental responses to
child-specific health shocks (Rosenzweig and Wolpin 1995). An emerging strand of research looks at the
effect of illicit drug use and, from cross-sectional analyses, finds evidence of an adverse association with
birth outcomes (e.g., Reichman et al. 2006).
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the impact of postnatal investments on early and later child outcomes. Our estimation

procedure allows us to estimate one aspect of postnatal investment behavior through the

feedback effect that links endowment shocks to all subsequent births. Besides this, we

also examine a more obvious postnatal investment, that is, breastfeeding. There is a well-

established association between breastfeeding and a range of favorable health outcomes

(Ip et al. 2007), and some evidence that breastfeeding might also improve cognitive devel-

opment (Anderson et al. 1999). But these results are based on cross-sectional estimations

and, indeed, when intrafamily health heterogeneity is taken into account, the breastfeeding

benefits become smaller and statistically tenuous (Kramer et al. 2001; Der et al. 2006;

Baker and Milligan 2008). Our interest in breastfeeding decisions, however, is motivated

by the fact that they can provide us with novel evidence on intrahousehold resource allo-

cation, which adds to the evidence drawn from the effects of prenatal inputs into the birth

technology.

B. Our contribution

This paper makes four substantial contributions. The first is a contribution to the econo-

metric literature that estimates models of intrahousehold resource allocation decisions with

family- and child-specific heterogeneity and dynamic responses to endowments. Besides

Rosenzweig and Wolpin (1995), no other study has pursued this line of analysis and noth-

ing is known about Britain. We analyze three different data sources, which have never

been used before to study birth outcomes and have complementary advantages and dis-

advantages with respect to the NLSY data used by Rosenzweig and Wolpin. Also, for

the first time, we look at the impact of when the mother stops work (whether or not on

maternity leave) during pregnancy, which in part reflects differences in labor market in-

stitutions between the United States and Britain and, as discussed earlier, raises several

policy concerns. Unraveling this effect is therefore of clear general interest.

Second, in addition to the estimation of the effects of prenatal endogenous inputs

on birth outcomes, we formulate an economic model of parental investment in children’s

human capital which allows us to interpret parents’ dynamic responses to child endowments

in terms of equity vis-à-vis efficiency concerns. The model has ramifications not only

for the intrahousehold resource allocation literature but also for its policy implications.

For instance, knowing if and how families adjust resources between children and respond

to shocks over time has relevance for the design and provision of effective child-related

transfers and services (Behrman 1997).
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Third, unlike most of the existing studies reported earlier, we also consider father’s

behavior (essentially father’s smoking, because little variation is observed within and be-

tween families along father’s labor supply). Only a handful of epidemiological studies

have analyzed the relationship between father’s smoking and child birth weight and es-

tablished weaker associations than those between mother’s smoking and offspring (e.g.,

Hennessy and Alberman 1998). These studies, however, typically fail to account for the

fact that siblings both share similar bio-social environments and have specific idiosyncratic

endowments to which parents may respond differently. By estimating the father-child link

carefully, we can assess the extent to which indirect nicotine exposure adds to the maternal

impact determined in utero (Gergen et al. 2001). We also consider the possibility that

mother’s smoking is measured with error so that, in a world in which partners match as-

sortatively, father’s smoking can be used as an additional instrument for maternal smoking

(Kurzban and Weeden 2005). This is likely to improve our inference on the causal impact

of mother’s smoking over what the structural restrictions on the infant health production

functions allow us to identify.

Fourth, we look at postnatal investments. We show that analyzing such investments

in the context of child health production functions with intrafamily heterogeneity and dy-

namic responses to child endowments cannot be done without introducing strong untestable

identifying restrictions. Therefore, rather than estimating the effect of postnatal invest-

ments on later child outcomes (which is the focus of most of the existing research across

several disciplines), we build on the work by Rosenzweig and Wolpin (1988) and study the

effects of endowment heterogeneity across households and sequential responses to idiosyn-

cratic birth outcome shocks on postnatal investments. Although the reduced-form nature

of this analysis should warrant caution, these estimates provide us with new evidence on

parents’ intrahousehold resource allocation decisions.

3. Conceptual Framework

A. Infant Health Production Functions

Although most studies of intrahousehold resource allocation with heterogeneous child en-

dowments have been formulated in a static environment (Becker and Tomes 1976; Behrman

et al. 1982; Rosenzweig and Schultz 1983a), it is natural to view the allocation decisions

of parents with respect to the human capital of their children as the result of a dynamic

process under uncertainty.
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In the context of birth outcomes, a straightforward example of within-family dynamics

is given by the fact that, after the birth, say, of the first child, parents can observe his/her

idiosyncratic endowment and take it into account while investing in the next child, even

before this new child is born. Postnatal investments in the first child can also be affected

by this new information. Building on such considerations, the next section will develop

a sequential model of intrafamily investments in which resource allocation is affected by

parental preferences, resource constraints, the technology of human capital production

and by parents’ sequential learning of child endowments as children are born. In this

section we focus on the key components of our empirical analysis, namely, the technological

relationship linking human capital at birth to parental behavior, such as smoking, and

family and child endowments.

As in Rosenzweig and Wolpin’s (1995) dynamic setup and in most of the static models

of intrahousehold investments, we assume that the human capital at birth (e.g., birth

weight), h, of child i in family j is given by:

hij = X ′
ijγ + µj + φij, (1)

where Xij is a vector of prenatal endogenous inputs (e.g., parental smoking during preg-

nancy and mother’s age at birth) and other characteristics (e.g., child’s sex), µj is the

family’s (or mother’s) endowment which, in part, is transmitted intergenerationally, φij is

the idiosyncratic child endowment of health that is not subject to the control of parents

and is uncorrelated with µj, and γ is a vector of parameters. Equation (1) is the technol-

ogy that parents use to produce the human capital at birth of their children. This is the

primary object of our analysis. Of course, parental preferences may affect the relationship

between endogenous inputs and unobservable endowments, while parental knowledge of

child endowments changes when a child is born. The way in which preferences, technology

inputs and endowments are linked will be formalized in Section 4. Before that, however,

it is useful to clarify the assumptions about the characteristics of the unobservables in (1)

and their effects on behavior since these drive our estimation procedure and interpretation.

B. Estimation and Identification Strategy

The parameters of interest are given by the vector γ on the multiple endogenous inputs

in the production function (1). A simple way of illustrating our econometric approach

is to consider a family (or mother) with two children which uses only one input during

pregnancy, x (say, smoking), to produce human capital at birth, h. Thus, we rewrite (1)
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as

h1 = γx1 + µ + φ1, (2)

h2 = γx2 + µ + φ2, (3)

where the subscripts refer to the i-th child (i=1,2), and the ij subscripts have been dropped

for convenience.

In (2) and (3), prenatal parental behavior, x, has a direct effect on birth outcomes.

Many studies of birth outcomes have also recognized that prenatal parental behavior is

likely to be influenced by parents’ unobserved endowments, µ (e.g., mother’s health), and

these in turn may affect birth outcomes of both their children. But if parents care about the

outcomes of individual children, then parental knowledge of child-specific endowments, φ1

and φ2, may also influence resource allocation. That is, parents respond to child-specific

endowments by changing their inputs during pregnancy. If each child’s endowment is

unknown prior to his or her birth, then x1 is uncorrelated with both φ1 and φ2, while

mother’s smoking during the second pregnancy, x2, is uncorrelated with φ2 but may be

correlated with φ1.
6

If this is the case, under the orthogonality assumption that φi is correlated neither with

µ nor with xi (i=1,2), we can write down the moment conditions that fully characterize

this environment as follows:

σ2
h1

= γ2σ2
x1

+ γσx1µ + σ2
µ + σ2

φ1
,

σ2
h2

= γ2σ2
x2

+ γσx2µ + σ2
µ + σ2

φ2
,

σh1h2 = γ2σx1x2 + γ(σx1µ + σx2µ) + γσx2φ1 + σ2
µ,

σh1x1 = γσ2
x1

+ σx1µ,

σh2x1 = γσx1x2 + σx1µ,

σh1x2 = γσx1x2 + σx2µ + σx2φ1 ,

σh2x2 = γσ2
x2

+ σx2µ,

where σx1x2 is the covariance between x1 and x2, and the vector of unknown parameters is

given by {γ, σ2
µ, σ

2
φ1

, σ2
φ2

, σx1µ, σx2µ, σx2φ1}.
6Although parents can rely on increasingly precise information on fetus development, the performance

of screening methods able to detect fetal growth retardation or to predict preterm labor is still less than
perfect (Mongelli and Gardosi 2000; Iams 2003). Moreover, there are no effective treatments to reverse
or prevent these conditions (Goldenberg 2002; Alberry and Soothill 2007; Spong 2007), and, except in
extreme cases, parents have only a limited scope to respond to such information during pregnancy.
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A natural estimation procedure for equations (2) and (3) with their implied population

moments is to match sample (observed) and theoretical moments using generalized method

of moments (GMM) techniques. Estimation of (1) by ordinary least squares (OLS), which

is the procedure commonly used in the biomedical literature, will not produce consistent

estimates of γ if xi is correlated with µ. This is easily seen by noting that the OLS

estimator is obtained by dividing σh1x1 by σ2
x1

(or σh2x2 by σ2
x2

). It is clear from the fourth

and last moment conditions above that this estimator will only provide an estimate of γ if

σx1µ = 0 and σx2µ = 0.7

Mother fixed effects (FE) models take account of the common component µ shared by

siblings, but impose that its correlation with parental behavior is the same for each sibling

pair (that is, σx1µ = σx2µ). These models also do not allow for intrafamily sequential

decision making, that is, they impose σx2φ1 = 0. It is again easy to see that the FE

estimator does not estimate γ when σx2φ1 6= 0: in fact, the FE-sibling estimator is obtained

by dividing σ(h1−h2)(x1−x2) by σ2
(x1−x2), which, using the expressions for these moments from

the list of moments above, identifies γ + σx2φ1/σ
2
(x1−x2).

With unrestricted nonzero covariances, the seven unknown parameters in the seven mo-

ment equations shown above can be estimated by a method of moments, and the resulting

estimator amounts to using a ‘fixed effects instrumental variables’ (FE-IV) procedure for

estimating γ, as shown by Rosenzweig and Wolpin (1995). In this framework, any en-

dogenous input associated with the pregnancy of the first child, say x1, can be used as an

instrument for the difference in inputs across sibling births, x2−x1. Similar instruments

have been applied by Rosenzweig and Wolpin (1988) and Currie and Cole (1991).

The assumption that the prenatal inputs associated with a pregnancy are uncorrelated

with the child-specific endowment of that pregnancy is sufficient to guarantee that the

model specified above is just identified in the two-child family case.8 This is true even

when the set of inputs in (2) and (3) is expanded, because the relationship between the

number of observed moments and the number of parameters remains the same.9 In the case

of three-child households and one input x, there are eight additional moment conditions

7If these correlations are nonzero, then parental characteristics (e.g., maternal schooling) and family
background variables (such as grandparents’ schooling) are unlikely to be valid instrumental variables, and
so are local area characteristics (e.g., number of hospital beds per capita and the number of clinics with
family planning in a given geographical area) as long as parents’ choice of residential location is partly
driven by family unobservables.

8As discussed earlier, knowledge in utero of φ implies that σxiφi cannot be set to zero unless parents
cannot act on that knowledge. If they can act on it, the system for two-child families is underidentified:
there are at least two more parameters (σx1φ1 and σx2φ2) than moment equations.

9It is worthwhile emphasizing that identification comes about even without having direct measures of
prices, family wealth or income that could affect parental decisions. See Rosenzweig and Wolpin (1994).
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(for σ2
h3

, σh1h3 , σh2h3 , σh3x1 , σh3x2 , σh3x3 , σh1x3 , and σh2x3), and four additional parameters

(σx3µ, σx3φ2 , σx3φ1 , σ
2
φ3

), and the system is overidentified.10 Again, the relationship between

moments and parameters is not affected by the number of inputs included in estimation:

that is, we have four additional degrees of freedom every time we include a new endogenous

input.

In the method of moment estimation, we will partition our samples into two groups

(that is, siblings from two-child households and the first three siblings from families with at

least three children), and we will then optimize a weighted sum of group-specific objective

functions, where the weights are given by the group sample sizes. This allows us to account

for the fact that both the OLS and FE models are hierarchically nested in the FE-IV model

as well as to provide straightforward evidence on the validity of the restrictions imposed

on the data by our three different estimators.

From the moment equations listed above, the production function parameters γ have a

straightforward technology interpretation. But the parameters that capture the sequential

nature of the intrafamily resource allocation problem (σx2φ1 in the example) do not, because

they also involve parental preference and production function parameters. To interpret

such parental response parameters, therefore, it is helpful to formulate a dynamic model

of parental investment, which will be presented in the next section.

Before doing so, we ought to emphasize that the analysis of the effect of postnatal

investments on child human capital requires a different setup. As mentioned in Section

2.A, when deciding on postnatal inputs, parents know the realization at birth of, say, the

first child’s endowment and can adjust to it and update their beliefs about the endowments

of all future children. This changes the production function framework used so far in two

important ways. First, the correlation between any given postnatal input, xi, and the

observed endowment of child i, φi, cannot be set to zero (that is, σxiφi
6= 0). Second, the

production functions for all children following the first must be appropriately modified, so

that they also include inputs and endowments of all preceding siblings. Appendix B shows

that, with this new framework, the effect of postnatal inputs cannot be identified, even

under strong orthogonality restrictions (e.g., even when all inputs on preceding siblings are

excluded). For this reason, we will not estimate postnatal production functions. Section

4 will reiterate the problem of estimating the effects of postnatal investments on human

capital, while Section 7 will examine postnatal investments only with the aim of gaining

10Appendix A reports such additional moment equations in the case in which there is only one prenatal
input.
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insights into the issue of intrahousehold resource allocations.

