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ABSTRACT 
 
 
Reliable measures of poverty are an essential statistical tool to evaluate public policies aimed at 
reducing poverty. In this paper we consider the reliability of income poverty measures based on survey 
data which are typically plagued by measurement error and missing data problems. Neglecting 
these problems can bias the estimated poverty rates. We show how to derive upper and lower bounds 
for the population poverty rate using only the sample evidence and an upper limit on the probability of 
misclassifying people into poor and non-poor. By using the European Community Household Panel, we 
compute bounds for the poverty rate in eleven European countries and study the sensitivity of poverty 
comparisons across countries to measurement errors and missing data problems. 
 



1 Introduction

Reliable measures of poverty are an essential statistical tool for public policies aimed at reducing

poverty. In addition to sampling error problems, estimates of poverty rates from survey data are

typically plagued by measurement error and missing data problems. Measurement errors, broadly

defined to include editing errors, coding errors, etc., represent the deviations between the recorded

answers to a survey question and the underlying attributes being measured. They may reflect

systematic misreporting or unreliable response by the interviewee, but may also depend on data

collection procedures (questionnaire design and interview methods), the way interviewers interact

with the interviewees, and data processing (data entry, editing, coding, etc.). Missing data arise

from the failure to obtain a complete response from all individuals included in a survey sample.

They may occur because individuals refuse to return their questionnaire (unit non-response) or

do not provide an answer for some of the questions (item non-response), and may depend on

both individual attitudes and survey procedures. Only relatively recently have statisticians started

investigating the impact of these types of non-sampling errors on poverty estimates.

The most common statistical approaches to measurement errors rely on either the classical

measurement error model or on mixture models (see van Praag et al. 1983, Ravallion 1994 and

Chesher and Schulter 2002 for the classical measurement error model, Cowell and Victoria-Feser

1996 and Pudney and Francavilla 2006 for mixture models, and Bound et al 2001 for a survey of

the literature on measurement errors. The former assumes that the observed outcome is equal to

the true outcome (the “signal”) plus an additive error that has mean zero and is independent of the

signal. This strong assumption is often not justified empirically but adopted merely for convenience.

A notable case when this assumption is violated is when the outcome is a categorical variable, such

as a binary indicator of poverty. On the other hand, mixture models assume that the outcome

of interest is mismeasured or a fraction π of individuals, with 0 < π < 1. The observed outcome

is then equal to a mixture of two variables, the true outcome and an unknown contaminating

variable. The probability of observing the true outcome is 1−π, while the probability of observing

the contaminating variable (the measurement error probability) is π.

For missing data problems, the approaches usually considered by survey methodologists consist

of imputation and weighting methods (see Little and Rubin 1987, Rubin 1989, and Rubin 1996).

These methods typically assume a missing at random (MAR) condition, that is, they assume
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independence between the missing data mechanism and the outcome of interest after conditioning

on a set of observed variables. Conversely, econometricians usually adopt methods which take into

account selection due to both observed and unobserved variables (see Vella 1998 for a survey).

While these methods relax the MAR condition, they usually impose various types of restrictions

on the distribution of the unobservables.

Most estimation methods proposed for measurement error or missing data problems focus on

point estimation of the parameters of interest, typically at the cost of imposing strong untestable

assumptions. Manski and co-authors (see for example Manski 1989 and Horowitz and Manski

1998 for missing data problems, Horowitz and Manski 1995 for measurement error problems, and

Manski 2003 for a review of the partial identification approach) have shown how to use the empirical

evidence, alone or in conjunction with assumptions that are sufficiently weak to be widely credible,

to learn something about the parameters of interest. Their approach involves a shift from point

identification to partial identification of the parameters of interest, that is, a shift from the attempt

to uncover the “true value” of the parameter of interest to a description of the set of values that

are logically possible given the measurement error or missing data mechanisms.

In this paper we follow this partial identification approach and provide bounds on the poverty

rate in the presence of both measurement error and missing data problems. We combine results

in Nicoletti and Peracchi (2002) and Nicoletti (2003) to bound the poverty rate in the presence

of missing data with the approach suggested by Horowitz and Manski (1995) and Molinari (2005)

to take measurement errors into account. By using the European Community Household Panel

(ECHP), we produce bound estimates for the poverty rates in eleven European countries. The aim

of our empirical analysis is to answer the following questions. What can we learn about poverty

rates from sample surveys without imposing too restrictive assumptions on the measurement error

and the missing data processes? Are bound estimates informative enough to allow us to rank

countries in terms of poverty?

The remainder of this paper is organized as follows. Section 2 considers partial identification

of poverty rates when the information on poverty status may be affected by measurement error or

missing data problems. Section 3 presents the ECHP data that are used in our empirical illustration.

Section 4 reports point and bound estimates for the poverty rates using the ECHP data. Finally,

Section 5 offers some conclusions.
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2 Partial identification of the poverty rate

This section considers partial identification of the poverty rate, conventionally defined as the fraction

of people (both children and adults) living in households whose income Y falls below a certain

threshold (the “poverty line”). We take Y to be the equivalized net income of a household, that

is, its total net income suitably normalized by a measure of the effective size of the household (the

“equivalence scale”) to allow for possible economies of scale in the use of resources. The poverty

line, denoted by γ, is defined in relative terms as a fraction (60 percent) of the median value of

equivalized net household income.

Since poverty rates are generally estimated using household survey data, they are typically

subject to both sampling and non-sampling errors. Two important sources of non-sampling errors

are measurement error and missing data problems (Groves 1989, Biemer et al. 1991, Lessler and

Kalsbeek 1992, and Groves et al. 2002). Section 2.1 considers partial identification of the poverty

rate in the case of measurement error but no missing data problems. Section 2.2 considers partial

identification in the case of missing data but no measurement errors. Finally, Section 2.3 considers

partial identification in the case of both measurement errors and missing data.

2.1 Partial identification in the presence of measurement errors

Measurement errors in the poverty status can occur when the household income, the household

equivalent scale or the poverty line are measured with errors. In our empirical application, the

poverty line is estimated using the imputed values and the weights provided in the ECHP to

take into account sampling design and the presence of fully non-responding households, unit non-

response within responding households and item non-response. Hence, it may be affected by both

sampling noise and systematic bias.

If we denote by DY the true (error-free) but possibly unobserved poverty indicator, which

is equal to one if Y ≤ γ and is equal to zero otherwise, then the true poverty rate is just the

probability of being poor, Pr(DY = 1) = Pr(Y ≤ γ). If we denote by W the observed (error-

ridden) equivalized net household income and by γ̂ the estimated poverty line, then the observed

poverty indicator DW is equal to one if W ≤ γ̂ and is equal to zero otherwise, and the observed

poverty rate is Pr(DW = 1) = Pr(W ≤ γ̂). When DY 6= DW , poverty status is measured with error.

Since both DY and DW are categorical indicators, the measurement error problem is a problem of
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misclassification. The problem may arise either because Y 6= W or because γ̂ 6= γ due to sampling

noise or systematic bias. Ignoring the problem may lead to biased estimates of the true poverty

rate Pr(DY = 1). As an alternative we consider using the sample information to partially identify

the true poverty rate. This involves finding non-trivial upper and lower bounds for the set of values

that Pr(DY = 1) can take given the measurement error process. This is the approach adopted by

Horowitz and Manski (1995), Molinari (2005) and Pudney and Francavilla (2006). In the following,

we give some details on their methods and then describe our proposal.

