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ABSTRACT 
 
 
We consider the neglected issue of the dynamics of perceptions, as expressed in responses to survey 
questions on subjective well-being. We develop a simulated ML method for estimation for dynamic 
linear models, where the dependent variable is partially observed through ordinal scales. This latent 
autoregression (LAR) model is often more appropriate than the usual state-dependence (SD) model for 
attitudinal and interval variables. The paper contains an application to a model of households’ 
perceptions of their financial well-being, demonstrating the superior fit of the LAR model to both the 
usual static model and the SD model. 
 
 
KEYWORDS:  Dynamic panel data models, ordinal variables, simulated maximum likelihood, GHK 
simulator, BHPS 
 
 



 

NON-TECHNICAL SUMMARY 
 
 
There is much current interest in the broader concepts of “happiness”, “satisfaction” and “well-being” as 
alternatives to measures such as income and consumption, in evaluating social and economic 
outcomes. Analysis of these broader concepts is usually made by investigating the statistical 
relationship between the subjective assessments given by people interviewed in sample surveys and 
their personal and economic circumstances. This allows researchers to compare the additional well-
being generated by higher income with that generated by happy events like the birth of a child or the 
losses from unhappy events like unemployment or bereavement.  

The large applied literature on this topic is predominantly based on the strong assumption that 
the subjective assessments generated by survey interviews have a direct relationship with “true” well-
being at the time of interview. This neglects the possibility that there may be slow adjustment of 
people’s perceptions of well-being to changes in their circumstances - in particular, that there may be 
some psychological inertia in moving away from last year’s assessment following a change in 
circumstances. 

This methodological paper investigates the inertia effect and proposes a new approach to 
statistical analysis in the presence of inertia. We analyse the responses to a question in the British 
Household Panel Survey about perceived financial well-being and find strong evidence that perceptions 
adjust only slowly to changing circumstances. An implication of this finding is that researchers who fail 
to allow for the possibility of slow adjustment may reach misleading conclusions about the nature of 
well-being.  
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1 Introduction 

This paper considers panel data methods in applications involving a combination of three 

statistical issues: (i) the panel (the British Household Panel Study (BHPS), in our case) is 

short in the sense that the number of waves is very much less than the number of individuals, 

so that asymptotic justifications rest on n → ∞ with T fixed; (ii) the possibility that 

perceptions display slow adjustment to changing circumstances; and (iii) the use of an ordinal 

Likert-type measure as dependent variable.  

The panel data literature outside economics has two main strands: random-effects 

structures within the multi-level modelling approach (Goldstein, 2003), which generally deals 

with static models. The alternative structural equations  (SEM) approach (Bollen, 1989) can 

be applied to short panels, with each wave represented by a different equation. Although the 

SEM approach can, in principle, capture rich dynamics by specifying cross-equation 

feedbacks, most applications are essentially static or accommodate change through latent 

growth curve models involving parametric time trends (Meredith and Tisak, 1990) or through 

temporal coefficient variation by allowing coefficients in the period-specific equations to 

differ.  

 From the viewpoint of the econometric literature these approaches have a 

rather cross-section ‘look’, contrasting with the econometric view of panel data as a 

collection of short realisations of individual time-series processes. In economics, these 

processes are sometimes derived from theoretical models of inter-temporal decision-making 

such as the life-cycle hypothesis (Hall, 1978) and they are frequently representable by an 

equation involving autoregressive elements, sometimes with a unit root, implying a stochastic 

trend quite different from the latent growth curve models widely used in other areas of social 

science. One potential area of convergence in panel data methods that appears largely absent 

outside economics, is the convergence of panel data models and time series models more 

generally.  