4. A Dynamic Model of Parental Investment in Children’s Human

Capital

In this model, each family is assumed to have two children. Parents can make investments

in each child during a prenatal period (i.e., pregnancy) and a postnatal period. The

pregnancy for the first child is in the first period (denoted a), and the pregnancy for

the second is in the second period (denoted b), during which time the parents also make

postnatal investments in the first child. In the third period (c), only postnatal investments

for the second child are made. The model is, therefore, concerned with household decisions

over three periods. Parents choose resource inputs to human capital investment in their

two children (h1 and h2) and consumption of a public good (G). We also assume that

there is no borrowing or lending across the periods. Parents’ preferences in each period t

are given by:11

U t = U(Gt) + W (h1, h2), (4)

with t = a, b, c, and lifetime parental utility is given by
∑

t U
t. The constraints include

two human capital production functions (one for each child):

h1 = f(x1a + φ1, x1b) (5a)

h2 = f(x2b + φ2, x2c), (5b)

where xit is the parents’ input into human capital production for the i-th child in period

t and φ1 and φ2 are idiosyncratic birth endowments. There is also a parental resource

constraint for each period t, which is given by:12

yt = Gt + x1t + x2t, (6)

where yt is parents’ resources, and x2a = x1c = 0 because of the timing of children in

the model. The dynamic nature of the problem comes through human capital invest-

ment.13 This time allocation problem is solved by maximizing
∑

t U
t subject to (4)–(6) in

11The implications of this model do not change when parental preferences are allowed to depend also
on the consumption of private goods which could enter the human capital production functions, such as
smoking (see below).

12For simplicity, but without loss of generality, prices have been normalized to one.
13The specification of (6) implies a trade-off between resources allocated to prenatal investments in the

second child (x2b) and resources allocated to postnatal investments in the first child (x1b). Although this
trade-off cannot be easily assessed for some inputs (such as mother’s age at birth or smoking), it does
capture the notion that household resources are scarce and some must be allocated to one child rather
than the other.
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a backward manner (i.e., from period c back to period a).

As in the previous section, we assume that parents do not know birth endowments,

φ1 and φ2, before the child is born. This means that φ1 and φ2 are not known until the

postnatal period for each child, that is, periods b and c for child 1 and 2, respectively.

Prenatal investment in the first child, x1a, is clearly independent of φ1 and φ2. We are

primarily interested in how prenatal investment in the second child, x2b, depends on φ1

when it is revealed. The solution of the parents’ problem implies the following first order

conditions in period b: UG = W1f
(1)
b = W2f

(2)
b , where UG = ∂U/∂G, Wi = ∂W/∂hi, and

f
(i)
b = ∂hi/∂xib for i = 1, 2. In the second period, the resource allocation rules implied by

the solution of the problem take the form x2b = ψ(φ1, yb) for the prenatal investments in

the second child, and x1b = λ(φ1, yb) for the postnatal investments in the first child.

From the conditions for a maximum, the resource allocation rules have the following

properties. First,

∂x2b

∂φ1

≡ ψ1 =
UGGf

(1)
a (W11f

(1)
b −W12f

(2)
b )−W1f

(2)
b W12f

(1)
a f

(1)
bb

D
, (7)

where D is the determinant of the matrix of second derivatives of the Lagrangian function,

which is positive by the second order necessary conditions for a maximum, f
(1)
a = ∂h1/∂x1a,

f
(1)
bb = ∂2h1/∂x2

1b, ∂UGG = ∂2U/∂G2 and Wij = ∂2W/∂hi∂hj (i, j=1,2). The second order

necessary conditions also entail that UGG +Wii(f
(i)
b )2 +Wif

(i)
bb < 0 (i=1,2). It is clear from

(7) that both preferences and production technology affect the parents’ response to the

birth endowment of the first child.

Second, the impact of the first child’s idiosyncratic endowment on postnatal investment

in that child is given by:

∂x1b

∂φ1

≡ λ1 =

−UGGf
(1)
a (W11f

(1)
b −W12f

(2)
b )−W11f

(1)
a f

(1)
b (W2f

(2)
bb +W22(f

(2)
b )2)+f

(1)
a f

(1)
b (W12)

2(f
(2)
b )2

D
, (8)

where f
(2)
bb = ∂2h2/∂x2

2b. Finally, the effect of parents’ resources on prenatal investment in

the second child is

∂x2b

∂yb

≡ ψ2 =
UGG[W11(f

(1)
b )2 + W1f

(1)
bb −W12f

(1)
b f

(2)
b ]

D
. (9)

It is plausible that W12 > 0. For instance, in the CES formulation of W used by

Behrman et al. (1982), this is the case. While not necessary conditions for a maximum,

we assume strict concavity of the U , W and f functions, so that UGG < 0, Wii < 0 and
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f
(i)
bb < 0 (i=1,2). It then follows from (7) that ∂x2b/∂φ1 > 0. Thus, mothers who have

unexpectedly better endowed (e.g., larger birth weight or higher φ1) first children tend to

devote more prenatal resources to their second child (that is, they have higher x2b).

In equation (8), under these same concavity assumptions, the first two terms on the

right hand side are negative, while the final term is positive when W12 differs from 0. In the

case where W =w(h1)+w(h2) (i.e., parents’ preferences over their children’s human capital

are additively separable), W12 = 0, and so ∂x1b/∂φ1 < 0. That is, postnatal investment

in the first child is smaller when his/her birth endowment is larger. Overall then, when

W12 ≥ 0, there is a tendency to shift resources from postnatal investments in the first child

to prenatal investments in the second child when the first child’s birth endowment is larger.

As will become clearer below, these responses reflect intrafamily equity considerations.

The specification of the human capital production functions in (5) assumes that each

production function is linear in the child’s endowment. In a more general specification, with

h1 = f(x1a, x1b, φ1) and h2 = f(x2a, x2b, φ2), it could be the case that ∂2h1/(∂x1b∂φ1) =

f
(1)
bφ1

> 0 as well as ∂h1/∂φ1 = f
(1)
φ1

> 0; that is, a higher first birth endowment could

increase the productivity of postnatal investments for the first child (as in Cunha and

Heckman 2007). Equation (7) is then replaced by:

∂x2b

∂φ1

≡ ψ1 =

UGGf
(1)
φ1

(W11f
(1)
b −W12f

(2)
b )−W1f

(2)
b W12f

(1)
φ1

f
(1)
bb + W1f

(1)
bφ1

(UGG + W12f
(1)
b f

(2)
b )

D
. (10)

Equation (10) contains a negative term, W1f
(1)
bφ1

UGG/D, which acts in the opposite direction

of the other terms when W12 > 0. This is because there is now an efficiency motive for more

postnatal investment in the first child when his/her birth endowment is larger (f
(1)
bφ1

> 0).

To see this more clearly, suppose parents’ preferences over their children’s human capital

are utilitarian, W = h1 + h2. Then, ∂x2b/∂φ1 = W1f
(1)
bφ1

UGG/D < 0.14 In this case, there

are only efficiency motives, and so a better birth endowment for the first child induces less

prenatal investment in the second child and more postnatal investment in the first child.

In general, therefore, both equity and efficiency considerations may be important for the

parental response to the first child’s endowment.

A linear approximation to the parents’ resource allocation rule for prenatal investment

14In the case in which f
(1)
bφ1

= 0, when parents’ preferences are utilitarian, then ψ1 = λ1 = 0 and

ψ2 = UGGW1f
(1)
bb /D > 0.
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in the second child is

x2b = π0 + ψ1φ1 + ψ2yb. (11)

Depending on the specification of the technology, either equation (7) or equation (10)

would provide the interpretation for ψ1, which corresponds to σx2φ1 of the previous section

and embodies the key dynamic considerations parents use in their resource allocation

decisions. In what follows, we shall estimate this parameter as well as the other dynamic

parameters using the FE-IV approach outlined earlier. According to our model, therefore,

if the sign of ψ1 goes in the same direction as the sign of the effect of input x (γ) in the

production functions (5a) and (5b), i.e., it is positive in the case of positive inputs (such as

maternal weight) or negative in the case of negative inputs (such as smoking), then equity

considerations are likely to dominate the resource allocation decisions between children.

It is essential to point out again that the inclusion of mother’s smoking requires a

slightly more complicated model in which smoking is also a direct argument of the parents’

utility function. Nevertheless, the interpretation based on equity-efficiency concerns is

similar. In particular, if φ1 is smaller (larger), equity considerations will lead the mother

to smoke more (less) during the pregnancy of the second child. This is because smoking is

a source of utility to the mother, and she takes the opportunity to improve her own welfare

when her first child has lower φ1 and sacrifices her own welfare when the first child has a

larger φ1 to promote equity between the children.

A similar resource allocation rule for postnatal investment in the first child is given by:

x1b = ϕ0 + λ1φ1 + λ2yb, (12)

where λ1 cannot be easily signed, even in the simplest case with linear-in-endowment

production functions and positive W12, as in (8). A sufficient (but not necessary) condition

for λ1 to be negative is that W12 = 0.

To examine postnatal investment in the second child, we need to solve the parents’

optimization problem in the last period. In period c, human capital investment in the first

child is finished, and so h1 is a state variable in the parents decision. Parents then choose

x2c to maximize U c = U(Gc)+W (h1, h2) subject to h2 = f(x2b +φ2, x2c) and yc = Gc +x2c,

which implies UG = W2f
2
c . Standard comparative statics yield

∂x2c

∂φ2

=
−W22f

2
b

Dc
, (13)

where Dc is negative by the second order condition. Thus, ∂x2c/∂φ2 < 0; that is, post-

natal investments in the second child are negatively affected by that child’s idiosyncratic
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endowment. The same investments may also respond to the first child’s human capital

outcome. In particular, if W12 > 0, then:

∂x2c

∂h1

= −W12f
2
c

Dc
> 0. (14)

In Section 7, besides the estimation of relationships similar to (12), we shall examine

reduced-form allocation rules for postnatal investments in the second and subsequent chil-

dren which combine (13) and (14). With parental preferences driven by equity concerns,

postnatal investments in the second child are expected to respond negatively to that child’s

idiosyncratic endowment, while first child’s human capital (proxied by his or her birth

weight and breastfeeding status) is expected to have a positive effect on postnatal invest-

ments in the second child.

5. Data

A. Sources

In order to estimate the econometric model described in Section 3, we need individual data

on birth outcomes and pregnancy-specific parental inputs for multiple children in the same

household. Because very few representative datasets contain this range of information, we

use samples from three different sources, each with advantages and disadvantages.

The first data source is the British Household Panel Survey (BHPS). The BHPS is a

continuing longitudinal study which has been carried out every year since 1991.15 Since

1999 the survey asked mothers to provide information on birth weight and gestation of all

their children born since 1991. Thus, part of the birth outcome information (but not that

on related inputs) is retrospective and may not cover all children in a given household.

Over the first 15 waves covering the period 1991-2006, we can identify 1,339 singleton live

births and 912 mothers with valid birth weight and gestation records as well as non-missing

values for various measures of parental inputs.

As the size of the BHPS sample is relatively small and its representativeness might be

an issue, we use data from the much larger Millennium Cohort Study (MCS). The MCS is a

longitudinal survey of children born in the UK between 2000 and 2001, which are followed

over time through a sequence of successive interviews.16 We have valid birth weight and

gestation data and information on a wide range of parental inputs (including father’s

smoking) for 17,483 singleton births and mothers. Although the MCS is longitudinal (in

15Detailed documentation on the BHPS can be found at <http://www.iser.essex.ac.uk/ulsc/bhps/>.
16Information on the MCS is availabe at <http://www.cls.ioe.ac.uk/studies.asp?section=000100020001>.
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the sense that it follows one birth cohort over time), it offers information only on one child

per household, and thus cannot be used to estimate FE or FE-IV models to control for

family-specific heterogeneity and the presence of dynamic effects.

The third source of data comes from the fifth cycle (1995) of the National Survey of

Family Growth (NSFG). This collects data on a nationally representative sample of US

women aged 15–44, who report their complete fertility and pregnancy histories. The NSFG

data therefore are retrospective (for both outcomes and parental inputs) and contain little

information on father’s behavior, but are longitudinal and cover a large sample of mothers

and children.17 We restrict our analysis to a sample of 12,166 singleton births dating from

the early 1970s to 1995 and 6,153 mothers.

Measures

Our two measures of birth outcomes are birth weight in kilograms and fetal growth (that

is, birth weight in grams divided by gestation length in weeks). By examining them sepa-

rately, we should be able to isolate factors that affect weight at birth by simply shortening

gestation length from factors that act upon the rate of growth of the fetus at any given

point in time. We also analyzed gestation and found results that are strongly consistent

with those reported here. To save space, therefore, the estimates on gestation are not

shown.

Figure 1 presents the distributions of the two birth outcomes by sample. Each measure

has been regression adjusted, netting out year and quarter of birth effects, so that each

has a mean of zero by construction. Although the three data sources are different in sam-

pling, data collection and period coverage, the birth outcome distributions are remarkably

close. Figure 2 plots the means of regression-adjusted birth weight by week of gestation.