Horowitz and Manski (1995) show how to identify bounds for parameters of interest by consid-

ering a mixture model and assuming the existence of a non-trivial upper bound on the probability

of error. Although their results are quite general, analytical expressions for the bounds are only

available in a few special cases. In general, bounds have to be computed by solving a non-linear

constrained optimization problem.

Chavez-Martin del Campo (2004) specializes the results of Horowitz and Manski (1995) to the

case of poverty measures. By considering a mixture model for household income and assuming

a non-trivial upper bound on the measurement error probability, he shows how to bound poverty

measures that are additively separable. The poverty measure used in this paper, namely the fraction

of people below 60% of the equivalized median income, belongs to this class.

An alternative approach is to bound the poverty rate directly by considering a mixture model

for the poverty indicator rather than for income. The main advantage of this approach is that we

can take into account all the errors which may lead to misclassifying poverty status–errors affecting

the income measure, the equivalence scale, or the poverty line–without having to explicitly model

their role. Since the poverty indicator is binary, the mixture model takes the form

DW = DY (1− Z) + DV Z, (1)

where DV is an erroneous poverty indicator and Z is a binary indicator equal to one if there is

misclassification (that is, DW 6= DY ) and equal to zero otherwise. Because DW = DY if Z = 0 and

DW = DV if Z = 1, the observed poverty rate may be written

Pr(DW = 1) = Pr(DY = 1 |Z = 0) Pr(Z = 0) + Pr(DV = 1 |Z = 1) Pr(Z = 1), (2)

where Pr(Z = 1) = Pr(DY 6= DW ) is the probability of misclassification, or measurement error

probability. The mixture model (1) is an example of contaminated sampling model if measurement
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error and poverty status are independent, i.e. Pr(DY |Z = 0) = Pr(DY ), and is an example of

corrupted sampling model if the independence condition does not hold.

It turns out that assuming a corrupted sampling model imposes no restriction on the relationship

between an error-ridden indicator and the underlying error-free indicator. To see this, notice that

if there is misclassification (Z = 1), then DV = 1 if and only if DY = 0. Therefore, we can rewrite

equation (2) as

Pr(DW = 1) = Pr(DY = 1 |Z = 0) Pr(Z = 0) + Pr(DY = 0 |Z = 1) Pr(Z = 1).

Since

Pr(DY = 1 |Z = 0) Pr(Z = 0) = Pr(DY = 1, DW = 1)

and

Pr(DY = 0 |Z = 1) Pr(Z = 1) = Pr(DY = 0, DW = 1),

we can further rewrite (2) as

Pr(DW = 1) = Pr(DW = 1 |DY = 1) Pr(DY = 1) + Pr(DW = 1 |DY = 0) Pr(DY = 0). (3)

By a similar argument, the observed probability of being non-poor can be written as

Pr(DW = 0) = Pr(DW = 0 |DY = 0) Pr(DY = 0) + Pr(DW = 0 |DY = 1) Pr(DY = 1). (4)

Because (3) and (4) are implied by the law of total probability, the corrupted sampling model

imposes no restrictions on the relationship between an error-ridden and an error-free variable when

both are binary indicators. This result may be generalized to the case of a categorical variable.

Equations (3) and (4) correspond to what Molinari (2005) calls the “direct misclassification

model”, adapted here to the case of a binary indicator. Molinari’s paper shows how to identify

bounds for the distribution of an unobserved categorical variable by imposing various assumptions

on the direct misclassification model (3)–(4). In this paper, we focus on two of these assumptions:

Assumption A1
∑1

j=0 Pr(DW = j, DY = j) ≥ 1− λ > 0.

Assumption A2 Pr(DW = j |DY = j) ≥ 1− λ > 0 for j = 0, 1.

Because
∑1

j=0 Pr(DW = j, DY = j) = Pr(DW = DY ), Assumption A1 is equivalent to the

assumption that Pr(DW 6= DY ) < λ < 1. This assumption restricts the joint distribution of DY and
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DW by imposing a non-trivial upper bound on the probability of misclassification. Assumption A2

implies Assumption A1 and is therefore stronger. In some applications, it may be possible to

directly estimate the upper bound λ in Assumptions A1 and A2. As pointed out by Horowitz and

Manski (1995), even when this is not possible, it may still be of interest to determine how inference

on population parameters changes with changes in λ.

Proposition 3 in Molinari (2005) shows that Assumption A1 implies the following upper and

lower bounds on the true poverty rate

UBA1 = min{Pr(DW = 1) + λ, 1},
LBA1 = max{Pr(DW = 1)− λ, 0}.

If λ ≤ Pr(DW = 1) ≤ 1−λ, then the width of the resulting identification region for the true poverty

rate is equal to 2λ. Assumption A2 implies instead the following bounds

UBA2 = min
{

Pr(DW = 1)
1− λ

, 1
}

,

LBA2 = max
{

Pr(DW = 1)− λ

1− λ
, 0

}
.

If λ ≤ Pr(DW = 1) ≤ 1−λ, then the width of the resulting identification region for the true poverty

rate is equal to λ/(1 − λ). Notice that, although stronger than Assumption A1, Assumption A2

implies tighter bounds only when λ < .5, at least if we again assume that λ ≤ Pr(DW = 1) ≤ 1−λ.

Pudney and Francavilla (2006) investigate the effect of measurement errors on the estimation

of poverty rates by considering a contaminated sampling model for household income rather than

for the poverty indicator, and by conditioning the probability of being poor on an indicator of

deprivation. Thanks to assumptions on the relationship between poverty status and the indicator

of deprivation, and to additional independence assumptions, they prove that it is possible to exactly

identify the poverty rate. They also show how to obtain partial identification of the poverty rate

when some of these assumptions are relaxed.

Although our approach is similar in spirit to those just outlined, our starting point is neither the

mixture model (1) nor the direct misclassification model (3)–(4). Instead, we consider the following

indirect misclassification model
[

Pr(DY = 1)
Pr(DY = 0)

]
=

[
Pr(DY = 1 |DW = 1) Pr(DY = 1 |DW = 0)
Pr(DY = 0 |DW = 1) Pr(DY = 0 |DW = 0)

] [
Pr(DW = 1)
Pr(DW = 0)

]
. (5)

This model maps Pr(DW = 1) and Pr(DW = 0), which are point-identified by the sampling process,

into Pr(DY = 1) and Pr(DY = 0), which are not point-identified. Notice that, just like the direct
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misclassification model (3)–(4), the indirect misclassification model (5) is simply an implication of

the law of total probability and imposes no restriction on the relationship between the error-free

and the error-ridden indicator of poverty.

To partially identify the true poverty rate, we consider the following two assumptions:

Assumption B1
∑1

j=0 Pr(DW = j, DY = j) ≥ 1− λ > 0.

Assumption B2 Pr(DY = j |DW = j) ≥ 1− λ > 0 for j = 0, 1.

Assumption B1 is the same as Assumption A1. Unlike Molinari’s Assumption A2, which implies

an upper bound on the direct misclassification probabilities Pr(DW = j |DY = i), for i 6= j,

Assumption B2 implies an upper bound on the indirect misclassification probabilities Pr(DY =

j |DW = i), for i 6= j. Thus, while Assumption A2 restricts the conditional distribution of DW

given DY , Assumption B2 restricts the conditional distribution of DY given DW .