In short panels, dynamic modelling changes the nature of inference procedures. Even 

in the simple regression model, fixed-effects estimation no longer gives consistent estimates 

(Nickell, 1981) and fixed-effects logit methods (Chamberlain, 1980) are not applicable in 

autoregressive models with covariates. When the dependent variable is discrete, the 

instrumental variable and generalised method-of-moments estimators developed by 

econometricians (see Hsiao 2003, chapter 4, for a survey) are not appropriate. There are two 

main reasons for taking explicit account of the ordinal nature of the dependent variable rather 
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than using regression methods. Firstly, the numerical scaling of responses is arbitrary and 

may impose an inappropriate cardinalisation on the estimates. Secondly, the logic of linear 

regression implies a residual distribution with a finite set of mass points, whose form varies 

with the values of the explanatory variables. Neglect of this complication makes standard 

inferential procedures unreliable. A further issue arising in dynamic models for discrete 

variables, is the ambiguity over the form that dynamic adjustment might take, since, in 

standard models, the dependent variable exists in two forms: a latent continuous form and a 

discrete observed form. Either of these might be specified to carry the process of dynamic 

adjustment.  

 The focus of this paper is the use of panel data to model subjective assessments of 

individual well-being. Subjective indicators have a potentially valuable role to play in studies 

of poverty and the distribution of welfare. There are well-known imperfections in the 

measurement of income, particularly in the extremes of the distribution, and a composite 

approach involving subjective well-being measures might moderate the distortions caused by 

income measurement error. This is particularly important in panel datasets, where 

consumption expenditure is rarely observed and income may be subject to erratic short-term 

movements. Moreover, the concepts of poverty and welfare are potentially much broader 

than that of low income or expenditure over a standard reference period (Sen, 1985). 

However, the value of subjective assessments and other non-income indicators of deprivation 

remains the subject of debate (Ravallion and Lokshin, 2001, 2002). 

The availability of panel data makes it possible to allow for persistent individual 

effects which capture variations in the way that different individuals translate their 

perceptions into survey responses. It has become common practice to use random effects 

binary or ordered probit models (see Fréchette 2001, for a popular implementation). Ferrer-i-

Carbonell and Frijters (2004) have extended the conditional logit estimator of Chamberlain 

(1980) to the ordered case, allowing the independence of individual effects and observed 

covariates to be tested. However, much of the applied literature on subjective well-being is 

static in nature and there has been little work so far on the dynamics of individual perceptions 

of well-being. In part this is due to the difficulty of dynamic modelling in short panels with 

discrete endogenous variables. 

An important distinction can be made between inherent and observational 

discreteness. Inherent discreteness refers to a case where the variables of interest are 

naturally discrete. For example, an individual is either employed or not employed; she has a 
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university degree or not; she is married or not.  Observational discreteness arises when the 

variables of interest are naturally continuous, but the survey instrument used to observe them 

imposes discreteness via a pre-specified ordinal scale of allowable responses. This applies to 

a wide range of attitudinal questions, which ask respondents to record their perceptions or 

beliefs on a Likert (1932) scale. Econometric analysis of attitudinal variables has grown 

enormously in recent years, with the development of the economic literature on happiness 

and satisfaction (see Van Praag and Ferrer-i-Carbonell, 2004, for a recent survey). There has 

so far been little discussion of the dynamics of perceptions or of the most appropriate type of 

dynamic model to use. Dynamic models typically involve lagged values of the dependent 

variable, implying long-range dependence between elements of each individual’s realisation 

of the perception process. Observational discreteness does not only arise with attitudinal data. 

It may also occur in survey questions about more ‘objective’ entities like income, when 

respondents are required to place themselves within one of a number of given income ranges.  

 Most of the statistical literature dealing with discrete models for longitudinal data 

assumes inherent discreteness. The state dependence (SD) model of Heckman (1978, 

1981a,b) in R-category ordinal form is: 

)2(...1,),[iff

)1('...

1
*

1
1

11
*

Rryry

uDDy

rritit

itiit
R
itRitit

=ΓΓ∈=

+++++=

−

−− εαα xβ
 

where: r
itD 1−  is a dummy variable equal to 1 if yit-1 = r ; xit is a vector of strictly exogenous 

covariates; ui is an unobserved individual effect uncorrelated with xit ; εit is a random residual 

uncorrelated across individuals and time; and Γ1 … ΓR-1  are parameters, with Γ0 = -∞ and 

∞=ΓR . This model was developed primarily for applications in labour economics, where 

discreteness is inherent in the problem and where past outcomes of yit , in the form of dummy 

variables R
itit DD 1

1
1... −− , represent  state dependence. In these applications, the latent variable 

*
ity  is essentially an artificial construct and there is no reason why *

1−ity  should appear in (1).  