Again, the pictures are very similar across data sources. The NSFG data exhibit slightly

greater birth weight at any given gestation length, especially between weeks 30 and 34, but

the differences are never statistically significant at conventional levels. Table 1 confirms

the similarity in birth outcomes across samples, irrespective of whether we look at the

regression-adjusted measures or not, and also in terms of the proportion of children born

at low birth weight (which is defined as a birth weight of less than 2500 grams). These

summary statistics are close to those reported in most of the existing studies reviewed

earlier (e.g., Currie and Cole 1993; Rosenzweig and Wolpin 1995; Almond et al. 2005;

17Complete information and documentation on the fifth cycle of the NSFG can be found at
<http://www.cdc.gov/nchs/about/major/nsfg/>.
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Abrevaya 2006; Black et al. 2007; Tominey 2007).18

We examine the effect of four inputs on birth weight and fetal growth. The inputs,

which are likely to be correlated with the endowment variables as in (11), are mother’s age

at birth, whether the mother smoked during pregnancy, mother’s employment patterns

during pregnancy (whether she stopped working or took maternity leave less than one

month before the birth, or between 1 and 2 months before the birth, or 3 or more months

before the birth, or she did not work during pregnancy),19 and parity (whether the child

is firstborn or not). In all regressions, we also control for the child’s sex. Our primary

focus is on maternal smoking and labor supply. A number of other commonly used inputs

are not available in our two longitudinal data sources but only in the MCS, and are

thus excluded from our main empirical analyses. These are the mother’s weight just

before pregnancy, whether the mother consumed alcoholic beverages during pregnancy,

and whether she obtained prenatal care in the first trimester of the pregnancy. We have

however performed various robustness checks with the MCS sample in which these other

inputs have been included too. We shall return to this issue in Section 6.A. Father’s

smoking during pregnancy is another potentially important determinant of birth outcomes

which will be analyzed in Section 6.D. Finally, we have re-estimated the FE-IV model on

the NSFG data including also spacing between two births, that is, for births after the first,

the interval in weeks between the last birth and the conception of the current birth, which

can be identified separately from the difference in mother’s age only if there are mothers

with three or more births. But since this input was never statistically significant and did

not alter any of our results, it has been dropped from the analyses reported below.

Despite the similarities in outcomes, our three data sources reveal clear differences in

parental inputs. Table 1 shows that between 23 and 26 percent of British mothers smoked

during pregnancy while only 13 percent of their US counterparts did so. The British figures

compare well with existing statistics from other UK sources (e.g., Tominey [2007] which

uses data from the 1958 National Child Development Study). The US figure, instead, is

substantially lower than those reported in Currie and Cole (1993), Rosenzweig and Wolpin

(1995) and Almond et al. (2005), although it is in line with the statistics presented in

Abrevaya (2006).20 Father’s smoking prevalence during pregnancy, which is available only

18Note that only 6–7 percent of all births in the three samples are low birth weight. The use of quantile
regression methods might be useful (Abrevaya and Dahl 2005). But, with our data sources, uncovering
nonlinear effects at the low end of the birth weight distribution (especially in the region of low birth
weight) will come at the cost of very small sample sizes. In addition, applying our FE-IV estimator to
quantile regression techniques is not straightforward and may be an interesting area for future research.

19Defining job interruption on the basis of gestation weeks leads to identical results.
20In the fifth cycle of the NSFG, pregnancy-specific smoking status of the mother is collected retrospec-
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for the two British samples, is roughly comparable to maternal smoking and involves 23

and 29 percent of births in the BHPS and the MCS, respectively.

Mother’s employment patterns during pregnancy differ both between the BHPS and

MCS samples, possibly reflecting secular differences given by the different time periods

covered in the two surveys as well as differences in data collection, and between the British

and US data, possibly reflecting time differences and country differences in labor market

choices and maternity leave legislation. While 16 percent of the BHPS children had their

mother working up to the month before birth, the corresponding figures are 30 and 24

percent for MCS and NSFG children, respectively. Conversely, about half of the children

in the NSFG had a nonworking mother for the entire pregnancy as opposed to two-fifths

in the BHPS and one-third in the MCS. The US data refer to births that occurred several

years prior to the 1995 interview, and some might refer to a time when mothers had

a slightly weaker labor market attachment or suffer from greater recall problems. In

addition, for about one-fifth of the BHPS sample and one-eighth of the NSFG sample, we

cannot precisely determine maternal employment status during pregnancy, and this may

drive some of the cross-national discrepancies. In the sensitivity tests discussed in Section

6, therefore, we will check whether excluding cases with missing maternal employment

information leads to different results or not.

Although the three data sources display comparable child sex distributions, with roughly

each sample being equally split between boys and girls, there are notable differences along

the other inputs. On average, the BHPS mothers are almost three and a half years older at

birth than their NSFG counterparts, perhaps reflecting the longer horizon over which the

women in the US sample had to recollect and report their fertility histories. However, mean

age at birth in the BHPS sample compares well with the corresponding figures reported in

Tominey (2007), while the NSFG figure is in line with the statistics shown in Datar et al.

(2006) for mothers in the 1979 National Longitudinal Survey of Youth. The MCS mothers

are the oldest, but this may reflect the fact that the MCS information is collected only

in relation to the cohort child rather than all children in a given household. The same

differences in sampling procedures might help explain the differences in the proportion of

firstborn across samples.

As mentioned earlier, we use a set of other potentially relevant inputs, which however

tively but only for births that occurred between 1991 and 1995. Our smoking status variable, therefore,
is based on the detailed smoking history information which is available for all births. Because of this, we
cannot rule out recall problems and measurement errors which could lead to a downward bias of our effect
estimates. Our smoking estimates may then represent a lower bound of the true effects.
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can only be found in the MCS data. More than four-fifth of the MCS mothers obtained

prenatal care in the first trimester of pregnancy, a figure that is greater than that reported

in Rosenzweig and Wolpin (1995) but is close to those presented in Currie and Gruber

(1996) and Abrevaya (2006). Less than 1 percent of mothers drank alcoholic beverages

every day during pregnancy, while another 8 percent drank regularly every week, and over

70 percent consumed no alcohol during pregnancy. These figures are in line with those

presented in Currie and Cole (1993), Rosenzweig and Wolpin (1995), and Datar et al.

(2006).21 The mean maternal Body Mass Index (BMI) before pregnancy was close to 24

(s.d.=4.4) corresponding to an average weight of about 63.8 kilograms, approximately 5

kilograms more than the average weight of the NLSY sample analyzed by Rosenzweig and

Wolpin (1995).

Finally, in terms of postnatal investments, we shall focus on breastfeeding, using only

the NSFG sample.22 Less than half of American children are breastfed and, conditional

on initiation, they are breastfed for about 25 weeks. These figures compare well with the

existing statistics presented in U.S. Department of Health and Human Services (2000), as

well as with the data described in Datar et al. (2006) and in the exhaustive survey by Ip

et al. (2007).

6. Results

A. Baseline Estimates of the Effect of Prenatal Inputs on Birth Outcomes

Table 2 presents the estimated effects of maternal smoking and labor supply during preg-

nancy on birth weight and fetal growth, using ordinary least squares and mother fixed

effects models. Each model is estimated separately for the three different data sets. All

specifications also include the other inputs discussed in the previous section, and the cross-

sectional models additionally control for mother’s education and ethnicity.

The OLS estimates reveal that smoking during pregnancy reduces birth weight of

British children by 190 and 200 grams according to the BHPS and MCS samples, respec-

tively. These estimates correspond to about one-third of the relevant standard deviations

21In the next section, we will report results from specifications in which there is only one maternal
drinking variable (mother drank every day). The other variables (mother drank regularly every week,
every month, or less, or consumed no alcohol during pregnancy) were never statistically significant, and
their inclusion never affected our main results.

22Breastfeeding information is also available in the MCS. This, however, is not used due to its cross-
sectional nature. As a robustness check, cross-sectional estimates obtained from the MCS data were similar
to comparable cross-sectional estimates found with the NSFG sample. For space limitation, such results
are not reported.
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and are largely comparable to those presented in the medical literature (Butler et al. 1972;

Bouckaert 2000). Smoking reduces also fetal growth by 4.1 to 4.8 grams per week. Such ef-

fects line up well with the birth weight estimates, as they imply 170–190 gram birth weight

reduction at the average gestation length. This indicates that smoking is negatively related

to actual growth in utero, and does not simply affect gestation (Kramer 1987).

In the NSFG sample, the cross-sectional estimates of the effect of smoking give us a

similar picture, although the estimated impacts are smaller than in the UK with a reduction

in birth weight of 140 grams and a reduction in fetal growth of 3.6 grams per week (or

one-fifth of the corresponding standard deviations). These smaller impacts may be partly

driven by the larger measurement errors affecting the smoking variable in the NSFG. In any

case, such estimates compare favorably with the existing US evidence, falling well within

the 80–160 gram range reported in Rosenzweig and Wolpin (1995), the 100–150 gram range

found by Abrevaya (2006), and the estimates shown in Currie and Cole (1993).

Controlling for the possible influence of mother-specific unobservable components with

the within-mother fixed effects estimator does not affect the smoking estimates in either

the BHPS or the NSFG, regardless of the outcome. This stability is in contrast with

the evidence reported in Rosenzweig and Wolpin (1995) and Abrevaya (2006), who find

larger estimates in absolute value from cross-sectional models than from FE-sibling models.

Our NSFG sample is substantially smaller than the samples from the federal natality data

estimated by Abrevaya, but it does not suffer from the potential drawbacks of the matching

strategies used in that study to construct a data set containing mothers with multiple

births. In relation to Rosenzweig and Wolpin, our sample is larger than their NLYS

sample, while our OLS specifications include a greater set of covariates, in the attempt

to net out the potential influence of confounding factors (such as race and education). In

addition, the fact that the same qualitative results are found with the BHPS, which does

not collect input information retrospectively and thus may have fewer measurement error

problems, gives our results further statistical reliability.

Table 2 shows that children whose mothers always worked during pregnancy or took less

than four weeks of leave before birth are born lighter and experience smaller fetal growth.

In the BHPS sample, these results are large (up to two-fifth of a standard deviation)

and robust to the inclusion of unobserved mother fixed effects. The US estimates differ,

indicating that only work interruptions between one and two months before birth lead to

a 60 gram gain in birth weight and to less than one gram gain in fetal growth (and this
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latter impact is significant only in the OLS model).23 The greater responsiveness of BHPS

children’s birth outcomes to their mothers’ work interruptions may be suggestive of the

statutory maternity leave conditions offered to pregnant women which, over our sample

period, were likely to be more favorable to British mothers (Waldfogel 1998). Of course,

the lower NSFG estimates might simply reflect measurement error that is likely to affect

the US sample more due to its retrospective collection of input information.

All specifications also include mother’s age and age squared, and dummy variables for

child sex and firstborn. To save space, these estimates are not reported, but, for the sake

of completeness, they are briefly discussed here. As found in earlier research, boys are

between 115 and 150 grams heavier at birth than girls, and have a greater fetal growth

of about 3–4 grams per week (Currie and Cole 1993; Abrevaya 2006). Such estimates are

significant in all samples and for both birth outcomes. Being the firstborn child is typically

associated with less favorable birth outcomes: firstborn children are estimated to weigh

between 100 and 130 grams less than their higher-order siblings in both British samples,

while the firstborn penalty is 40–70 grams and statistically insignificant in the NSFG. In

the case of mother’s age at birth, we find different results depending on estimation method

and data source. In both MCS and BHPS samples, there is never evidence of an age effect.

In the NSFG sample, instead, the OLS estimates indicate an age effect on both outcomes

(especially on birth weight, with a p-value of the joint significance test of 0.013) and such

that birth weight and fetal growth increase in mother’s age at birth up to about age 28

and declines thereafter. These effects, however, are not robust to the inclusion of mother-

specific fixed effects. Such results are in slight contrast with those reported by Rosenzweig

and Wolpin (1995) but very much in line with those shown in Currie and Cole (1993) and

Tominey (2007).

Finally, as mentioned in Section 5, we control for three other prenatal inputs (alcohol

consumption, antenatal care, and mother’s BMI before pregnancy) that can only be ob-

served in the MCS, to check whether the effects of maternal smoking and labor supply vary

or not. The OLS estimates are shown in Appendix Table A1. Drinking alcoholic beverages

every day during pregnancy leads to worse birth outcomes (although these associations are

23As mentioned in Section 5, we checked whether excluding the cases with missing maternal employment
information leads to different results or not. Unsurprisingly, the BHPS and NSFG sample sizes get smaller
(943 and 9,255 observations in the two samples respectively), but the estimates on the labor supply
variables remain unaltered, irrespective of outcome and sample. The only important change refers to
smoking, whose effect becomes slightly weaker and insignificant in the case of the BHPS sample (with
an estimate of -0.158 (s.e.=0.111) from the FE model), mainly as a result of greater standard errors (an
increase that, in turns, may be driven by the reduced sample size). This pattern, however, is not observed
in the NSFG sample.
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not always statistically significant at conventional levels),24 mothers with a greater BMI

tend to have significantly heavier children, while antenatal care in the first trimester does

not affect birth outcomes. F -tests of the hypothesis that the effects of such additional

inputs are jointly zero are rejected, mainly because of the strong influence of BMI. But

none of the results in Table 2 are sensitive to the inclusion of these three additional inputs.

For instance, controlling for them jointly reduces the MCS smoking estimates in absolute

value by 1 percent of a standard deviation for both birth weight and fetal growth. There-

fore, even though the MCS cross-sectional estimates control neither for complex dynamic

family behavior related to unobservables nor for possible influences of mother-specific fixed

effects, they suggest that omitting such additional inputs is likely to generate only limited

biases in the estimated responses of interest.