The next proposition presents the bounds on the true poverty rate implied by Assumptions B1

and B2. All proofs are collected in Appendix B).

Proposition 1 If Assumption B1 holds, then

UBB1 = UBA1 = min{Pr(DW = 1) + λ, 1},
LBB1 = LBA1 = max{Pr(DW = 1)− λ, 0}.

If Assumption B2 holds, then

UBB2 = Pr(DW = 1) + λPr(DW = 0),

LBB2 = Pr(DW = 1)(1− λ).

Further, all these bounds are sharp.

Under Assumption B1, the indirect classification model gives the same bounds as the direct

classification model under Assumption A1. Under Assumption B2, the width of the identification

region for the true poverty rate is equal to λ. Because Assumption B2 implies Assumption B1, the

fact that it gives a narrower identification region is not surprising. Perhaps more surprising is the

fact that the indirect misclassification model under Assumption B2 implies tighter bounds than the

direct misclassification model under Assumption A2.
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2.2 Partial identification in the presence of missing data

We now consider the case when there are no measurement errors but, because of unit or item

nonresponse, income data are missing for a fraction of the households. Following Manski (1989),

let DR be a binary indicator equal to one if an individual belongs to a responding household, namely

one whose income is fully reported and equal to zero otherwise. If γ is the poverty line then, by

the law of total probability, the true poverty rate satisfies

Pr(Y ≤ γ) = Pr(Y ≤ γ |DR = 1) Pr(DR = 1) + Pr(Y ≤ γ |DR = 0) Pr(DR = 0). (6)

Because only three of the four elements on the right hand side of (6) can be identified from the

sampling process, the true poverty rate is not point-identified unless additional assumptions are

made. However, because the unknown element Pr(Y ≤ γ |DR = 0) is bounded between zero and

one, substituting its maximum and minimum values in (6) gives the following upper and lower

bounds on the true poverty rate

UB = Pr(Y ≤ γ |DR = 1) Pr(DR = 1) + Pr(DR = 0),

LB = Pr(Y ≤ γ |DR = 1) Pr(DR = 1).

The width of the resulting identification region is equal to the non-response probability Pr(DR = 0).

It is straightforward to prove that these bounds are sharp.

An important question is how to narrow these “worst-case” bounds, that is, how to sharpen

our inference by reducing the range of plausible values for the poverty rate. We begin by noticing

that many non-respondents provide partial information on their income. For example, household

income is typically obtained by adding a number of income components (wages and salaries, self-

employment income, pensions, etc.) across all household members. Usually, nonresponse at the

household level is only partial, in the sense that at least some household members provide infor-

mation on at least some of the income components that they received.

If Y ∗ denotes partially reported income, that is, the sum of all reported income components

across all members of the household, then the unknown poverty rate among the non-respondents

may be decomposed as follows

Pr(Y ≤ γ |DR = 0) = Pr(Y ≤ γ |Y ∗ ≤ γ, DR = 0) Pr(Y ∗ ≤ γ |DR = 0)

+ Pr(Y ≤ γ |Y ∗ > γ, DR = 0) Pr(Y ∗ > γ |DR = 0),
(7)
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where, in the absence of measurement errors, Pr(Y ≤ γ |Y ∗ > γ,DR = 0) = 0 because partially

reported income Y ∗ cannot exceed true income Y . Since the probability Pr(Y ≤ γ |Y ∗ ≤ γ, DR = 0)

must necessary lie between zero and one, we obtain the following upper and lower bounds

UB∗ = Pr(Y ≤ γ |DR = 1) Pr(DR = 1) + Pr(Y ∗ ≤ γ |DR = 0) Pr(DR = 0),

LB∗ = LB = Pr(Y ≤ γ |DR = 1) Pr(DR = 1).

Thus, the information on partially reported income provides a sharper upper bound on the poverty

rate but does not affect the lower bound, which remains the same as the worst case bound LB. This

narrows the width of the identification region from Pr(DR = 0) to Pr(Y ∗ ≤ γ |DR = 0) Pr(DR = 0).

Our use of partially reported income to narrow the Manski bounds is new, but is to some extent

a modification of the methods proposed by Vasquez-Alvarez et al. (1999, 2001) and Manski and

Tamer (2002) for interval data.

2.3 Partial identification in the presence of measurement errors and missing
data

In the presence of both measurement errors and missing data, identification of the poverty rate

becomes more difficult. In the equation

Pr(DY = 1) = Pr(DY = 1 |DR = 1) Pr(DR = 1) + Pr(DY = 1 |DR = 0) Pr(DR = 0),

both Pr(DY = 1 |DR = 1) and Pr(DY = 1 |DR = 0) are now unknown. This is because for

responding people we observe an erroneous poverty indicator DW instead of the true indicator DY ,

while for non-responding people we observe neither DW nor DY .

Although misclassification of poverty status may affect both respondents and non-respondents,

in practice the problem is relevant only for people whose household income is observed. Therefore,

the partial identification methods discussed in Section 2.1 can be directly applied to find a lower and

an upper bound for Pr(DY = 1 |DR = 1), the poverty rate for respondents. All we need is an upper

bound on either the measurement error probability, the direct misclassification probabilities, or the

indirect misclassification probabilities, after conditioning on the event DR = 1. Thus consider the

following assumptions:

Assumption C1
∑1

j=0 Pr(DW = j, DY = j |DR = 1) ≥ 1− λ > 0;

Assumption C2 Pr(DY = j |DW = j,DR = 1) ≥ 1− λ > 0 for j = 0, 1;
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Assumption C3 Pr(DW = j |DY = j,DR = 1) ≥ 1− λ > 0 for j = 0, 1.

The next proposition gives, for each of these three assumptions, the implied bounds on the true

poverty rate.

Proposition 2 If Assumption C1 holds, then

UBC1 = min{Pr(DW = 1 |DR = 1) + λ, 1} Pr(DR = 1) + Pr(DR = 0),

LBC1 = max{Pr(DW = 1 |DR = 1)− λ, 0} Pr(DR = 1).
(8)

If Assumption C2 holds, then

UBC2 = [Pr(DW = 1 |DR = 1) + λPr{DW = 0 |DR = 1}] Pr(DR = 1) + Pr(DR = 0),

LBC2 = Pr(DW = 1 |DR = 1)(1− λ) Pr(DR = 1).
(9)

If Assumption C3 holds, then

UBC3 = min{Pr(DW = 1 |DR = 1)/(1− λ), 1} Pr(DR = 1) + Pr(DR = 0),

LBC3 = max{[Pr(DW = 1 |DR = 1)− λ]/(1− λ), 0} Pr(DR = 1).
(10)

Further, all these bounds are sharp.

Molinari (2005) suggests taking into account both missing data and measurement error prob-

lems by considering an extended direct misclassification model. However, she does not derive an

analytical expression for the bounds. In the case of a binary indicator, she suggests considering an

error-ridden variable which takes on three possible values: zero, one or missing. We prefer to con-

sider three events which are mutually exclusive and collectively exhaustive: DW = 1 and DR = 1

(reporting poor), DW = 0 and DR = 1 (reporting non-poor), and DR = 0 (partially responding

household). We then extend the indirect misclassification model (5) by defining the true poverty

probability as a linear function of the above three events. The main advantage of our approach is

that derivation of the bounds is much easier. In particular, we are able to obtain an upper and

a lower bound for the true poverty rate by simply assuming an upper and a lower bound for the

poverty probability of respondents and non-respondents. In Appendix A we give details on this

extended indirect misclassification model and possible extensions to interval data.