 However, attitudes, expectations and incomes are not inherently discrete and the use 

of models like (1)-(2) is questionable. If the discrete nature of yit is only an artificial construct 

imposed by the questionnaire designer, then behaviour centres on the continuous variable *
ity , 

rather than the observed indicator yit. In these cases, *
1−ity  rather than yit-1, should carry the 

dynamic feedback if the dynamic equation is to be a description of behaviour. This is an 

important point, largely neglected in the econometric literature, which focuses almost 
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exclusively on SD models when dynamic discrete models are considered. An exception to 

this is a paper by Bover and Arellano (1997). However, the context and model considered in 

that study is quite different from the case considered here, as is the approach to estimation. 

 This paper has several objectives. Firstly, (above and in section 2) we make the case 

for using dynamics in *
1−ity , rather than yit-1, in applications where the discreteness is 

observational rather than inherent and consider its dynamic implications. We propose a 

practical method of estimation in section 3 and, in section 4, this is applied to a panel data 

model of individuals’ financial expectations, demonstrating the superior fit and different 

properties of the LAR model. Identification of the model is demonstrated in appendix 1. 

 

2 The model 

2.1 The statistical structure 

 We work with a behavioural model specified in terms of the ‘natural’ continuous 

variables as follows: 

itiititit u'yy εα +++= − xβ*
1

*     (3) 

We refer to this as the Latent Autoregression (LAR) model. The vector xit is assumed strictly 

exogenous and individuals are sampled independently from the underlying population. We 

make the standard assumption of Gaussian random effects so that the unobservables ui and εit  

satisfy the following assumptions: 

(ui , εit) ⊥ Xi      (4) 

ui ⊥ εit           (5) 

εit ⊥ εis    for every s ≠ t   (6) 
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    (7) 

where ⊥ denotes statistical independence and Xi = (xi0, ..., xiT). We only observe *
ity  

according to the grading scale defined by (2) above. Note that, since the scale and origin of 
*
ity  and Γr are arbitrary, the model is normalised by omitting the intercept from xit and setting 

var(εit) = 1, which is equivalent to dividing *
ity , *

1−ity , β, ui and εi through by σε in (2). Note 

that α is not affected by this normalisation. 

2.2 Interpretation of parameters 
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In models with unobserved grading thresholds, the scale of *
ity  is unobserved and we estimate 

β/σε rather than β. Consequently, the estimated coefficients are interpretable as 

( ) itiititit uyyE xx ∂∂ − /,,|]/[ *
1

*
εσ . In applications to subjective well-being, this problem is more 

fundamental than a lack of identification induced by imperfect observation: there is a lack of 

natural units, which renders the scale of β inherently ambiguous. However, note that α is 

identifiable independently of σε . As a consequence, we can estimate unambiguously the 

speed of adjustment. For example, following a shock, the proportion of disequilibrium which 

is eliminated within s periods is 1-αs and this is unaffected by normalisation. 

2.3 Dynamics 

The SD and LAR processes (1) and (3) imply different patterns of dynamic behaviour. 

Consider the following artificial example: 

SD model: ttt xyy ε++= −1
* 8.0      (8) 

LAR model: ttt xyy ε+++= − 770.0355.0422.0 *
1

*    (9) 

where x = 0.5, εt ~ N(0,1) and )0( * >= tt yy 1 . The parameters of the LAR process (9) have 

been chosen to reproduce exactly three properties of the SD process (8):  

(i) Pr(y = 1) = 0.877;  

(ii) ∂Pr(y = 1 | x)/∂x = 0.246;  

(iii) Pr(yt ≠ yt-1) = 0.170.  

With the LAR parameters chosen in this way, the distributions of run lengths in states 0 and 1 

are identical for the two processes. However, the relationship between successive run lengths 

is not. This is reflected in the autocorrelation functions (Figure 1). As we would expect, the 

LAR model has much higher autocorrelations than the SD model for *
ty . For the observed yt, 

the ACF decays faster for the SD than the LAR process, despite the fact that they have the 

same 1st-order autocorrelation by construction. Thus, an LAR model will display greater 

persistence than an observationally similar SD model, in this quite subtle sense.  
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 Figure 1 ACFs for the SD and LAR models 

 

The two models also differ in terms of the implied dynamic multiplier effects of x on 

y. To illustrate this, consider again the binary case and focus on two important features: the 

impact on Pr(yit=1 | yit-1, Xi, ui) of switching the conditioning event from yit-1 = 0 to yit-1 = 1; 

and the impact of the history of {xit} on the probability of a positive response, without 

conditioning on yit-1. 