B. Dynamic Responses

Table 3 reports the estimates obtained from the FE-IV sibling model using the NSFG sam-

ple. The table contains the estimates of the production function parameters (1) (similar

to those discussed earlier), the endowment covariance components implied by the unob-

served mother-specific fixed effects shared among siblings, and the behavioral parameters

which govern the allocation rule (11) and underpin parents’ dynamic responses. For each

outcome, we report two sets of estimates, one obtained from a fully unrestricted specifica-

tion (column (i)) and another one in which all the statistically insignificant estimates of

the endowment covariances from the unrestricted specification are set equal to zero in the

attempt to improve estimation efficiency (column (ii)).

The table reveals that the production function parameter estimates of prenatal mother’s

smoking and labor supply are very similar to those of the FE model reported in Table 2.

We always accept the hypothesis that the two models produce estimates of the effects of

the direct inputs that are the same. Notice, however, that the FE-IV point estimates are

greater in absolute value than the corresponding FE estimates, especially when they are

statistically significant. This indicates that parents might sequentially respond to their

children’s endowments, even though such responses are not strong enough to alter the

estimates of the production function parameters.

This conjecture is confirmed by the estimated correlations between either smoking or

24Other sensitivity checks, using either different drinking indicators or one dummy variable for mothers
who did not consume alcohol during pregnancy, led to similar or even weaker results on drinking. Irre-
spective of the specification, the main inferences drawn from Table A1 do not change. Currie and Cole
(1993) report insignificant negative associations of mother’s drinking over the 12 months before birth and
birth weight, and these range between 5 and 85 grams.
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labor supply variables and the birth weight and fetal growth endowment components, net

of the effects of all the other prenatal inputs. Women with a high endowment are less

likely to smoke and more likely to stop working one to two months before birth during

their first three pregnancies (that is, smoking-µ covariances are negative and the work

interruption-µ covariances are positive). In addition, among mothers with the same input-

µ correlations, those with a high-φ first or second child are less likely to smoke and more

likely to take some maternity leave during subsequent pregnancies. These effects are always

statistically significant; in specification (i), for example, the relevant chi-square statistics

with 12 degrees of freedom are 27.8 and 29.1 for birth weight and fetal growth respectively.

Such correlations, therefore, provide strong evidence on the presence of parents’ dynamic

responses to child idiosyncratic endowments. From the model developed in Section 4, they

can be interpreted in terms of parents’ equity concerns rather than in terms of efficiency

arguments (Rosenzweig 1986 and Wolpin 1988).

A further (statistical) way of gauging the importance of dynamic responses is through

the goodness of fit tests that are presented at the bottom of Table 3. Both the OLS

and FE-sibling models are hierarchically nested in the fixed-effects sibling instrumental

variables model, and thus chi-square tests on the validity of the restrictions imposed by the

two nested alternatives can be computed straightforwardly. Irrespective of birth outcome,

the results indicate rejection of the restrictions associated with both the OLS and FE

estimators relative to the FE-IV estimator. Thus, models that allow for family fixed

effects, child-specific endowment heterogeneity and intrahousehold sequential responses to

child endowments tend to dominate standard FE-sibling and cross-sectional models.

Table 4 applies the FE-IV estimation procedure to the BHPS data. As the number

of three-child families is much smaller in this sample, the table presents the smoking and

labor supply estimates obtained on the two-child family subsample.25 We find results that

echo those from the NSFG sample, albeit with larger standard errors for many estimates.

In particular, the use of the FE-IV sibling estimator yields results on prenatal smoking and

labor supply patterns that are similar to those of the FE estimator for both birth outcomes.

This is true not only when the FE-IV estimates are compared to the FE estimates of

Table 2, but also when they are compared to the FE estimates obtained on the BHPS

25The advantage of this selection is that we can estimate a smaller parameter set without loss of gen-
erality. As a check on robustness, however, we re-estimated the model on the whole sample, that is,
including the 50 extra observations on three-child households. This estimation was performed with an
extremely parsimonious model containing only one endogenous input at a time, and repeated separately
for all inputs. The estimates are quantitatively very close to those reported in Table 4, and are thus not
shown for convenience.
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subsample consisting only of two-child families. Furthermore, the estimated endowment

covariances suggest that parents’ intrahousehold allocations are primarily driven by equity

considerations. Parents, therefore, tend to shift resources to prenatal investments in the

second child when the first child’s birth endowment is larger.

A broadly similar picture emerges when we analyze the effect of prenatal inputs on

the probability of a child being born at low birth weight (birth weight less than 2500

grams). Low birth weight has been found to be a powerful predictor of several adverse

health and economic outcomes, and not just around birth but also later in life (Behrman

and Rosenzweig 2004; Almond et al. 2005; Black et al. 2007). Exploring the existence of

differential nonlinear effects at other points of the birth weight distribution is intriguing

but beyond the scope of this paper and is left for future research.

The low birth weight results from the three samples and the three estimators are re-

ported in Appendix Table A2. These are obtained from specifications that are identical

to those used for birth weight and fetal growth. Smoking during pregnancy significantly

increases the risk of low birth weight by 4 percentage points (a 70 percent increase) in the

cross-sectional model of the MCS, by 6-11 percentage points in the BHPS (80-150 percent),

and by 3-5 percentage points (45-65 percent) in the NSFG. But, contrary to the cases of

birth weight and fetal growth, we find no evidence of an impact of mother’s work inter-

ruptions during pregnancy, net of inputs and controls. Although the estimated effects are

in the same direction as those found for the other two birth outcomes, they are never sta-

tistically significant and we cannot reject the hypothesis that they are jointly insignificant

at conventional statistical levels. The estimates, instead, provide evidence on the validity

of the restrictions imposed by the FE-IV model against the nested FE-sibling and cross-

sectional models. Again, we find support for dynamic intrafamily investments that are

equitable rather than efficient, and these effects are statistically significant (χ2(4) = 16.6

in the BHPS sample, and χ2(12) = 28.7 in the NSFG sample).

In sum, the more complex model of family behavior, which controls for the possible

influence of mother-specific unobservables and permits maternal behavior to adjust to prior

birth outcomes net of inputs, yields estimates of the production function parameters that

are not very different from those of the FE-sibling and OLS estimators. While prenatal

smoking is invariably found to worsen birth outcomes, the results on stopping work during

pregnancy are mixed. There is evidence of a positive effect on birth weight and fetal

growth of interrupting work between one and two months before pregnancy, although the

magnitude of this effect is smaller than that estimated for smoking. Other labor supply
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patterns (from working during the whole pregnancy to staying out of the labor market

altogether) are never significantly associated with birth outcomes. Finally, from the fixed-

effects instrumental variables estimator on both the NSFG and BHPS samples, we find

strong evidence in support of the notion that parents have equity concerns when making

intrahousehold allocation decisions about their children’s wellbeing.

C. Heterogeneous Input Effects

It is possible that the birth outcome responses to mother’s prenatal smoking and labor

supply vary by observable characteristics of the mother. To allow for this, we estimate

OLS, FE, and FE-IV (fully unrestricted) models that distinguish mothers on the basis of

education and age at first birth.26,27 The results from these regressions are in Table 5, which,

for the sake of brevity, presents only the production function parameter estimates on fetal

growth from the BHPS and NSFG samples and the chi-square tests of joint significance of

the input-µ correlations and of the input-φ correlations that capture the sequential nature

of parents’ decision making.

The FE and FE-IV estimates reveal that the negative effect of maternal smoking is pre-

dominantly observed among children whose mothers gained low educational qualifications

(panel A) or were relatively young at the birth of their first child (panel B).28 However,

the relatively large standard errors around the estimates of highly educated and older

mothers do not allow us to reject the hypothesis that the estimated parameters are equal.

For example, the test that the FE-IV smoking estimate for low-education mothers in the

BHPS sample is the same as the corresponding estimate for high-education mothers can

be rejected with a p-value of 0.506.

Stopping work during pregnancy tends to improve fetal growth more for low-education

mothers than for highly educated mothers, especially among British women.29 This can

26In the BHPS sample, mothers with low education are those with O-level (or equivalent) qualifications
or below, while mothers with high education are mothers with A-level qualifications or above. In the
NSFG sample, low education are those with high school qualifications or below, while mothers with high
education are mothers with some college qualifications or above. The age cut-off is set at 24 years. Both
categorizations stratify the two samples into subgroups with relatively comparable numbers of observations

27Ethnicity is another interesting factor, but distinguishing our samples on the basis of mother’s race
leads to very small datasets, making it impossible to perform FE and FE-IV estimations on nonwhites.
Distinguishing children by sex (that is, separating families with only boys from families with only girls
and families with both boys and girls) is likely to offer insights on parental preferences for sons. We leave
this analysis for future research.

28The age estimates are fairly robust to the choice of other age cut-offs. But estimations on younger
(e.g., below age 19 at first birth) or older (e.g., above age 35) subsamples cannot be performed due to
their small size.

29The only case in which we can reject equality of the parameter estimates is for the FE-IV estimates
in the BHPS sample of stopping work between one and two months before pregnancy (p-value=0.027).
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reflect an occupational gradient, whereby low-education women are more likely to be en-

gaged in physically demanding jobs and, in line with the available biomedical evidence

(Meyer et al. 2007), might obtain greater infant-health benefits from job interruptions

before birth. We also find evidence that job interruptions are more beneficial to older

women in the BHPS but not in the NSFG, in which we cannot detect any labor supply

heterogeneity along the age divide. Again, fatigue and stress might be critical ingredients

which can be more relevant to older women.

The estimated endowment correlations from the FE-IV models (not shown) are in

line with the findings reported earlier. In particular, low-education women with a high

endowment (positive input-µ correlations) are less likely to smoke and more likely to stop

working. All such correlations are jointly significant, albeit only weakly in the case of

younger women in the BHPS and older women in the NSFG. Moreover, among mothers

with the same input-µ, those with a high-φ first or second child are less likely to smoke and

more likely to take some maternity leave during subsequent pregnancies. Input allocations

across children in the same household, therefore, are likely to be driven by equity concerns.

Such dynamic effects are strong across all groups, with the exception of children born to

highly educated and older women in the BHPS sample.

D. The Effect of Father’s Smoking

So far, we have only looked at maternal inputs. Fathers, however, can affect birth out-

comes in a number of ways. Their biological influences (for instance, through fitness, age,

healthiness, height, and weight) are obvious (e.g., Yang et al. 2007), but these are not

the focus of our analysis, partly because they are not available in the data sources under

analysis. Fathers can also affect birth outcomes through their behavior. For example,

economically successful fathers may afford to buy higher-quality food for their partners

who can therefore enjoy better diets while pregnant. But father’s income is strongly cor-

related with mother’s education (which we have already analyzed in Section 6.C), while

the variation in father’s labor supply within households is too limited to be identified with

FE or FE-IV sibling models. In what follows, therefore, we focus on one specific prenatal

paternal behavior, i.e. smoking, which has been seldom analyzed and for which we have

inconclusive results (see the discussion in Section 2).

Father’s smoking during pregnancy is believed to generate indirect nicotine exposure

(Hennessy and Alberman 1998), which may add to the direct maternal impact documented
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earlier.30 Using the two British samples that contain father’s smoking information, we

performed two sets of new regressions. The results (not shown) from the first set of

regressions, in which the father’s smoking variable replaced mother’s smoking, point to a

negative effect of father’s smoking on birth weight and fetal growth. This effect, however, is

at most half of the magnitude in absolute value of the effect of mother’s smoking reported

in Tables 2 and 4, and is only significant in the MCS sample. The results from the second

set of regressions, in which both father’s smoking and mother’s smoking variables are

included, are reported in Appendix Table A3. While the effect of maternal smoking remains

significant and as strong as it was before, that of paternal smoking becomes smaller and

never significant in the BHPS sample, irrespective of estimator and outcome. Moreover, in

the FE-IV model, none of the endowment covariance estimates related to father’s smoking

are statistically significant, with the chi-square statistic with two degrees of freedom on the

smoking-µ correlations being 2.13, and the t-statistic on the smoking-φ correlation being

0.89. In the MCS sample, instead, father’s smoking does have detrimental associations

with both birth outcomes (–40 grams and –0.93 grams per week on birth weight and fetal

growth, respectively). But these effects are tenuous, as they emerge only in cross-sectional

models which do not control for family-specific unobservable components or for intrafamily

sequential responses.

An alternative way of using father’s smoking in our context is as an instrumental

variable for maternal smoking rather than as a direct input in the infant health production

function (1). This may be justified by measurement error problems (although, in the

BHPS, mother’s smoking has not been collected retrospectively) which, in fixed effects

models, might accentuate the attenuation bias in the maternal smoking effect (Griliches

1979). This instrumentation can be justified on the basis that there might be strong

positive marital sorting on smoking habits (Kurzban and Weeden 2005), and that smoking

by a pregnant woman’s partner is likely to be a key predictor of her current smoking status

(Penn and Owen 2002). If this is the case, having a partner who smokes may, for instance,

affect the probability of quitting or starting smoking during pregnancy. In the spirit of

first-stage regressions, we calculated odds ratios along a number of traits for couples in

the BHPS and MCS samples. For a smoking woman in the BHPS sample, the odds of

being married to a smoking partner are 9.6 times (t-value=10.51) greater than those of

being matched to a partner who does not smoke. This odds ratio is virtually identical

30A large medical literature has documented the health risks associated with exposure to environmental
tobacco smoke or passive smoking, especially among children (e.g., Gergen et al. 1998; Lam et al. 2001).
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to that on age and almost three times larger than the corresponding one on education

(for which we have an odds ratio of 3.6, t-value=7.53). These results emerge also after a

standard set of demographic controls are held constant, and are found in the MCS sample

too. Smoking status of the male partner therefore is strongly positively associated with

mother’s smoking. Appendix C shows the additional population moments that characterize

the two-child family case in the presence of one input and one new instrumental variable

(which is allowed to be correlated with µ but, by definition, is uncorrelated with φ for all

birth orders).