If non-respondents provide partial information, then we can narrow the bounds further by

using the information on partially reported income Y ∗ as shown in Section 2.2. In this case,

the term Pr(DR = 0) in each of the upper bounds UBC1, UBC2 and UBC3 may be replaced by
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Pr(DR = 0) Pr(Y ∗ ≤ γ |DR = 0). Estimating these new bounds requires a knowledge of the true

partially reported income Y ∗ and the true poverty line γ. If we only observe W ∗ and γ̂, which are

error-ridden measurements of Y ∗ and γ, then we must modify equation (7) as follows

Pr(Y ≤ γ |DR = 0) = Pr(Y ≤ γ |DW ∗ = 1, DR = 0) Pr(DW ∗ = 1 |DR = 0)

+ Pr(Y ≤ γ |DW ∗ = 0, DR = 0) Pr(DW ∗ = 0 |DR = 0),
(11)

where DW ∗ is equal to one if W ∗ ≤ γ̂ and is equal to zero otherwise. In the absence of measurement

errors we could safely assume that

Pr(Y ≤ γ |DW ∗ = 0, DR = 0) = Pr(Y ≤ γ |Y ∗ > γ,DR = 0) = 0.

In the presence of measurement errors, however, Pr(Y ≤ γ |DW ∗ = 1, DR = 0) can be greater than

zero. For this reason we introduce the following additional assumption:

Assumption C4 Pr(DY = 1 |DW ∗ = 0, DR = 0) ≤ δ < λ.

Assuming that δ < λ is plausible because, if the true income is below the poverty line, then it

seems unlikely for the observed partially reported income to exceed the observed poverty line.

Combining Assumptions C1 and C4 into Assumption C1∗, it is easy to modify the argument in

Proposition 2 to derive the following upper and lower bounds on the poverty rate

UBC1∗ = min{Pr(DW = 1 |DR = 1) + λ, 1} Pr(DR = 1)

+ Pr(DR = 0) [Pr(DW ∗ = 1 |DR = 0)(1− δ) + δ],

LBC1∗ = LBC1 = max{Pr(DW = 1 |DR = 1)− λ, 0} Pr(DR = 1).

(12)

Similarly, combining Assumptions C2 and C4 into Assumption C2∗ gives

UBC2∗ = [Pr(DW = 1 |DR = 1) + λPr{DW = 0 |DR = 1}] Pr(DR = 1)

+ Pr(DR = 0) [Pr(DW ∗ = 1 |DR = 0)(1− δ) + δ],

LBC2∗ = LBC2 = Pr(DW = 1 |DR = 1)(1− λ) Pr(DR = 1).

(13)

Finally, combining Assumptions C3 and C4 into Assumption C3∗ gives

UBC3∗ = min{Pr(DW = 1 |DR = 1)/(1− λ), 1} Pr(DR = 1)

+ Pr(DR = 0) [Pr(DW ∗ = 1 |DR = 0)(1− δ) + δ],

LBC3∗ = LBC3 = max{[Pr(DW = 1 |DR = 1)− λ]/(1− λ), 0} Pr(DR = 1).

(14)

Assumption C4 and information on the observed reported income cause the various identification

regions to shrink by an amount equal to Pr(DR = 0) [1− δ− (1− δ) Pr(DW ∗ = 1 |DR = 0)]. Again,

it is easy to show that all the above bounds are sharp.
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3 Data

We now describe the data set used in our empirical illustration, namely the European Community

Household Panel (ECHP), and the construction of our poverty indicator.

The ECHP is a longitudinal survey of households and individuals, centrally designed and coor-

dinated by the Statistical Office of the European Communities (Eurostat) and conducted annually

from 1994 to 2001. Its target population consists of all individuals living in private households

within the European Union. In its first wave (1994), the survey covered about 60,000 households

and 130,000 individuals in twelve countries, namely Belgium, Denmark, France, Germany, Greece,

Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain and the UK. Austria, Finland and Swe-

den began to participate to the ECHP only later, respectively from the second (1995), third (1996)

and fourth (1997) wave. In Belgium and the Netherlands, the ECHP was linked from the beginning

to already existing national panels. In Germany, Luxembourg and the UK, instead, the first three

waves of the ECHP ran parallel to already existing national panels, respectively the German So-

cial Economic Panel (GSOEP), the Luxembourg Social Economic Panel (PSELL) and the British

Household Panel Survey (BHPS). Starting from the fourth (1997) wave, it was decided to merge

the ECHP into the GSOEP, the PSELL and the BHPS.

In this paper, we focus attention on the eleven countries who participated in the survey for

the whole period 1994–2001, namely Belgium, Denmark, France, Germany, Greece, Ireland, Italy,

Netherlands, Portugal, Spain, and the UK. Our sample consists of 116,354 individuals observed

in the most recent wave of the panel (2001). We include in the sample only households for which

at least the reference person returned the household questionnaire. The percentage of fully non-

responding households (households for which neither the household questionnaire nor any of the

personal questionnaires was returned) is quite small, on average 2 percent in each wave. We take

into account this type of nonresponse and sampling design by using the weights provided in the

public-use files of the ECHP.

The key variable for the construction of our poverty indicator is total net household income,

which is the sum of all incomes (wages and salaries, self-employment income, pensions, etc.) re-

ceived by all members of a given household. Nonresponse to this variable may occur either because

some household members do not return their personal questionnaire or because household mem-

bers returning their personal questionnaire do not answer all income questions. Excluding from the
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sample fully nonresponding housheolds, problems of complete or partial nonresponse to household

income arise for 15,454 individuals (about 13.3 percent of our sample). Table 1 shows nonre-

sponse rates by country. Belgium, Italy and Germany present the highest nonresponse rates (above

15 percent), while France, Ireland and the Netherlands are the countries where nonresponse rates

are smallest (between 7 and 10 percent).

Household income provided in the ECHP is the annual amount in the year before the survey,

net of taxes and expressed in national currency units and current prices. We then divide real

household income by the modified OECD equivalence scale to take household size and composition

into account.

4 Empirical results

This section presents our empirical results using the ECHP data. Section 4.1 presents point esti-

mates that use imputed income to take missing data problems into account but neglect measurement

error problems. Section 4.2 presents the estimated bounds on true poverty rates taking both missing

data and measurement error problems into account.

4.1 Point estimates

Table 1 shows, for each of the eleven European countries considered, unweighted and weighted

point estimates of the poverty rates for the overall population and their estimated standard errors

(in parenthesis). As with most official statistics on poverty, we take missing data problems into

account by using imputed values but we neglect measurement error problems.

Unweighed poverty rates are defined as the fraction of the population with (imputed or observed)

equivalized household income below 60% of the national median of equivalized household income.

Weighted poverty rates are computed in the same way, but using the survey weights provided by

the ECHP to take sampling design and full household non-response into account.