 For the former, the SD model is relatively simple: 
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where Φ(.) is the cdf of the N(0,1) distribution. For the LAR model, we have instead: 
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Assume the process (2) is stable and long-established. Then: 
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and therefore Pr(yit=1, yit-1=1 | Xi, ui) = Φ*(μit, μit-1; α) and Pr(yit=1 | Xi, ui) = Φ(μit), where 

Φ*(.,.;α) is the bivariate standard normal cdf with correlation α and μit is the scaled 

conditional mean (1-α2)1/2[∑sαsβ′xit-s+ui/(1-α)]. Thus: 

 

[ ])(1)(
)()();,(

),,0|1Pr(),,1|1Pr(
11

11
11

−−

−−
−− Φ−Φ

ΦΦ−Φ
===−==

itit

itititit
iiititiiitit uyyuyy

μμ
μμαμμ

XX
(1

3) 

The important difference between (10) and (13) is that the former depends only on the current 

vector xit, whereas the latter depends on the entire history of xit .  

 Consider now the alternative summary measure, Pr(yit=1 | Xi, ui). The LAR process 

gives a relatively simple form: 

)(),|1Pr( itiiit uy μΦ== X     (14) 

implying that the lagged marginal response decays geometrically: 

β
x

X 21)(
),|1Pr(

ααμφ −=
∂
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−

s
it

sit

iiit uy   (15) 

where φ(.) is the standard normal pdf.  

For the state-dependence model, we can write: 

),|1Pr(),,1|1Pr(
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Rearrange and write this as a recursion: 

itititit PP ρδ += −1      (17) 

where: Pit = Pr(yit=1 | Xi, ui); δit = Φ(α+β′xit+ui) - Φ(β′xit+ui); and ρit = Φ(β′xit+ui).  

Solving back to an arbitrary period 0: 
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where we use the convention 11

0
≡∏ −=

= −
j

j jitδ . On reasonable assumptions about the x-

process, solving back indefinitely leads to the following representation: 
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Thus: 
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(20) 

The profile of  ∂ Pr(yit=1 | Xi, ui)/ ∂xit-s is thus considerably more complicated than the 

geometric decay implied by the SD model (1). 

 

3 Estimation 

3.1 Initial conditions 

In the SD model, there are two alternative approaches for dealing with the random effects u. 

Heckman (1981b) specifies an approximation to the distribution of yi0 | Xi, ui, and then 

derives the distribution of yi1 ... yiT | yi0, Xi, ui using sequential conditioning. The random 

effects are then integrated out by numerical quadrature. The alternative approach, used by 

Wooldridge (2000) is to specify instead the distribution of ui | yi0, Xi. A semi-parametric 

variant due to Arellano and Carrasco (2003) involves the sequence of conditional means 

( )itiitiiit yyuE xx ...,...| 00=λ , which are estimated as nuisance parameters. The latter 

approach has many advantages in models like (1) but is less attractive in LAR models, where 

the variable of interest, *
ty , is not observable and cannot be conditioned on. Conditioning on 

its observable counterpart does not lead to useful simplification. For this reason, we use the 

Heckman treatment of initial conditions. 

 Assume that we observe y and x over a period t = 0 … T. The LAR process (2) 

implies the following distributed lag representation: 
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This is a useful basis for estimation if either t is sufficiently large and α t decays sufficiently 

rapidly with t or if we can find a good empirical approximation for *
0iy .  