The FE-IV results obtained from regressions on the two-child family subsample of

the BHPS and in which father’s prenatal smoking is used as the additional instrumental

variable are reported in Table 6 (column (ii)). Because we have a parsimonious specification

in which maternal employment status has been redefined as a dichotomous variable, we

also present the estimates from FE-IV models which exclude father’s smoking and do

not treat it as an instrumental variable (column (i)). As revealed by the overidentifying

restriction tests at the bottom of the table, we cannot reject father’s smoking status as a

valid instrument for mother’s smoking. The coefficients on all the endowment covariances

and intrafamily responses remain essentially the same as those presented above, as do our

inferences about the other (not reported) inputs. Interestingly, the estimated impact of

mother’s smoking on both birth outcomes increases in absolute value by about 20 percent,

while that of job interruptions rises by nearly one third. These results are consistent with

the presence of measurement error in the mother’s smoking variable. Therefore, although

the role of father’s smoking as a direct input is arguably negligible, its correlation with

maternal smoking makes it a powerful instrument.

E. Selectivity Issues

In line with the dynamic model of Section 4, our results indicate that intrafamily resource

allocations depend on child-specific endowments and that prenatal investment decisions on

higher-order pregnancies are affected by the idiosyncratic endowments of all prior children.

The identification of such responses relies on the estimation of fixed-effects instrumental-

variables sibling models, which make use of longitudinal information on multiple children

within a family. If the decision of having another birth depends on the child-specific

endowments of all prior births (for instance, women with better endowed children may be

more inclined to have additional births), then the sample of mothers with two or more

children that is required to estimate FE-IV models is likely to be selective.
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To ascertain the extent of this selectivity issue, we distinguished NSFG families with

only one child from families with two or more children. Conditional on having one child,

we then tried to see whether or not the probability of having at least one additional birth

differs by the firstborn’s observed birth weight (fetal growth) after controlling for a set

of standard demographic variables, such as childs sex, and mother’s age, education and

race.31 The results (not shown for convenience) reveal that this type of selectivity, while

it cannot be ruled out, is likely to play a very limited role. Although first born babies

of mothers who had two or more children were heavier than their singleton counterparts,

the difference in the effect of observed birth weight on subsequent fertility is always very

small and statically significant only in the case of birth weight, but not in the case of fetal

growth or low birth weight as measures of observed human capital at birth. For example,

if a woman has a first baby who weighs 500 grams more than the average first child in the

population (which, in the NSFG sample, roughly corresponds to a sizeable increase of one

standard deviation over the mean birth weight), she is only 1.1 percentage points more

likely to have an additional birth than the mother of the average-weight child (an increase

of 1.6 percent). When we look at the fertility response to either fetal growth of the first

child or to a birth weight below 2,500 grams of the first child, we find even smaller and

insignificant effects on the probability of having an additional child.

A different source of selectivity is driven by censoring. Many of the mothers in our

longitudinal samples who are observed with only one child might have subsequent births,

but only after the end of the survey period. The estimates of the technology parameters and

the dynamic effects may then change as more of such women and their children are drawn

into our samples, provided they alter the existing interfamily and intrafamily heterogeneity

distributions. Accordingly, we re-estimated the OLS, FE and FE-IV models for each birth

outcome on a new NSFG subsample that excluded all mothers aged 34 or less at the time

of interview. This new sample, which contains about one-half of the children and mothers

in the original sample, should be less affected by survey censoring problems. For both

birth outcomes, the FE-IV effects of the maternal smoking and labor supply are between 1

and 7 percent greater in absolute value in the new subsample than in the original sample

(shown in Table 3), and the differences are never statistically significant. For example, the

31Notice that this assessment cannot be made using the first child’s idiosyncratic endowment (rather than
his/her observed birth weight or fetal growth), because this stochastic component can only be estimated
on families with multiple children through FE sibling or FE-IV sibling procedures, unless one is willing
to use cross-sectional estimates of the idiosyncratic health shocks, which ignore either or both permanent
unobserved health factors that vary across families and parents’ dynamic adjustments to child-specific
endowments.
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coefficients (s.e.) on the maternal smoking variable are -0.158 (0.042) and -3.593 (1.604) for

birth weight and fetal growth, respectively. This similarity holds true for the other inputs,

as does the overall pattern of estimation precision. Finally, the estimates on the input-µ

and input-φ correlations remain essentially the same, leaving unchanged our interpretation

on parental dynamic adjustments to child-specific idiosyncratic shocks.

7. Postnatal Investments

Our focus so far has been on prenatal investments. In line with the discussions in Sections

2 and 3, we have documented that parents take account of previous birth outcomes by

changing the choice of prenatal inputs over subsequent pregnancies. In terms of the inputs

we have analyzed, and especially mother’s smoking and job interruptions, our estimates

reveal that parents respond to idiosyncratic endowment heterogeneity in a way that is

consistent with equity concerns.

But parents make continuous postnatal investments in a child, which of course are

chosen after parents have observed the idiosyncratic birth weight endowment of that child.

As shown in (8), however, the impact of that endowment is hard to sign, even without

efficiency motives. Both equity and efficiency considerations may drive intrahousehold

allocation decisions after the birth of each child, and these will tend to have countervailing

effects on birth (and later) outcomes. In addition, dynamic effects of postnatal investments

cannot be identified structurally using appropriate variants of the production function

framework of (2) and (3) and the moment conditions that such a structure implies (see

Appendix B).

In any case, postnatal investment decisions and their consequences on early child out-

comes are the subject of much social science research and have become central to many

policy initiatives (see the Introduction; Cunha and Heckman [2007] and references therein).

Despite the caveats we have raised, therefore, it is useful to analyze postnatal investments

and, in particular, see whether equity concerns continue to prevail. It is with this focus

in mind that we undertake an analysis of breastfeeding decisions (initiation and duration)

using the NSFG sample.32 Our primary interest is different from what we have done so

far: rather than estimating production functions as given in (2) and (3), our objective is

to estimate linear resource allocation decisions similar to (12).

To do this, we first estimate φ1 as the residual from a birth weight FE-IV regression (as

32As mentioned in Section 2, one interesting feature of breastfeeding is that it is a child-specific invest-
ment, while other postnatal activities (such as playing, reading, and visiting museums) may not be so
easily assignable to one child or the other.
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in Table 3, column [i]), which allow us to account for parental adjustment to endowment

shocks. We then estimate the following

Bij = αi0 +
i∑

k=1

αikCkj +
i−1∑

k=1

βikωkj +
i−1∑

k=1

ξikBkj + λi1φij + uij, (15)

where Bij denotes the breastfeeding decision on child (parity) i in family j, Ckj is a set

of characteristics of all children alive up to child i (e.g., sex), ωkj and Bkj indicate child

k’s birth weight and breastfeeding status, respectively, for all children preceding child i,

φij is child i’s idiosyncratic endowment, and uij is an i.i.d. error term. By estimating

this relationship separately for children of different parity, we allow all parameters to differ

across siblings according to their birth order. Notice that in the case of the first child,

neither birth weight nor breastfeeding status of earlier children can be accounted for and,

thus, equation (15) boils down to (12). Since we do not have time varying (child-specific)

information on y, which is part of the allocation rule (12) and its higher parity counterparts,

we also include maternal age at birth and its square and indicators of mother’s education

and race.

Similar reduced-form specifications have been estimated by Rosenzweig (1986) and

Rosenzweig and Wolpin (1988). The procedure used in Datar et al. (2006) instead is

different, as it excludes child-specific endowment shocks and considers only observed child-

specific birth weights as proxy measures of child endowment, net of mother’s fixed effects,

child and family characteristics and endogenous prenatal inputs.33 Following the discussion

of Section 4, a negative relationship between φi and Bi (i.e., negative values of λ1) and a

positive relationship between Bi and previous children’s birth weight (i.e., a positive value

of β1 for the second child, and positive values of β1 and β2 for the third child), and previous

children’s breastfeeding status (i.e., a positive value of ξ1 for the second child, and positive

values of ξ1 and ξ2 for the third child) will reveal evidence of equity concerns.

The OLS estimates of (15) are reported in Table 7. The first row shows that λ1 is always

negative and statistically significant (except in the case of breastfeeding duration for third

born children). The magnitude of such estimates, however, is very small. For example,

an unexpected additional 100 grams at birth for the first child (which corresponds to one

extra week of gestation at least) decreases the likelihood of breastfeeding that child by

only 0.3 percentage points (representing a decline of less than 1 percent over the average)

33Excluding the vector of shocks φij from (15) leads to estimates of β that are very similar to those
presented by Datar et al. (2006) for both breastfeeding decisions, even without accounting for prenatal
inputs. Again, these are quantitatively small but, as shown in (13) and (14), cannot be taken to infer
equity-efficiency motives in parents’ allocative decisions.
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and reduces breastfeeding duration by 1 day (far less than a 1 percent reduction). Results

for the second child are slightly larger, although they still imply relatively modest effects.

We also find a positive relationship between breastfeeding decisions on child i and previous

children’s birth weight (β1 and β2) and breastfeeding status (ξ1 and ξ2).

Mothers, therefore, appear to respond to endowment shocks across children while mak-

ing their postnatal breastfeeding decisions. As in the case of prenatal investments, such

responses are in line with a notion of intrafamily resource allocations motivated by equity

considerations, even though the reduced-form nature of the analysis does not fully warrant

this interpretation. In addition, albeit statistically significant, the estimated breastfeeding

responses are quantitatively small and may therefore have limited policy relevance. Be-

cause of the identification problems we have emphasized in relation to the analysis of all

postnatal investments, our results are only suggestive and, inevitably, more research on

these issues is needed.

8. Conclusion

This paper makes a number of contributions to the literature on intrahousehold resource al-

location decisions. We structurally estimate the impact of prenatal inputs on infant health

production functions which allow for within-family and across-family variation in health

endowments and for parental adjustments to idiosyncratic health shocks of their children.

Using economic theory, we suggest an interpretation of parents’ dynamic adjustments in

terms of equity/efficiency arguments. We also consider postnatal investments and their

role in shaping intrahousehold allocations by modeling their responses to idiosyncratic

health shocks at birth. The analysis is performed on two countries (the United States

and Britain) with three large-scale representative samples, which have different relative

advantages and complementarities.

Our estimates indicate that maternal smoking during pregnancy reduces birth weight

by 140-160 grams in the US sample and by 190 grams in the British sample and reduces

fetal growth by about 4 grams per week in both countries. Work interruptions before

birth are beneficial, especially if taken in the last two months of pregnancy. Their positive

impact, however, is only one-half and one-quarter of the negative effect of smoking on

birth weight and fetal growth respectively among US mothers. Longer leaves appear to

be healthful for British babies (with an effect on birth outcomes that is comparable to

the effect of smoking in absolute value), a result that perhaps points at the role played

by longer maternity leaves in Britain over the sample period. There is a fair amount
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of estimate heterogeneity along mother’s age at birth and education. For example, the

negative effect of smoking is observed mainly among children whose mothers gained low

educational qualifications or were relatively young at the birth of their first child, while

work interruptions appear to improve birth outcomes more for low-education mothers,

especially among British women.

The impact of father’s smoking on birth outcomes represents at best only one-fifth of the

effect of mother’s smoking, and becomes negligible when intrafamily health heterogeneity

is taken into account. So, having two smoking parents does not translate into a double

health jeopardy for the infant, at least in terms of birth outcomes. But, when father’s

smoking is treated as an instrumental variable for maternal smoking rather than a direct

input, the effect of mother’s smoking on birth outcomes becomes 20 percent greater in

absolute value and the impact of mother’s time off work increases by another 30 percent.

This finding, which is consistent with the presence of measurement error in the mother’s

smoking variable, suggests that our earlier estimates of the effect of maternal smoking may

be lower bounds.

The results also indicate that there are child-specific components of unobservables that

sequentially affect parental behavior. In particular, there is evidence of parents’ choice over

prenatal inputs across siblings that is driven by equity considerations. This is important for

its distributional and policy consequences. If families have equal concerns towards their

offspring, the socioeconomic gradient in outcomes observed at later points of children’s

life may be driven more by variation between families than by variation within families.

With parents caring for equal opportunities given to all their children, transfer programs

and information campaigns directed towards particular types of household members (e.g.,

infants and pregnant working women) in particular households (e.g., young, poor or less

educated) are likely to be more effective than in economies in which parental investments

tend to exacerbate differences across siblings. This finding will also have implications for

the analysis of other later outcomes, such as child development and education, for which

intrahousehold allocations are conceivably responsive to child idiosyncratic endowments.

The finding that such unmeasured endowments are dynamically correlated to parental

inputs has also salient econometric implications, as it suggests that neither within-family

differencing nor instrumental variables techniques applied to cross-sectional data can in

isolation address the issues implied by dynamic family behavior. As more large-scale

surveys tend to include multiple siblings from the same household, it should be increasingly

straightforward to combine within-mother estimators with instrumental variables.
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The importance of parents’ dynamic responses to child-specific endowments emerges

also from the analysis of postnatal investments (breastfeeding), even though in this case

we do not estimate the impact of such investments on child outcomes but, in a reduced-

form fashion, their responsiveness to child-specific endowments. Maternal breastfeeding

decisions appear to respond to unanticipated outcomes in a way that is consistent with

equity arguments. In general, however, the magnitude of these effects is quantitatively

small. Whether equity concerns prevail in subsequent parental decisions (e.g., playing,

tutoring, and educational expenditures) is of paramount importance for policy and, to a

large extent, remains to be seen.