Using weighted or unweighted estimates somewhat changes the ranking of countries. Comparing

the two rankings, we can identify three groups of countries: the first group consists of the countries

with the lowest poverty rates (always below 15 percent), namely Belgium, Denmark, Germany and

the Netherlands; the second group consists of the middle-ranking countries, namely France, Ireland,

Spain and the UK (always between 15 and 20 percent); the third group consists of Greece, Italy, and

Portugal with the highest poverty rates (always above 20 percent). This grouping largely agrees
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with those reported by Eurostat publications, based either on the ECHP or, for the most recent

years, on the Community Statistics on Income and Living Conditions or EU-SILC (see for example

Dennis and Guio 2004 and Guio 2004). The main difference concerns Ireland, which appears at the

bottom of the ranking of poverty rates calculated using the EU-SILC.

4.2 Bound estimates

This section presents estimated bounds for the true poverty rates based on the theoretical bounds in

Section 2.3. These bounds are functions of probabilities which are non-parametrically estimated by

simple weighted empirical frequencies, using the weights provided in the ECHP. Since the bounds

are estimated, we also take their sampling variability into account. This is done by constructing,

for each bound, 95%-level bootstrap confidence intervals based on the percentile method and 1,000

bootstrap replications. Unlike standard asymptotic confidence intervals, these confidence intervals

are in general not symmetric. The bootstrap samples are obtained by sampling household (not

individuals) with replacement. Further, for each bootstrap sample, the cross-sectional weights

are rescaled to keep their mean equal to one (for more details on bootstrap inference for poverty

measures see Biewen 2002).

Table 2 reports, separately by country, the estimated upper and lower bounds for the poverty

rates and the corresponding upper and lower limits of their bootstrap confidence interval, re-

spectively in the first and second row for each country. The results are reported separately for

the three assumptions C1∗, C2∗ and C3∗, which identify the following intervals [LBC1∗ ,UBC1∗ ],

[LBC2∗ , UBC2∗ ], and [LBC3∗ , UBC3∗ ]. We take λ = .10 as the upper bound for the measurement

error probability and for the direct and indirect misclassification probabilities. The upper bound ρ

for the probability that a person is poor when his/her partially reported household income is higher

than the estimated poverty line is set equal to .025 (one fourth of λ). These choices are based on

the validation studies quoted by Horowitz and Manski (1995) and Molinari (2005), who suggest

that error probabilities usually range between .01 and .10, and on the study of Epland and Kirke-

berg (2002), who compare true and reported Norwegian income data by matching administrative

registers with the Survey of Living Conditions in 1996. Using Table 2 in Epland and Kirkeberg

(2002), and setting the poverty line at 50,000 Norwgian crowns, we obtain the following results:

(i) the probability that the true and the observed poverty status are different is 3 percent; (ii) the

probability that the true poverty status is one (zero) given that the observed status is zero (one)
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is 2 percent (6 percent); (iii) the probability that the observed poverty status is one (zero) given

that the true status is zero (one) is 1 percent (11 percent). From these results, it is reasonable to

put λ = .10.

We also carried out a sensitivity analysis using different values of λ and ρ. Table 2 shows

that the intervals [LBC2∗ ,UBC2∗ ] and [LBC3∗ , UBC3∗ ] partially overlap, and are both contained in

the larger interval [LBC1∗ ,UBC1∗ ]. Assumption C2∗ generally produces higher lower bounds than

Assumption C3∗, while the opposite is true for upper bounds.

If we assume that Assumptions C2∗ and C3∗ both hold, then we can compute narrower bounds,

which we call [LBD, UBD]. The upper bound UBD is given by the minimum between UBC2∗ and

UBC3∗ , while the lower bound LBD is given by the maximum between LBC2∗ and LBC3∗ . Estimates

of this new set of bounds are presented in Table 3.

The relationship between the width of the identification regions under different sets of assump-

tions are in line with the theoretical results. The interval [LBC1∗ , UBC1∗ ] is the widest, followed (in

the order) by the intervals [LBC2∗ ,UBC2∗ ], [LBC3∗ , UBC3∗ ] and [LBD, UBD]. The width of these

intervals measures how serious the identification problem is. A zero width corresponds to point

identification of the poverty rate. A width that is positive but less than one corresponds to partial

identification of the poverty rate. Finally, a width that is equal to one implies complete lack of

identification.

Table 3 reports the width of the narrowest interval [LBD, UBD]. More precisely, the table

reports, separately by country, the width measured by considering the estimated lower and upper

bounds (first row) and the corresponding estimated lower and upper bootstrap confidence limits

(second row). The width varies between .055 (.086 in terms of bootstrap confidence limits) and

.118 (.209 in terms of bootstrap confidence limits). This implies that, although point identification

is impossible, the range of plausible values for the poverty rate can be bounded by a narrow interval

whose width is equal to .118 (or .209) in the worst case.

Table 3 also shows a decomposition of the width of the interval [LBD,UBD] into two additive

components, denoted by W1 and W2. The first component,

W1 = Pr(DR = 0) [Pr(DW ∗ = 1 |DR = 0)(1− δ) + δ],

is caused by the presence of missing data, and the fact that Pr(DR = 0) > 0 and Pr(DY =
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1 |DW ∗ = 0, DR = 0) > 0. The second component,

W2 = UBD − LBD −W1 = W −W1,

is instead caused by measurement errors affecting the observed poverty indicator. A similar de-

composition can be used when considering the sets of assumptions C1∗, C2∗ and C3∗; the first

component is the same for each assumption, while the second component depends on the partic-

ular assumption considered. In all countries except France, at most 40 percent of the interval

width (53.4 percent in terms of bootstrap confidence limits) is due to measurement error problems.

This suggests that lack of identification is mainly caused by missing data problems, at least when

assuming λ = 0.10 and ρ = 0.025.

We also conducted a sensitivity analysis by assuming ρ = .25λ and considering different values

of λ ranging between .010 and .990. Table 4 reports the minimum and the maximum widths

across country of the estimated interval [LBD, UBD]. Both the minimum and the maximum widths

increase with λ. The widths are always smaller than .25 for values of λ less or equal to .30. The

widths become instead quite large when λ exceeds .50. The interval width is mainly explained by

measurement error problems if λ ≥ 0.30, and by missing data problems if λ ≤ .10. These results

may be useful to survey methodologists interested in improving the quality of a survey by adopting

techniques aimed at reducing either non-response rates or measurement errors.

In another sensitivity analysis, we keep λ fixed at .10 and consider varying ρ in the range from

.025 to .99. The interval width increases only slightly with increasing ρ. Even for a value of ρ as

high as .99, the minimum width is .099 and the maximum width is .230.

The estimated identification regions for the poverty rate overlap partially across countries, ex-

cept when we compare Denmark with Greece, Italy, Portugal, Ireland and the UK. By ranking

countries in terms of their lower or upper bound under Assumptions C2, C3 or C4, we are able

to identify three groups of countries: Belgium, Denmark, Germany and the Netherlands belong to

the low-poverty group, Greece, Italy and Portugal belong to the high-poverty group, while France,

Ireland, Spain and the UK make up an intermediate group. Interestingly, this is exactly the country

ranking obtained using the point estimates of poverty rates in Section 4.1. Our bound estimates

seem also in line with the official statistics published by Eurostat, where Greece, Italy and Portu-

gal are the countries with the highest poverty rates, around 23 percent, and Belgium, Denmark,

Germany and the Netherlands have the lowest poverty rates, usually lower than 15 percent. In
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fact, the estimated lower bounds for the poverty rate are always higher than 15 percent in Greece,

Italy and Portugal, while the estimated upper bounds are always lower than 23 percent in Belgium,

Denmark, Germany and the Netherlands.