Write this approximation to *
0iy  | Xi, ui as: 

iiii ηuy ++= γwδ'*
0      (22) 

Rryry rrii ...1,),[iff 00
1

*
00 =ΓΓ∈= −   (23) 
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where wi is a vector constructed from Xi ; δ and γ are parameters and, in the ordered probit 

case, 0
rΓ  may differ from Γr. The random term ηi satisfies the following assumptions: 

ηi ⊥ ui ⏐ Xi        (24) 

ηi ⊥ εit  ⏐ Xi    for every t > 0   (25) 

ηi ⏐ Xi  ∼ N(0, ση
2)     (26) 

Note that, unlike εit, ηi  is not normalised to have unit variance.  

 In principle, the vector wi may contain all distinct elements of {xi0, Xi}. However, in 

practice it may be found that wi = xi0 is adequate, or that limited summaries, such as 

},{
1

1
0 ∑−=

T
itii T xxw , work well. This is essentially an empirical issue. 

With approximation (22)-(23), equation (21) becomes: 

i
t

t

s
sit

s
it

t

s
sit

s
i

t*
it ηεucy αααα ++++= ∑∑

−

=
−

−

=
−

1

0

1

0
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where ct = (1 - αt)/ (1 - α) + αt γ. 

 The model now consists of equation (22) and a set of equations (27) for any collection 

of periods t > 0. In practice, the initial conditions model (22) is only an approximation and is 

a potential source of specification error. However, if |α | < 1 so that α t → 0 as t → ∞, then the 

influence of the initial conditions declines as we consider later periods. There is, therefore, a 

case for leaving a gap (of S periods) between the initial period 0 and the subsequent periods 

used to estimate the LAR model. Consequently, we work with a system of (T-S+1) equations 

consisting of (22) and (27) for t = S+1…T. Data on {yi1…yiS} are not used. The choice of S 

involves a trade-off between possible misspecification bias and efficiency, since increasing S 

reduces both the influence of initial conditions and the amount of data used for estimation. 

Increasing S also reduces the scale of the computational problem. This system is nonlinear in 

its parameters θ = {α, β, δ, γ, σu, Γ1 …ΓR, 00
1 ... RΓΓ }. Appendix 1 establishes that the model is 

identified provided the sample contains at least three waves. 

3.3 SML estimation 

 This identification argument does not lead to an efficient estimator, since it does not 

impose all the restrictions on the coefficients (at, bt, d0t, ..., dt-1,t) in (29), nor does it exploit 

the relationship between the residual correlation ρ12 and the model parameters. Instead we 

use a simulated ML procedure. Let the observed outcome for yit be rit , implying 

),[ 1
*

itit rrity ΓΓ∈ − . The likelihood for this set of events is: 
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The probability (28) is a (T-S+1)-dimensional rectangle probability. Under normality, 

probabilities of this kind can be calculated using the GHK simulator (Hajivassiliou and Ruud, 

1994), with antithetic acceleration used to improve simulation precision. We construct the 

following simulated log-likelihood function: 

∑
=

=
n

i
iPL

1

)(ˆln)(ˆln θθ      (38) 

where )(ˆ θiP  is the predicted probability (28) for individual i, estimated using the GHK 

algorithm. The simulated likelihood is maximised numerically with respect to θ.  

 

4 An application to individual expectations data 

The British Household Panel Survey (BHPS) is the principal source of nationally-

representative household- and individual-level panel data in the UK. This application is based 

on 11 waves, relating to the years 1993-2003. Each year, BHPS participants are asked a 

series of questions about their attitudes. Here we work with the set of observations on 2,219 

males who were household heads in the year 1992. The resulting panel dataset is unbalanced 

but has a common initial period t = 0 in 1993 (the year 1992 is lost through the need to 

construct certain differenced variables).  

We analyse responses to the following question: “How well would you say you 

yourself are managing financially these days?” Responses have been recoded as: y = 1 

“Finding it very difficult”; y = 2 “Finding it quite difficult”; y = 3 “Just about getting by”, y = 

4 “Doing alright”; y = 5 “Living comfortably”. Under the LAR model, the individual’s 
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underlying assessment of his financial position at time t is a naturally continuous variable, *
ity , 

which we assume to be generated according to the panel autoregression (3). The respondent 

is then assumed to translate *
ity  into a response to the categorical survey question according 

to the rule (2).  