Several extensions of the analysis would be desirable. First, and as just mentioned,

other postnatal outcomes and parental decisions could be analyzed. This would allow

us to test if equity concerns apply to child outcomes that extend beyond birth, such as

cognitive/noncognitive development and schooling as well as child care decisions and fam-

ily disruptions (Cunha et al. 2006). Such outcomes and investments require a different

conceptual setup from the one used here and would have to hinge on different identifying

restrictions. Second, estimating our model on data from developing countries could provide

new assessments of issues related to son preference and intrafamily resource distribution

(Oster 2005). Third, in the context of prenatal inputs and infant health production func-

tions, combining information from birth registers, which provide nearly exact knowledge

of moments of the marginal distribution of birth weight, with our longitudinal samples is

likely to improve accuracy of estimation (Imbens and Lancaster 1994). This is likely to

be important especially in the case of the relatively small BHPS sample, for which the

gains from the use of marginal information could be substantial. Finally, formulating and

estimating a fully structural model (e.g., Keane and Wolpin 2001; Aguirregabiria and Mira

2007; Bernal and Keane 2008) in which parents optimally choose resources to allocate to

their offspring with endogenous fertility and birth spacing would enormously enhance our

insights into the role of the family in the intergenerational transmission of human capital

and our understanding of whether such intrafamily allocations are socially efficient.
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Appendix A

Additional Moment Equations in the Three-Child Family Case

Besides (2) and (3), there is a third production function for the third child, which in the case of
only one input, is given by: h3 = γx3 + µ + φ3. Using (2) and (3) and this new expression, the
extra moment equations that characterize this economy in addition to those reported in Section
3 are:

σ2
h3

= γ2σ2
x3

+ γσx3µ + σ2
µ + σ2

φ3
,

σh1h3 = γ2σ2
x1x3

+ γ(σx1µ + σx3µ) + γσx3φ1 + σ2
µ,

σh2h3 = γ2σx2x3 + γ(σx2µ + σx3µ) + γσx3φ2 + σ2
µ,

σh3x1 = γσx1x3 + σx1µ,

σh3x2 = γσx2x3 + σx2µ,

σh3x3 = γσ2
x3

+ σx3µ,

σh1x3 = γσx1x3 + σx3µ + σx3φ1 ,

σh2x3 = γσx2x3 + σx3µ + σx3φ2 .

As pointed out in Section 2, we have eight additional equations with only four additional unknown
parameters (σx3µ, σx3φ2 , σx3φ1 , σ

2
φ3

), so that the system is overidentified.

Appendix B

Moment Equations in the Case of Postnatal Investment

As in other models of postnatal investments in a child (e.g., Rosenzweig and Schultz 1983b;
Rosenzweig and Wolpin 1988), we also emphasize the importance of characteristics (inputs and
endowments) of children born prior to that child. We thus slightly modify the production func-
tions (2) and (3) in a three-child economy with only one input as follows (and, to keep notation
simple, other child-specific stochastic terms which could legitimately affect hi are excluded):

h1 = γb1 + µ + φ1, (A.1)

h2 = γb2 + δb1 + µ + φ2 + ηφ1, (A.2)

h3 = γb3 + δb2 + αb1 + µ + φ3 + ηφ2 + ϑφ1, (A.3)

where b is a postnatal input (such as breastfeeding), and each of the idiosyncratic endowments
φi (i=1,2,3) is known to parents when they make decisions on bi as well as when they make
decisions of subsequent children. Importantly, and differently from the production functions
(5a) and (5b) formulated in Section 4, the expressions (A.1)-(A.3) treat postnatal investments
independently of prenatal investments (xi in the notation used in the text) and are not affected
by observed birth outcomes at each parity (e.g., birth weight). If we allowed for such correlations
to be nonzero, the two-child family case with one postnatal input and one prenatal input would
then be characterized by 15 equations and 18 parameters, and, without further orthogonality
restrictions, it would not be identified. In any case, as the discussion below should clarify, the
system (A.1)-(A.3) is underidentified even when such simplifying orthogonality conditions are
imposed.
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The moment conditions that characterize the two-child case (A.1)-(A.2) are given by:

σ2
h1

= γ2σ2
b1 + γσb1µ + γσb1φ1 + σ2

µ + σ2
φ1

,

σ2
h2

= γ2σ2
b2 + δ2σ2

b1 + γδσb1b2 + γσb2µ + δσb1µ + γσb2φ2 + γησb2φ1 + δησb1φ1

+ ησφ1φ2 + σ2
µ + σ2

φ2
+ η2σ2

φ1
,

σh1h2 = γ2σb1b2 + γδσ2
b1 + (γ + δ)σb1µ + γσb2µ + γησb1φ1 + γσb2φ1 + δσb1φ1

+ σφ1φ2 + σ2
µ + ησ2

φ1
,

σh1b1 = γσ2
b1 + σb1µ + σb1φ1 ,

σh2b1 = γσb1b2 + δσ2
b1 + σb1µ + ησb1φ1 ,

σh1b2 = γσb1b2 + σb2µ + σb2φ1 ,

σh2b2 = γσ2
b2 + δσb1b2 + σb2µ + σb2φ2 + ησb2φ1 .

From these seven moment equations, it is not possible to recover the twelve unknown parameters
that characterize the population of two-child families {γ, δ, η, σ2

µ, σ2
φ1

, σ2
φ2

, σb1µ, σb2µ, σb1φ1 , σb2φ2 ,
σb2φ1 , σφ1φ2}. Notice that even if δ = η = 0 (that is, prior children’s endowments and inputs do
not directly affect subsequent children’s human capital production) or if σφ1φ2 = 0 (that is, the
child-specific endowment shocks are not correlated even if endowments are observed), the system
is still underidentified.

Considering the three-child family case and embedding (A.3) into the system lead to following
eight additional moment equations:

σ2
h3

= γ2σ2
b3 + δ2σ2

b2 + α2σ2
b1 + γδσb2b3 + αγσb1b3 + αδσb1b2 + γσb3µ + δσb2µ + ασb1µ

+ γσb3φ3 + γησb3φ2 + γϑσb3φ1 + δησb2φ2 + δϑσb2φ1 + αϑσb1φ1 + ηϑσφ1φ2

+ ϑσφ1φ3 + ησφ2φ3 + σ2
µ + σ2

φ3
+ η2σ2

φ2
+ ϑ2σ2

φ1
,

σh1h3 = γ2σb1b3 + γδσb1b2 + αγσ2
b1 + (α + γ)σb1µ + γσb3µ + δσb2µ + (α + γϑ)σb1φ1

+ γσb3φ1 + δσb2φ1 + ησφ1φ2 + σφ1φ3 + σ2
µ + ϑσ2

φ1
,

σh2h3 = γ2σb2b3 + γδσ2
b2 + αδσ2

b1 + (αγ + δ2)σb1b2 + γδσb1b3 + (α + δ)σb1µ + (γ + δ)σb2µ

+ γσb3µ + (α + δϑ)σb1φ1 + (γη + δ)σb2φ2 + (γϑ + δη)σb2φ1 + γησb3φ1 + γσb3φ2

+ (ϑ + η2)σφ1φ2 + ησφ1φ3 + σφ2φ3 + σ2
µ + ησ2

φ2
+ ηϑσ2

φ1
,

σh3b1 = γσb1b3 + δσb1b2 + ασ2
b1 + σb1µ + ϑσb1φ1 ,

σh3b2 = γσb2b3 + δσ2
b2 + ασb1b2 + σb2µ + ησb2φ2 + ϑσb2φ1 ,

σh3b3 = γσ2
b3δσb2b3 + αb1b3 + σb3µ + σb3φ3 + ησb3φ2 + ϑσb3φ1 ,

σh1b3 = γσb1b3 + σb3µ + σb3φ1 ,

σh2b3 = γσb2b3 + δσb1b3 + σb3µ + σb3φ2 + ησb3φ1 .

Despite the addition of these eight equations, we have nine extra parameters to estimate (α, ϑ, σ2
φ3

,
σb3µ, σb3φ3 , σb3φ2 , σb3φ1 , σφ1φ3 , σφ2φ3). This means that the system is underidentified (with fifteen
equations and twenty-one parameters). Even if prior children’s endowments are assumed not to
affect subsequent siblings’ human capital (that is, η = ϑ = 0) and child-specific endowments
shocks are uncorrelated (i.e., σφ1φ2 = σφ1φ3 = σφ2φ3 = 0), the system on three-child families
is still underidentified. Its identification will rest on other (even stronger) restrictions, e.g., the
assumption that inputs used to produce prior children’s human capital cannot affect outcomes of
subsequent children (i.e., both α and δ are zero) or, if they do affect outcomes, that their effects
are the same across children (α = δ).
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Appendix C

Population Moments in the Two-Child Family Case with One Input and One
Instrument

Consider the production functions (2)-(3) that characterize the two-child family case. In that
context, a child-specific instrumental variable, zi (i=1,2), is supposed to affect hi only through
its correlation with xi and µ but not directly. That is, zi enters in neither (2) nor (3), but its
correlations with hi place further moment restrictions on the population and represent other
orthogonality conditions. The new moment restrictions, which add to those already shown in
Section 3.2, are:

σh1z1 = γσx1z1 + σz1µ,

σh2z1 = γσx2z1 + σz1µ,

σh1z2 = γσx1z2 + σz2µ,

σh2z2 = γσx2z2 + σz1µ.

These are four new moment restrictions with only two additional parameters, σz1µ and σz2µ.
(The parameter γ entered also the other moment restrictions which have been presented in the
text.) Thus, in comparison to the case discussed in the text, we have eleven equations (seven
of which coincide with those shown in Section 3, and the other four are shown above) and nine
parameters, leaving us with two overidentifying restrictions. In the case of three-child families,
there are nine extra equations to be added to the original 15 equations implied by a production
function with one input (see Appendix A). Since only three parameters (σz1µ, σz2µ, σz3µ are added
to the original eleven parameters, this means we have 10 overidentifying restrictions to add. In
the empirical analysis reported in Section 6.D, however, we use the subsample with two-child
families only.
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Figure 1: Distribution of Birth Weight and Fetal Growth
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Notes: Kernel density estimates of regression adjusted measures of birth weight (kg) and fetal
growth (g/wks) in the BHPS, MCS and NSFG samples. Data obtained from the residuals
of OLS regressions of birth weight or fetal growth on year dummies and quarter of birth
dummies.

Figure 2: Average Birth Weight by Gestation
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Notes: Average birth weight by week of gestation for singleton births. Data obtained from the
residuals of OLS regressions of birth weight on year dummies and quarter of birth dummies.
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Table 1: Descriptive Statistics

BHPS MCS NSFG

Birth weight (kg) 3.321 3.382 3.349
(0.560) (0.564) (0.573)

Birth weight (kg, regression adjusted) 0.000 0.000 0.000
(0.557) (0.564) (0.572)

Fetal growth (g/wks) 83.731 85.107 86.082
(12.590) (12.827) (13.552)

Fetal growth in (g/wks, regression adjusted) 0.000 0.000 0.000
(12.513) (12.825) (13.506)

Gestation 39.549 39.641 38.832
(2.000) (1.910) (1.982)

Low birth weigh (birth weight <2500 g) 0.07 0.06 0.07

Mother smoked during pregnancy 0.225 0.259 0.127

Mother stopped working <1 month before birth 0.158 0.302 0.244
Mother stopped working 1-2 months before birth 0.134 0.283 0.078
Mother stopped working 3+ months before birth 0.099 0.086 0.044
Mother did not work during pregnancy 0.397 0.329 0.502
Mother did not report information on labor supply 0.211 0.131

Child sex (male) 0.495 0.514 0.505
First born child 0.681 0.416 0.523
Mother’s age at birth of the child (years) 28.013 29.272 24.675

(5.751) (5.794) (5.513)
Mother never drank alcohol during pregnancy 0.711
Mother drank alcohol every day during pregnancy 0.006
Received antenatal care in the first trimester 0.844
Body mass index (before pregnancy)a 23.729

(4.426)
Father smoked during pregnancy 0.233 0.288
No father present during pregnancy 0.131 0.142
Information on father missing 0.113

Breastfeeding initiation 0.483
Breastfeeding duration (weeks)b 25.285

(26.851)

Number of observations 1,339 17,483 12,166
Number of mothers 912 17,483 6,153
Number of siblings-pairs 327 2,417
Number of siblings-triplets 50 1,798

Notes: Variable means (standard deviations of continuous variables are in parentheses).
aMean and standard deviation calculated on 16,425 non-missing observations only.
bIncludes censored spells.
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Table 2: OLS and FE Estimates of Maternal Smoking and Maternal Labor Supply on Birth Outcomes,
by Sample

Birth weight Fetal growth
(kg) (g/wks)

OLS FE OLS FE
(i) (ii) (i) (ii)

BHPSa

Mother smoked during pregnancy -0.187** -0.189* -4.143** -4.687*
(0.043) (0.095) (0.954) (2.059)

Mother stopped working 1-2 months before birth 0.168** 0.187* 2.948* 3.730*
(0.060) (0.075) (1.355) (1.632)

Mother stopped working 3+ months before birth 0.169** 0.241** 3.238* 4.257*
(0.064) (0.079) (1.431) (1.710)

Mother did not work during pregnancy 0.110* 0.143* 1.995 2.645
(0.047) (0.062) (1.046) (1.354)

MCSb

Mother smoked during pregnancy -0.203** -4.787**
(0.013) (0.293)

Mother stopped working 1-2 months before birth 0.161** 2.661**
(0.012) (0.297)