5 Conclusions

In this paper we suggest new ways of partially identifying poverty rates in the presence of both

measurement error and missing data problems. We show that one can analytically compute bounds

for the poverty rates by assuming the existence of a non-trivial upper bound on one of the follow-

ing three probabilities: (i) the probability that the observed and the true poverty indicators are

different, or measurement error probability, (ii) the probability that the true poverty indicator is

one (zero) given that the observed poverty indicator is zero (one), or direct misclassification prob-

ability, or (iii) the probability that the observed poverty indicator is one (zero) given that the true

indicator is zero (one), or indirect misclassification probability.

An upper bound on the probability of measurement errors is the main assumption imposed by

Horowitz and Manski (1995) who consider the corrupted sampling model, while upper bounds on

either the probability of measurement errors or the direct misclassification probabilities are the

main assumptions imposed by Molinari (2005), who considers the direct misclassification model.

Notice that, in our case, the corrupted sampling model is equivalent to the direct misclassification

model. Furthermore, both models are implications of the law of total probability and therefore

impose no restriction on the relationship between the observed (error-ridden) and the true (error-

free) outcome. In this paper we introduce the indirect misclassification model, which is also an

implication of the law of total probability and allows us to derive bounds on the poverty rate under

the assumption of an upper bound on the indirect misclassification probabilities. We show that

the indirect misclassification approach can be extended to the case where measurement error and

missing data (or interval data) problems coexist, and we compute analytical expressions for the

bounds which can be easily estimated non-parametrically.

Using the indirect misclassification approach, we show that it is possible to say something

meaningful about the ranking of European countries in terms of poverty rates. An unambiguous

ranking is not possible, however, because estimated intervals for poverty rates partially overlap

across countries, except when comparing Denmark with Greece, Italy, Portugal, Ireland and the
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UK. The lack of identification is due more to the presence of missing data than to measurement

errors, at least when we set the upper bound to .10 for the probability of measurement error and

the indirect and direct misclassification probabilities.

Interestingly, our bound estimates are in line with the official statistics published by Euro-

stat, where Greece, Italy and Portugal are the countries with the highest poverty rates, around

23 percent, while Belgium, Denmark, Germany and the Netherlands have the lowest poverty rates,

usually lower than 15 percent. In fact, our estimated lower bounds for the poverty rate are higher

than 15 percent in Greece, Italy and Portugal, while the estimated upper bounds are lower than

23 percent in Belgium, Denmark, Germany and the Netherlands.

Possible extensions for future research involve the use of additional assumptions to further

tighten the bounds. For example, one may consider instrumental variables and monotone in-

strumental variables assumptions (as in Manski and Pepper, 2000), verification restrictions (as in

Dominitz and Sherman 2006, and Kreider and Pepper 2007), or restrictions suggested by economic

theory (as in Blundell et al 2007). However, in a cross-country comparison of poverty it is not

easy to find assumptions which are credible and equally plausible for all countries.
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Table 1: Point estimates of poverty rates by country in 2001 (standard errors in parentheses). For
each country, the first row reports the estimates of the poverty rates, while the second row reports
the corresponding standard errors in parenthesis.

Country No. obs. Nonresponse rate Unweighted poverty Weighted poverty

Belgium 5607 .201 .131 .115
(.005) (.004)

Denmark 4975 .144 .094 .087
(.004) (.004)

France 12625 .100 .180 .184
(.003) (.003)

Germany (SOEP) 13489 .157 .132 .136
(.003) (.003)

Greece 11114 .131 .205 .253
(.004) (.004)

Ireland 5421 .099 .175 .160
(.005) (.005)

Italy 15317 .190 .223 .241
(.003) (.003)

Netherlands 10395 .073 .139 .147
(.003) (.003)

Portugal 12917 .138 .202 .241
(.004) (.004)

Spain 13689 .123 .185 .193
(.003) (.003)

UK (BHPS) 10805 .102 .187 .174
(.004) (.004)
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Table 2: Estimated bounds by country (λ = 0.100, ρ = 0.025). For each country, the estimates
of the upper (lower) bounds are reported in the first row, while the corresponding upper (lower)
limits of the bootstrap confidence intervals are reported in the second row.

Country LBC1∗ UBC1∗ LBC2∗ UBC2∗ LBC3∗ UBC3∗

Belgium .035 .258 .103 .246 .039 .191
.018 .295 .086 .284 .021 .228

Denmark .000 .221 .074 .213 .000 .144
.000 .285 .052 .277 .000 .209

France .067 .270 .141 .254 .074 .197
.055 .288 .130 .273 .061 .216

Germany .020 .250 .094 .240 .022 .177
.009 .279 .083 .269 .010 .206

Greece .099 .342 .168 .324 .110 .275
.086 .368 .155 .350 .095 .302

Ireland .083 .327 .156 .310 .093 .256
.056 .386 .129 .370 .062 .316

Italy .109 .344 .172 .325 .121 .283
.094 .373 .157 .355 .104 .313

Netherlands .046 .278 .125 .264 .052 .200
.034 .306 .113 .293 .038 .229

Portugal .106 .351 .170 .332 .118 .289
.081 .415 .145 .397 .090 .353

Spain .074 .316 .143 .300 .082 .249
.060 .355 .128 .339 .067 .287

UK .072 .322 .147 .305 .080 .249
.061 .347 .135 .331 .067 .275
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Table 3: Estimates of UBD, LBD and of the width UBD −LBD by country (λ = 0.100, ρ = 0.025).
For each country, the estimates of the upper (lower) bounds are reported in the first row, while the
corresponding upper (lower) limits of the bootstrap confidence intervals are reported in the second
row. W1 is the part of the interval width due to missing data problems, while W2 is that due to
measurement error problems.

Country LBD UBD Width W1 % W2 %

Belgium .103 .191 .089 .064 72.792 .024 27.208
.086 .228 .142 .079 55.412 .063 44.588

Denmark .074 .144 .071 .054 75.670 .017 24.330
.052 .209 .157 .084 53.411 .073 46.589

France .141 .197 .055 .022 40.043 .033 59.957
.130 .216 .086 .027 31.152 .059 68.848

Germany (SOEP) .094 .177 .084 .062 73.745 .022 26.255
.083 .206 .123 .075 60.854 .048 39.146

Greece .168 .275 .108 .068 63.346 .039 36.654
.155 .302 .146 .078 53.504 .068 46.496

Ireland .156 .256 .100 .063 63.370 .037 36.630
.129 .316 .187 .087 46.551 .100 53.449

Italy .172 .283 .111 .071 63.741 .040 36.259
.157 .313 .156 .082 52.289 .075 47.711

Netherlands .125 .200 .075 .046 60.780 .029 39.220
.113 .229 .116 .057 48.851 .059 51.149

Portugal .170 .289 .118 .078 66.169 .040 33.831
.145 .353 .209 .108 51.670 .101 48.330

Spain .143 .249 .106 .072 68.359 .033 31.641
.128 .287 .159 .090 56.346 .070 43.654

UK (BHPS) .147 .249 .103 .068 66.510 .034 33.490
.135 .275 .140 .078 56.036 .061 43.964
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Table 4: Minimum and maximum widths across countries of the estimated interval [LBD, UBD] for
different values of λ and ρ = 0.25λ.

λ ρ min width max width min W1 % max W1 %

.010 .003 .024 .080 .866 .969

.050 .013 .037 .096 .568 .862

.100 .025 .055 .118 .400 .757

.200 .050 .093 .166 .254 .603

.300 .075 .118 .221 .185 .495

.500 .125 .185 .371 .112 .339

.750 .188 .375 .720 .055 .183

.990 .248 .882 .972 .042 .110

Table 5: Minimum and maximum widths across countries of the estimated interval [LBD, UBD] for
λ = 0.100 and different values of ρ.

ρ min width max width min W1 % max W1 %

.025 .055 .118 .400 .757

.050 .057 .120 .420 .764

.100 .061 .125 .456 .778

.200 .069 .134 .516 .802

.300 .076 .143 .564 .821

.500 .087 .165 .636 .850

.750 .093 .195 .685 .876

.990 .099 .230 .704 .895
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A The extended indirect misclassification model

The bounds obtained in Section 2.3 may also be derived by considering an extended version of the

indirect misclassification model (5). The main advantage of this approach is that it can be used to

identify bounds on the distribution of any categorical variable (not just a binary indicator) in the

presence of missing or interval data and of measurement error problems.

The bounds (8)–(10) can be derived by assuming either C1, C2 or C3, and then considering the

following extended indirect misclassification model
[

Pr(DY = 1)
Pr(DY = 0)

]
= P




Pr(DW = 1, DR = 1)
Pr(DW = 0, DR = 1)

Pr(DR = 0)


 , (15)

where P is a rectangular matrix given by

P =
[

Pr(DY = 1 |DW = 1, DR = 1) Pr(DY = 1 |DW = 0, DR = 1) Pr(DY = 1 |DR = 0)
Pr(DY = 0 |DW = 1, DR = 1) Pr(DY = 0 |DW = 0, DR = 1) Pr(DY = 0 |DR = 0)

]
.

This model extends the indirect classification model (5) by adding the probability Pr(DR = 0) of

missing data. Model (15) can be split into the sum of two terms
[

Pr(DY = 1)
Pr(DY = 0)

]
=

[
Pr(DY = 1 |DR = 1)
Pr(DY = 0 |DR = 1)

]
Pr(DR = 1)+

[
Pr(DY = 1 |DR = 0)
Pr(DY = 0 |DR = 0)

]
Pr(DR = 0),

(16)

where[
Pr(DY = 1 |DR = 1)
Pr(DY = 0 |DR = 1)

]
=

[
Pr(DY = 1 |DW = 1, DR = 1) Pr(DY = 1 |DW = 0, DR = 1)
Pr(DY = 0 |DW = 1, DR = 1) Pr(DY = 0 |DW = 0, DR = 1)

]

×
[

Pr(DW = 1 |DR = 1)
Pr(DW = 0 |DR = 1)

]

(17)

is just the indirect misclassification model introduced in Section 2.1 except for the fact that all

probabilities are now conditional on DR = 1. Given assumption C1, C2 or C3 and splitting the

extended misclassification model in two additional terms as in (16), we can identify an upper (lower)

bound for the probability of being poor by computing an upper (lower) bound for the probability

of being poor separately for respondents (under Assumptions C1, C2 or C3) and non-respondents.

The bounds (12)–(14) can be derived by imposing Assumption C4 plus one of the Assump-

tions C1, C2 or C3, and by considering the following extended indirect misclassification model

[
Pr(DY = 1)
Pr(DY = 0)

]
= P




Pr(DW = 1, DR = 1)
Pr(DW = 0, DR = 1)
Pr(DW ∗ = 1, DR = 0)
Pr(DW ∗ = 0, DR = 0)


 ,
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where P is a rectangular matrix whose transpose is equal to

P ′ =




Pr(DY = 1 |DW = 1, DR = 1) Pr(DY = 0 |DW = 1, DR = 1)
Pr(DY = 1 |DW = 0, DR = 1) Pr(DY = 0 |DW = 0, DR = 1)
Pr(DY = 1 |DW ∗ = 1, DR = 0) Pr(DY = 0 |DW ∗ = 1, DR = 0)
Pr(DY = 1 |DW ∗ = 0, DR = 0) Pr(DY = 0 |DW ∗ = 0, DR = 0)


 .

It is again possible to split this extended model into the sum of two parts as in (16) where (17)

still holds and
[

Pr(DY = 1 |DR = 0)
Pr(DY = 0 |DR = 0)

]
=

[
Pr(DY = 1 |DW ∗ = 1, DR = 0) Pr(DY = 1 |DW ∗ = 0, DR = 0)
Pr(DY = 0 |DW ∗ = 1, DR = 0) Pr(DY = 0 |DW ∗ = 0, DR = 0)

]

×
[

Pr(DW ∗ = 1 |DR = 0)
Pr(DW ∗ = 0 |DR = 0)

]
,

(18)

with Pr(DY = 1 |DR = 0) defined as in (11) in Section 2.3.

Notice that using the matrix notation it is straightforward to extend the indirect misclassifica-

tion model to the case of interval data. Let us assume, for example, that unfolding bracket questions

are used to collect some partial information on income for non-respondents. Then we can observe

an upper and a lower bound for the household income YU and YL. Notice that if respondents refuse

to give any information on household income, then YU is infinite and YL is zero. The new indirect

misclassification model is given by

[
Pr(DY = 1)
Pr(DY = 0)

]
= P




Pr(DW = 1, DR = 1)
Pr(DW = 0, DR = 1)

Pr(DYL
= 1, DYU

= 1, DR = 0)
Pr(DYL

= 0, DYU
= 1, DR = 0)

Pr(DYL
= 0, DYU

= 0, DR = 0)




,

where DYL
and DYU

are binary indicators equal to one if, respectively, YL ≤ γ and YU ≤ γ, and

equal to zero otherwise, and P is a rectangular matrix whose transpose is equal to

P ′ =




Pr(DY = 1 |DW = 1, DR = 1) Pr(DY = 0 |DW = 1, DR = 1)
Pr(DY = 1 |DW = 0, DR = 1) Pr(DY = 0 |DW = 0, DR = 1)

Pr(DY = 1 |DYL
= 1, DYU

= 1, DR = 0) Pr(DY = 0 |DYL
= 1, DYU

= 1, DR = 0)
Pr(DY = 1 |DYL

= 0, DYU
= 1, DR = 0) Pr(DY = 0 |DYL

= 0, DYU
= 1, DR = 0)

Pr(DY = 1 |DYL
= 0, DYU

= 0, DR = 0) Pr(DY = 0 |DYL
= 0, DYU

= 0, DR = 0)




.

As before it is possible to split this extended model into the sum of two parts as in (16) where (17)
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still holds and
[

Pr(DY = 1 |DR = 0)
Pr(DY = 0 |DR = 0)

]
=




Pr(DY = 1 |DYL
= 1, DYU

= 1, DR = 0) Pr(DY = 0 |DYL
= 1, DYU

= 1, DR = 0)
Pr(DY = 1 |DYL

= 0, DYU
= 1, DR = 0) Pr(DY = 0 |DYL

= 0, DYU
= 1, DR = 0)

Pr(DY = 1 |DYL
= 0, DYU

= 0, DR = 0) Pr(DY = 0 |DYL
= 0, DYU

= 0, DR = 0)



′

×



Pr(DYL
= 1, DYU

= 1 |DR = 0)
Pr(DYL

= 0, DYU
= 1 |DR = 0)

Pr(DYL
= 0, DYU

= 0 |DR = 0)


 .