Mother stopped working 3+ months before birth 0.086** 1.565**
(0.021) (0.461)

Mother did not work during pregnancy 0.069** 1.078**
(0.016) (0.352)

NSFGc

Mother smoked during pregnancy -0.139** -0.140** -3.588** -3.523**
(0.017) (0.044) (0.390) (1.032)

Mother stopped working 1-2 months before birth 0.067** 0.063* 1.084* 0.701
(0.021) (0.027) (0.506) (0.635)

Mother stopped working 3+ months before birth 0.023 0.061 0.238 0.678
(0.026) (0.034) (0.611) (0.799)

Mother did not work during pregnancy 0.021 0.043* 0.222 0.670
(0.015) (0.020) (0.345) (0.480)

Notes: The dependent variable is the residual from an OLS regression of birth weight or fetal growth on
time and quarter of birth dummies. Estimates are obtained from OLS or FE sibling models. Standard
errors in parentheses.
a BHPS: Base category for maternal labor supply is mothers who stopped working less than a month
before birth; an additional variable indicating that the mother never stopped working or did not report
information on maternity leave is included but not shown. All specifications include maternal age
and its square, and dummies for firstborn child, child sex, mother’s ethnicity and highest educational
qualification. OLS standard errors are adjusted for clustering at the mother‘s level. Number of births is
1,339, and number of mothers is 912.
b MCS: Base category for maternal labor supply is mothers who stopped working less than a month
before birth. All specifications include maternal age and its square, and dummies for firstborn child,
child sex, mother’s ethnicity and highest educational qualification. Number of births (and mothers) is
17,483.
c NSFG: Base category for maternal labor supply is mothers who stopped working less than a month
before birth; an additional variable indicating that the mother never stopped working or did not report
information on maternity leave is included but not shown. All specifications include maternal age at birth
and its square, and dummies for firstborn child, child sex, mother’s ethnicity and highest educational
qualification. OLS standard errors are adjusted for clustering at the mother’s level. Number of births is
12,166, and number of mothers is 6,153.
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Table 3: GMM Estimates of Maternal Smoking and Maternal Labor Supply on Birth Outcomes —
Two- and Three-Child Families, NSFG

Birth weight Fetal growth
(kg) (g/wks)

FE-IV FE-IV FE-IV FE-IV
(i) (ii) (i) (ii)

Mother smoked during pregnancy -0.151** -0.164** -3.557* -3.618*
(0.036) (0.042) (1.421) (1.279)

Mother stopped working 1-2 months before birth 0.092** 0.096** 0.894* 0.883*
(0.034) (0.029) (0.388) (0.356)

Mother stopped working 3+ months before birth 0.071 0.070 0.514 0.525
(0.064) (0.056) (0.821) (0.826)

Mother did not work during pregnancy 0.046 0.048* 0.547 0.648
(0.025) (0.021) (0.469) (0.612)

Covariance between family fixed effects (µ) and:
Mother smoked during first pregnancy -0.038* -0.039** -0.210* -0.622*

(0.016) (0.014) (0.087) (0.287)
Mother smoked during second pregnancy 0.010 -0.148

(0.047) (0.155)
Mother smoked during third pregnancy -0.006 -0.36

(0.011) (0.162)
Mother stopped working 1-2 months before first birth 0.011** 0.012** 0.139** 0.151**

(0.004) (0.004) (0.044) (0.046)
Mother stopped working 1-2 months before second birth 0.003 -0.114* -0.107*

(0.016) (0.051) (0.042)
Mother stopped working 1-2 months before third birth 0.020* 0.024* 0.156** 0.164**

(0.009) (0.010) (0.039) (0.035)
Mother stopped working 3+ months before first birth 0.002 0.125* 0.127**

(0.007) (0.057) (0.040)
Mother stopped working 3+ months before second birth -0.001 0.062

(0.010) (0.194)
Mother stopped working 3+ months before third birth -0.003 -0.077

(0.026) (0.184)
Mother did not work during first pregnancy -0.008* -0.009* -0.021

(0.004) (0.004) (0.056)
Mother did not work during second pregnancy -0.005 -0.018

(0.018) (0.092)
Mother did not work during third pregnancy 0.005 0.048* 0.049*

(0.0016) (0.022) (0.020)
Covariance between first child endowment (φ1) and:

Mother smoked during second pregnancy -0.043** -0.045** -0.061* -0.073**
(0.015) (0.016) (0.024) (0.020)

Mother smoked during third pregnancy -0.019* -0.022* -0.028* -0.026**
(0.009) (0.009) (0.012) (0.010)

Mother stopped working 1-2 months before second birth 0.026* 0.029* 0.008
(0.012) (0.012) (0.062)

Mother stopped working 1-2 months before third birth -0.006 -0.011
(0.018) (0.079)

Mother stopped working 3+ months before second birth 0.008* 0.008* 0.097* 0.102*
(0.003) (0.003) (0.044) (0.039)

Mother stopped working 3+ months before third birth -0.002 0.088* 0.087**
(0.011) (0.040) (0.031)

Mother did not work during second pregnancy 0.021 0.152* 0.156*
(0.035) (0.071) (0.064)

(continues on next page)
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Table 3: (continued)

Mother did not work during third pregnancy 0.016 0.120* 0.123*
(0.028) (0.054) (0.042)

Covariance between second child endowment (φ2) and:
Mother smoked during third pregnancy -0.011 -0.009

(0.013) (0.024)
Mother stopped working 1-2 months before third birth 0.025** 0.024** 0.037* 0.041*

(0.008) (0.007) (0.015) (0.016)
Mother stopped working 3+ months before third birth 0.011 0.027

(0.012) (0.034)
Mother did not work during third pregnancy 0.007 0.074

(0.014) (0.116)
Endowment variances

σ2

µ 0.164* 0.171** 3.908* 4.116**
(0.078) (0.067) (1.457) (1.338)

σ2

φ1
0.372 0.360 4.015* 3.951*

(0.233) (0.218) (1.978) (1.764)
σ2

φ2
0.410 0.397 2.945* 3.024**

(0.387) (0.326) (1.338) (1.245)
σ2

φ3
0.579* 0.551** 3.242* 3.103*

(0.242) (0.236) (1.466) (1.528)
Goodness of Fit Testsa

FE-IV model vs.
FE model 39.1 (25)* 19.4 (9)* 41.4 (25)* 22.6 (11)*
OLS 79.3 (51)** 37.8 (16)** 79.8 (51)** 39.4 (19)**

FE model vs.
OLS 38.2(26)* 21.1 (7)** 39.0 (26)* 23.2 (8)**

Overidentifying restriction testb 0.235 (28) 0.171 (49) 0.242 (28) 0.193 (48)

Notes: Estimates are obtained from the FE-IV model estimated using GMM techniques on specifications that
include maternal smoking, maternal labor supply (including a dummy variable indicating that the mother did
not report information on maternity leave), maternal age at birth and its square, and dummy variables for first
born and child sex. Standard errors are in parentheses. Column (ii) reports a restricted specification in which
the endowment covariance components that are statistically insignificant in column (i) are set to zero (including
also those parameters not reported in the table). The overidentifying restriction test shown at the bottom of the
table takes account of such restrictions and other restrictions discussed in the text. Number of births is 10,228,
and number of mothers is 4,215.
a Figures in this panel are χ2 (d.f.) statistics. Both OLS and FE models are nested in the FE-IV model. For
comparability, therefore, OLS estimates are obtained from variants of the models presented in Table 2, from which
mother’s ethnicity and highest educational qualification are excluded. The last raw reports the p-value of the
joint significance test on the restrictions imposed by specification (ii) with respect to specification (i).
b This row reports the p-value of the overidentifying restriction test (d.f.) for each specification.
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Table 4: GMM Estimates of Maternal Smoking and Maternal Labor Supply on Birth Outcomes —
Two-Child Families Only, BHPS

Birth weight Fetal growth
(kg) (g/wks)

FE-IV FE-IV FE-IV FE-IV
(i) (ii) (i) (ii)

Mother smoked during pregnancy (s) -0.189 -0.191 -4.281* -4.319*
(0.293) (0.107) (2.165) (2.087)

Mother stopped working 1-2 months before birth (m1) 0.170 0.178 3.698 3.726*
(0.114) (0.092) (1.969) (1.841)

Mother stopped working 3+ months before birth (m2) 0.250* 0.247** 4.232** 4.208**
(0.100) (0.089) (1.593) (1.570)

Mother did not work during pregnancy (m3) 0.136 0.140 2.269 2.316
(0.092) (0.074) (1.933) (1.824)

Covariance between family fixed effects (µ) and:
Mother smoked during first pregnancy -0.049* -0.055* -0.108

(0.022) (0.020) (0.063)
Mother smoked during second pregnancy -0.091* -0.087* -0.326* -0.358*

(0.044) (0.041) (0.166) (0.152)
Mother stopped working 1-2 months before first birth -0.006 -0.157

(0.013) (0.278)
Mother stopped working 1-2 months before second birth -0.003 -0.08

(0.013) (0.245)
Mother stopped working 3+ months before first birth 0.018 0.377

(0.02) (0.352)
Mother stopped working 3+ months before second birth -0.022 -0.248

(0.014) (0.291)
Mother did not work during first pregnancy -0.008 -0.189

(0.019) (0.417)
Mother did not work during second pregnancy 0.037 0.219

(0.058) (0.791)
Covariance between first child endowment (φ1) and:

Mother smoked during second pregnancy -0.029* -0.027* -0.195* -0.184*
(0.013) (0.012) (0.091) (0.073)

Mother stopped working 1-2 months before second birth -0.002 0.093
(0.011) (0.222)

Mother stopped working 3+ months before second birth 0.032* 0.033** 0.489
(0.013) (0.012) (0.296)

Mother did not work during second pregnancy 0.021 0.141* 0.133*
(0.012) (0.066) (0.059)

Endowment variances

σ2

µ 0.325 0.366 2.892 2.791
(2.505) (1.604) (3.107) (2.209)

σ2

φ1
0.391 0.413 3.789 3.802

(0.364) (0.335) (2.499) (2.215)
σ2

φ2
0.132 0.187 5.063 5.106

(0.106) (0.098) (3.296) (3.015)
(continues on next page)
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Table 4: (continued)

Goodness of Fit Testsa

FE-IV model vs.
FE model 14.3 (6)* 11.5 (3)** 12.1 (6) 10.2 (3)*
OLS 42.2 (19)** 35.5 (8)** 44.3 (19)** 37.1 (7)**

FE model vs.
OLS 30.4 (13)** 18.0 (5)** 32.7 (13)** 15.6 (4)**

Overidentifying restriction testb 0.109 (8) 0.116 (9)

Notes: Estimates are obtained from the FE-IV model estimated using GMM techniques. Standard errors are in paren-
theses. For definitions and other explanatory variables, see notes to Table 3. Number of births is 654, and number of
mothers is 327.
a Figures in this panel are χ2 (d.f.) statistics. For other definitions, see notes to Table 3.
b This row reports the p-value (d.f.) of the zero restrictions placed on the insignificant parameters in column (i).
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Table 5: Input Heterogeneity Along Mother’s Education and Mother’s Age at First Birth,
BHPS (Two-Child Families Only) and NSFG (Two- and Three-Child Families)

Fetal growth (g/wks)
OLS FE FE-IV OLS FE FE-IV
(i) (ii) (iii) (i) (ii) (iii)

BHPS (by mother’s education)a

Low education High education
Mother smoked during pregnancy -4.235** -5.535* -5.771* -4.446** -2.806 -3.021

(1.179) (2.635) (2.728) (1.527) (3.416) (3.117)
Mother stopped working 4.336* 6.626** 6.891** 1.373 0.604 0.973

1-2 months before birth (2.169) (2.311) (2.520) (1.642) (2.310) (2.459)
Mother stopped working 3.421 5.739* 5.669* 3.469 3.583 3.410

3+ months before birth (2.008) (2.336) (2.414) (2.260) (2.567) (2.707)
Mother did not work during pregnancy 2.570 3.838* 3.941 1.247 1.804 1.957

(1.688) (1.928) (2.336) (1.303) (1.899) (1.762)

Joint significance of input-µ covariances 28.67 (16)* 29.51 (16)*
Joint significance of input-φ covariances 16.88 (7)* 11.32 (7)

NSFG (by mother’s education)b

Low education High education
Mother smoked during pregnancy -3.542** -4.423** -4.728** -3.833** -1.427 -2.015

(0.469) (1.248) (1.357) (0.707) (1.857) (1.690)
Mother stopped working 1.212 0.831 1.255* 0.940 0.969 0.963

1-2 months before birth (0.739) (0.836) (0.614) (0.695) (0.859) (0.884)
Mother stopped working 0.177 0.537 0.882 0.276 1.305 1.289

3+ months before birth (0.836) (1.000) (1.017) (0.897) (1.167) (1.055)
Mother did not work during pregnancy 0.233 1.115* 0.988 0.093 0.647 0.702

(0.467) (0.494) (0.596) (0.517) (0.565) (0.512)

Joint significance of input-µ covariances 40.21 (24)* 39.85 (24)*
Joint significance of input-φ covariances 37.54 (21)* 36.02 (21)*

BHPS (by mother’s age at first birth)a

Aged less than 24 Aged 24 or more
Mother smoked during pregnancy -5.032** -5.750* -5.903* -3.499** -3.901 -4.037

(1.385) (2.791) (2.771) (1.255) (2.917) (2.621)
Mother stopped working 3.107 1.478 2.011 2.057 4.489* 4.782*

1-2 months before birth (2.426) (3.277) (3.238) (1.593) (1.919) (2.031)
Mother stopped working -0.342 2.215 2.436 4.768* 6.029** 5.944*

3+ months before birth (2.222) (3.155) (3.228) (1.864) (2.195) (2.358)
Mother did not work during pregnancy 0.689 3.626 3.310 2.221 1.774 1.692

(1.979) (2.760) (2.527) (1.190) (1.606) (1.723)

Joint significance of input-µ covariances 25.77 (16) 29.88 (16)*
Joint significance of input-φ covariances 19.04 (7)** 13.71 (7)

(continues on next page)
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Table 5: (continued)

NSFG (by mother’s age at first birth)b

Aged less than 24 Aged 24 or more
Mother smoked during pregnancy -2.901** -3.672** -3.884** -4.829** -2.771 -3.216

(0.491) (1.197) (1.281) (0.636) (2.104) (1.993)
Mother stopped working 1.696* 1.071 1.283 0.790 0.758 0.954

1-2 months before birth (0.785) (0.852) (0.839) (0.665) (0.837) (0.821)
Mother stopped working 0.815 0.317 0.672 -0.215 1.472 1.843

3+ months before birth (0.877) (1.009) (1.214) (0.846) (1.148) (1.321)
Mother did not work during pregnancy 0.772 0.788 0.812 -0.448 1.017 0.904

(0.474) (0.466) (0.684) (0.522) (0.625) (0.713)

Joint significance of input-µ covariances 43.18 (24)** 34.88 (24)
Joint significance of input-φ covariances 34.15 (21)* 36.18 (21)*

Notes: Standard errors are in parentheses. OLS standard errors are adjusted for clustering at the mother’s level. For FE-IV
models we report the χ2 (d.f.) statistics of the joint significance of the input-µ and input-φ covariances.
a BHPS: Mothers with low education are all those with O-level (or equivalent) qualifications or below, while mothers with high
education are mothers with A-level qualifications or above. Number of births to low education mothers is 717, and number of
mothers is 485. Number of births to high education mothers is 622, and number of mothers is 427. Number of births to mothers
aged less than 24 is 385, and number of mothers is 263. Number of births to mothers aged 24 or more is 954, and number of
mothers is 649. For definitions and other explanatory variables, see notes to Tables 2 and 4.
b NSFG: Mothers with low education are all those with high school qualifications or below, while mothers with high education
are mothers with some college qualifications or above. Number of births to low education mothers is 7,520, and number of
mothers is 3,651. Number of births to high education mothers is 4,646, and number of mothers is 2,502. Number of births to
mothers aged less than 24 is 7,543, and number of mothers is 3,511. Number of births to mothers aged 24 or more is 4,632, and
number of mothers is 2,642. For definitions and other explanatory variables, see notes to Tables 2 and 3.
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Table 6: Father’s Smoking as an Instrumental Variable: FE-IV Estimates — Two-Child Families
Only, BHPS

Birth weight Fetal growth
(kg) (g/wks)

FE-IV FE-IV FE-IV FE-IV
(no fath. (fath. smok. (no fath. (fath. smok.
smoking) is extra IV) smoking) is extra IV)

(i) (ii) (i) (ii)

Mother smoked during pregnancy -0.198* -0.239* -4.347* -5.122*
(0.096) (0.118) (2.120) (2.489)

Mother did not work or stopped working 0.199* 0.268** 3.542* 4.574**
1+ months before birth (0.076) (0.093) (1.740) (1.573)

Covariance between family fixed effects (µ) and:
Mother smoked during first pregnancy -0.018** -0.013* -0.132 -0.158

(0.006) (0.005) (0.186) (0.122)
Mother smoked during second pregnancy -0.015 -0.028* -0.255* -0.284*

(0.012) (0.012) (0.116) (0.136)
Mother did not work or stopped working 0.007* 0.006* 0.083 0.044
1+ months before first birth (0.003) (0.003) (0.124) (0.035)

Mother did not work or stopped working 0.004 0.003 0.068 0.073
1+ months before second birth (0.006) (0.003) (0.042) (0.043)

Father smoked during first pregnancy -0.007* -0.061
(0.003) (0.042)

Father smoked during second pregnancy -0.014* -0.083*
(0.006) (0.040)

Covariance between first child endowment (φ1) and:
Mother smoked during second pregnancy -0.017** -0.013** -0.176* -0.191*

(0.005) (0.005) (0.085) (0.073)
Mother did not work or stopped working 0.018 0.025* 0.188 0.225*
1+ months before second birth (0.014) (0.012) (0.107) (0.098)

Endowment variances

σ2

µ 0.284 0.281 4.577 4.343
(0.296) (0.364) (2.981) (2.611)

σ2

φ1
0.277 0.302 5.740 5.916

(0.314) (0.314) (3.526) (3.295)
σ2

φ2
0.185 0.117 4.028 3.474

(0.203) (0.138) (3.211) (2.510)

Overidentifying restriction testa 0.417 (3) 0.346 (3)

Notes: Estimates are obtained from the FE-IV model estimated using GMM techniques. Standard errors are in parentheses.
For definitions and other explanatory variables, see notes to Table 4. Column (i) reports estimates from a specification in
which father’s smoking is not included, while column (ii) reports a specification in which father’s smoking is used as an
additional instrument as illustrated in Appendix C. Number of births is 654, and number of mothers is 327.
a This row reports the p-value (d.f.) of the zero-coefficient restrictions placed on direct and dynamic effects of the additional
instrumental variable (father’s smoking).
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Table 7: OLS Effects of Endowment Shock, Birth Weight, and Earlier Breastfeeding on Breastfeeding
Decisions, by Birth Order — NSFG

Breastfeeding initiation Breastfeeding duration
First Second Third First Second Third
child child child child child child

Child-specific idiosyncratic endowment (λ1) -0.032* -0.075** -0.038* -1.038* -1.183* -0.774
(0.014) (0.027) (0.016) (0.486) (0.469) (0.941)

First child’s birth weight (β1) 0.054* 0.033 0.403* 0.403
(0.024) (0.024) (0.132) (0.463)

Second child’s birth weight (β2) 0.018 0.088
(0.026) (0.297)

First child’s breastfeeding initiation/duration (ξ1) 0.059** 0.051* 0.671** 0.603*
(0.016) (0.020) (0.263) (0.281)

Second child’s breastfeeding initiation/duration (ξ2) 0.032 0.337
(0.056) (0.247)

Notes: The dependent variable is a dummy variable for all breastfeeding initiation regressions, and the number of weeks
of breastfeeding for children who are breastfeed for all breastfeeding duration regressions. Each column corresponds to a
different regression estimated using ordinary least squares. Child-specific idiosyncratic endowment has been obtained from
FE-IV regressions as in Table 3, column (i). Other variables included in all regressions are maternal age at birth and its
square, and dummy variables for child sex, mother’s race and highest educational qualification. Standard errors are in
parentheses. Number of births with non-missing information on breastfeeding is 11,864 and number of mothers is 6,014; the
number of breastfed children is 5,731, and the number of mothers is 3,376.
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Appendix Table A1: OLS Estimates of Maternal Alcohol Consumption, Antenatal Care and Maternal
BMI on Birth Outcomes — MCS Sample

Birthweight (kg) Fetal growth (g/wks)
(i) (ii) (iii) (i) (ii) (iii)

Mother smoked during pregnancy -0.202** -0.202** -0.196** -4.772** -4.758** -4.597**
(0.013) (0.013) (0.013) (0.294) (0.296) (0.300)

Mother stopped working 0.161** 0.161** 0.155** 2.664** 2.659** 2.514**
1-2 months before birth (0.013) (0.012) (0.013) (0.298) (0.298) (0.299)

Mother stopped working 0.086** 0.086** 0.081** 1.563** 1.558** 1.430**
3+ months before birth (0.021) (0.021) (0.020) (0.460) (0.460) (0.460)

Mother did not work during pregnancy 0.069** 0.069** 0.066** 1.075** 1.080** 1.003**
(0.016) (0.016) (0.016) (0.352) (0.352) (0.352)

Mother consumed alcohol -0.110* -0.109* -0.097 -2.550* -2.536* -2.235
every day during pregnancy (0.053) (0.053) (0.052) (1.182) (1.184) (1.152)

Mother received antenatal care 0.005 0.004 0.249 0.238
in the first trimester (0.013) (0.013) (0.308) (0.304)

Body Mass Index (before pregnancy) 0.014** 0.342**
(0.001) (0.027)

Notes: All estimates are from OLS regressions. Standard errors are in parentheses. For definitions and variables, see notes
to Table 2. Number of births (and mothers) is 17,483.
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Appendix Table A2: Estimates of Maternal Smoking and Maternal Labor Supply on the Probability
of Low Birth Weight, by Sample

Low Birth Weight
(less than 2,500 grams)
OLS FE FE-IV
(i) (ii) (iii)

BHPSa

Mother smoked during pregnancy 0.058** 0.114 0.105*
(0.021) (0.060) (0.052)

Mother stopped working 1-2 months before birth -0.052 -0.064 -0.066
(0.027) (0.047) (0.048)

Mother stopped working 3+ months before birth -0.043 -0.056 -0.011
(0.029) (0.049) (0.038)

Mother did not work during pregnancy -0.041 -0.046 -0.022
(0.022) (0.039) (0.045)

Covariance between first child endowment (φ1) and:
Mother smoked during second pregnancy 0.097*

(0.043)
Mother stopped working -0.015

1-2 months before second birth (0.046)
Mother stopped working -0.027*

3+ months before second birth (0.012)
Mother did not work -0.018

during second pregnancy (0.030)

Joint significance of input-µ covariances 0.018
Joint significance of input-φ covariances 0.053

MCSb

Mother smoked during pregnancy 0.043**
(0.006)

Mother stopped working 1-2 months before birth -0.038**
(0.005)

Mother stopped working 3+ months before birth -0.009
(0.009)

Mother did not work during pregnancy -0.011
(0.006)

NSFGc

Mother smoked during pregnancy 0.031** 0.036 0.047*
(0.008) (0.023) (0.023)

Mother stopped working 1-2 months before birth -0.009 -0.014 -0.041
(0.009) (0.014) (0.043)

Mother stopped working 3+ months before birth 0.004 -0.020 -0.006
(0.012) (0.018) (0.019)

Mother did not work during pregnancy 0.003 -0.012 -0.022
(0.006) (0.011) (0.023)

Covariance between first child endowment (φ1) and:
Mother smoked during second pregnancy 0.062*

(0.028)
Mother smoked during third pregnancy 0.016

(0.035)
(continues on next page)
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Appendix Table A2: (continued)

Mother stopped working -0.026
1-2 months before second birth (0.018)

Mother stopped working -0.039**
1-2 months before third birth (0.012)

Mother stopped working -0.051*
3+ months before second birth (0.022)

Mother stopped working 0.004
3+ months before third birth (0.028)

Mother did not work -0.022*
during second pregnancy (0.010)

Mother did not work 0.008
during third pregnancy (0.013)

Covariance between second child endowment (φ2) and:
Mother smoked during third pregnancy 0.037*

(0.017)
Mother stopped working -0.020*

1-2 months before third birth (0.009)
Mother stopped working -0.015

3+ months before third birth (0.034)
Mother did not work -0.016

during third pregnancy (0.019)

Joint significance of input-µ covariancesd 0.003
Joint significance of input-φ covariancesd 0.020

Notes: The dependent variable is a dummy variable that takes value 1 if the child is low birth weight (defined
as less than 2,500 grams), and 0 otherwise. All estimates are marginal effects from linear probability models.
Standard errors are in parentheses, with OLS standard errors in the BHPS and NSFG samples being adjusted for
clustering at the mother’s level. For each of the FE-IV specifications, we report p-values of a χ2 test of the joint
significance of the input-µ and input-φ covariances. For other definitions and variables, see notes to Tables 2–4.
a BHPS: FE-IV estimates are obtained from the two-child family subsample only. Number of births is 1,339, and
number of mothers is 912.
b MCS: Number of births (and mothers) is 17,483.
c NSFG: Number of births is 12,166, and number of mothers is 6,153.
d Figures are p-values of χ2 tests of the joint significance of the input-µ and input-φ covariances.
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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Appendix Table A3: Effects of Maternal and Paternal Smoking on Birth Outcomes,
BHPS and MCS Samples

Birthweight (kg) Fetal growth (g/wks)

OLS FE FE-IV OLS FE FE-IV

(i) (ii) (iii) (i) (ii) (iii)

BHPSa

Mother smoked during pregnancy -0.183** -0.204* -0.208* -3.971** -5.027* -5.176*

(0.046) (0.095) (0.102) (1.018) (2.049) (2.112)

Father smoked during pregnancy -0.026 -0.004 -0.008 -0.634 0.329 -0.054

(0.046) (0.079) (0.087) (1.044) (1.709) (1.885)

Joint significance of input-µ covariances 0.012 0.009

Joint significance of input-φ covariances 0.026 0.017

MCSb

Mother smoked during pregnancy -0.194** -4.536**

(0.013) (0.295)

Father smoked during pregnancy -0.040** -0.927**

(0.012) (0.271)

Notes: Standard errors are in parentheses. OLS standard errors in the BHPS sample are adjusted for clustering at
the mother’s level. For definitions and variables, see notes to Tables 2 and 4.
a BHPS: Number of births is 1,339, and number of mothers is 912 in the OLS and FE models, while number of births
is 654 and number of mothers is 327 in the FE-IV model (two-child families only).
b MCS: Number of births (and mothers and fathers) is 17,483.
c Figures are p-values of χ2 tests of the joint significance of the input-µ and input-φ covariances.
** Statistically significant at the 0.01 level, * statistically significant at the 0.05 level.
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