(19)

The probabilities in the last vector can be computed using the interval information on income.

Moreover, we know that

Pr(DY = 1 |DYL
= 0, DYU

= 0, DR = 0) = 0, Pr(DY = 0 |DYL
= 0, DYU

= 0, DR = 0) = 1,

Pr(DY = 1 |DYL
= 1, DYU

= 1, DR = 0) = 1, Pr(DY = 0 |DYL
= 1, DYU

= 1, DR = 0) = 0.
(20)

Bounding the remaining unknown probabilities in (19) in the closed interval [0, 1], we can easily

compute upper and lower bounds for Pr(DY = 1 |DR = 0) and its compliment to one.

If YU , YL and the poverty line are measured with errors, then the equalities in (20) could

be invalid. In that case we need to introduce the following additional assumptions, analogous to

assumption C1 in Section 2.3:

Pr(DY = 1 |DYL
= 0, DYU

= 0, DR = 0) ≤ δ1 < 1.

Pr(DY = 0 |DYL
= 1, DYU

= 1, DR = 0) ≤ δ2 < 1,

where δ1 and δ2 are fixed constants.

Finally, notice that the extended indirect misclassification model can be applied to the case

where all individuals provided only interval information on their household income. In this case

the model would coincide with equation (19) but without conditioning on DR = 0.

B Proofs

Proof of Proposition 1 We begin by showing that Assumption B1 implies the bounds UBB1

and LBB1 on Pr(DY = 1). By the law of total probability, the true poverty probability can be

expressed as

Pr(DY = 1) = Pr(DY = 1 |DW = 1) Pr(DW = 1) + Pr(DY = 1 |DW = 0)Pr(DW = 0). (21)
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Since Pr(DY = 1 |DW = 1) = 1− Pr(DY = 0 |DW = 1), we can rewrite (21) as

Pr(DY = 1) = Pr(DW = 1) + Pr(DY = 1 |DW = 0) Pr(DW = 0)

− Pr(DY = 0 |DW = 1)Pr(DW = 1).

By Assumption B1, 0 ≤ Pr(DW = i,DY = j) ≤ λ < 1 for any i 6= j and we can identify the

following upper and lower bound for Pr(DY = 1)

UBB1 = min(Pr(DW = 1) + λ, 1),

LBB1 = max(Pr(DW = 1)− λ, 0).

The same upper and lower bounds can be obtained by considering the direct misclassification model

(3)–4) and Assumption B1 as proved in Molinari (2005), Proposition 3.

We now show that Assumption B2 implies the bounds UBB2 and LBB2 on Pr(DY = 1). Consider

again equation (21). Using the fact that Assumption B2 implies that Pr(DY = 1 |DW = 0) ≤ λ

and Pr(DY = 1 |DW = 1) ≥ 1− λ, we obtain the following upper and lower bounds

UBB2 = Pr(DW = 1) + λPr(DW = 0),

LBB2 = Pr(DW = 1)(1− λ).

It is straightforward to show that the above bounds are sharp. For example, to show that UBB2 is

a sharp upper bound under Assumption B2, we just need to show that there is no ε < 0 such that

UBB2(ε) = Pr(DW = 1) + λPr(DW = 0) + ε

is a valid bound for Pr(DY = 1) satisfying

Pr(DY = 1) = Pr(DY = 1 |DW = 1) Pr(DW = 1) + Pr(DY = 1 |DW = 0)Pr(DW = 0)

for any value of Pr(DY = 1 |DW = 0) in [0, λ] and any value of Pr(DY = 1 |DW = 1) in [1− λ, 1].

Since for Pr(DY = 1 |DW = 0) = λ and Pr(DY = 1 |DW = 1) = 1 we have

Pr(DY = 1) = Pr(DW = 1) + λPr(DW = 0),

UBB2(ε) is a valid upper bound if and only if ε ≥ 0, which implies that UBB2 is sharp. The proof

that the remaining bounds (UBB1, LBB1 and LBB2) are sharp can be obtained in a similar way.
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Proof of Proposition 2 We begin by showing that Assumption C1 implies the bounds UBC1 and

LBC1 on Pr(DY = 1). By the law of total probability, the poverty rate satisfies

Pr(DY = 1) = Pr(DY = 1 |DR = 1) Pr(DR = 1) + Pr(DY = 1 |DR = 0) Pr(DR = 0). (22)

By conditioning on the event DR = 1 and applying Proposition 1, it is possible to prove that

Assumption C1 implies

max{Pr(DW = 1 |DR = 1)− λ, 0} ≤ Pr(DY = 1 |DR = 1) ≤ min{Pr(DW = 1 |DR = 1) + λ, 1}.

By replacing these bounds in equation (22) and bounding Pr(DY = 1 |DR = 0) in the closed

interval [0, 1] we can derive the following upper and lower bounds for Pr(DY = 1)

UBC1 = min{Pr(DW = 1 |DR = 1) + λ, 1} Pr(DR = 1) + Pr(DR = 0),

LBC1 = max{Pr(DW = 1 |DR = 1)− λ, 0} Pr(DR = 1).

The proof that Assumption C2 implies the bounds UBC2 and LBC2 on Pr(DY = 1) can be obtained

by analogy with the previous case.

The proof that Assumption C3 implies the bounds UBC3 and LBC3 on Pr(DY = 1) follows the

same lines except for the fact that bounds on Pr(DY = 1 |DR = 1) are derived using Assumption C3

and Proposition 3 in Molinari (2005). ¤
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NON-TECHNICAL SUMMARY 
 
 
The aim of this paper is estimating income poverty in the presence of missing data and measurement 
error problems. We use the conventional definition of poverty as having an income below a poverty line, 
60% of median household income, where income is scaled to take account of household composition 
and size. 
 
Income measures are usually among the variables with the highest nonresponse rates. Both survey 
methodologists and applied econometricians suggest that ignoring the nonresponse problem can cause 
a serious selection bias. Moreover, since responses to surveys are not perfectly reliable, income 
poverty measures are generally plagued by measurement errors too.  
 
Point estimation approaches taking account of missing data and/or measurement error problems 
impose usually restrictive and non-testable assumptions. On the contrary, in this paper we do not 
impose any restrictive assumption but we provide bound estimates instead of point estimates of the 
poverty rate. In other words, we provide an upper and a lower bound which defines the range of 
logically possible values for the poverty rate.  
 
By using the European Community Household Panel (ECHP) we compute bound estimates for the 
poverty rates in Belgium, Denmark, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal, 
Spain, and the UK. Interestingly, our bound estimates are in line with the official statistics published by 
Eurostat, where Greece, Italy and Portugal are the countries with the highest poverty rates, around 23 
percent, while Belgium, Denmark, Germany and the Netherlands have the lowest poverty rates, usually 
lower than 15 percent. In fact, our estimated lower bounds for the poverty rate are higher than 15 
percent in Greece, Italy and Portugal, while the estimated upper bounds are lower than 23 percent in 
Belgium, Denmark, Germany and the Netherlands. Moreover, we find that the missing data problem is 
more relevant than the measurement error problem in all countries. 
 