 The final parameter estimates for this LAR model are given in Table 1. Computation 

was done using the GHK simulator, using successive passes, initially with 50 replications, 

rising to 500 once the neighbourhood of the optimum was reached. Following convergence, a 

single iteration was performed with 2000 replications as a check on convergence and the 

optimised likelihood value. Antithetic variance reduction is used throughout. 

 The variables used in the model are summarised in Appendix Table A1. Following 

initial experimentation with alternative specifications, our model for the initial condition *
ity  

used a vector of covariates wi comprising the current values xi0 and overall sample means ix  

for a subset of the variables. Of the latter averaged variables, only the unemployment variable 

is significant in the model for *
ity . Estimation results appear not to be very sensitive to the 

specification of the model for *
ity  in this application. The results reported here use a skip rate 

of S = 0, so that our final specification uses all available waves of data. Consequently, the 

rectangle probabilities involved in SML estimation are 11-dimensional. We also computed 

estimates, not reported here, based on observations of y for waves 0, 6…10 (a skip rate of S = 

5), which shortened computing times considerably but made no important change to the 

estimates (see also Pudney, 2005). 

Table 1 summarises the sample fit of the LAR, SD and static random-effects ordered 

probit models. Full parameter estimates for all three models are given in the appendix. The 

static and SD model estimates were computed using 48-point Gauss-Hermite quadrature. 

Both dynamic models give a much higher likelihood value than the static model, which is 

overwhelmingly rejected by a likelihood ratio test. Dynamic adjustment of perceptions is 

clearly important here.  

Despite the fact that the SD model has two more parameters than the LAR model, the 

latter achieves a substantially higher log-likelihood. This is also true of other BHPS samples 

and model specifications not presented here (see Pudney, 2005). Thus the conventional type 

of dynamic response embedded in the SD model is clearly not the best way of capturing 

dynamic adjustment. The comparison between the LAR estimates on one hand and the static 

and SD estimates on the other, shows that the latter models generate too little persistence 
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through dynamic adjustment and the model fitting process compensates for this 

misspecification by overestimating the variance of the individual effect. In our application, 

the share of residual variance attributable to the persistent effect, σu
2/(1+σu

2), is estimated to 

be only 27% for the LAR model, compared to 46% for the SD model and 54% for the static 

model. If we interpret the individual effects ui as the result of inter-individual differences in 

the interpretation of the response scales or in psychological characteristics, then correcting 

the misspecification inherent in the SD and static models dramatically reduces the importance 

of such differences. Instead of inherent between-individual differences in perception, our 

results emphasise a general tendency towards inertia in all individuals’ updating of 

perceptions. 

 

Table 1   Sample fit and intra-individual squared correlation of alternative models 
    

 LAR model SD model Static model 
Log-likelihood -19,427.53 -19,456.38 -19,822.90 
Number of parameters 98 100 96 
ρ 2 = σu

2 / (1+σu
2) 0.274 0.456 0.541 

 

It is sometimes assumed that the neglect of dynamics is unimportant if we are mainly 

interested only in long-term equilibrium effects. Our results demonstrate that this is not a 

reliable assumption. In the LAR model, the steady-state equilibrium relationship between y* 

and x is given by the coefficients β/(1-α). Comparing these with the coefficients from the 

static model, we find that the coefficients of the level variables in the principal equation are 

subject to proportionate proportionate biases averaging ±25% for those coefficients which are 

significant at the 5% level in the LAR model. There are particularly large positive biases of 

38-45% in the coefficients of the education variables. For the variables reflecting changes 

(such as marriage dissolution, job loss, etc. within the last year) the biases are also large, with 

the significant coefficients biased downwards by 34% on average, using a direct comparison 

of the short-run coefficients β in the two models. In particular, the static model gives severe 

underestimation of the short-term impact of job loss. The year effects are also heavily biased: 

by 57% absolute on average. It is clear from this comparison that, if we are seeking good 

estimates of either short- or long-run  influences well-being, it is important to allow 

appropriately for the dynamic adjustment of perceptions. 

The estimated LAR model is set out in Table A2 of appendix 2; it largely conforms to 

a priori expectations. Economic circumstances are represented by the level of household 
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income per capita, the proportion of household income earned by the respondent himself, and 

a dummy for owner-occupation, together with the estimated value of the equity in the house. 

As expected, the level of household per capita income has a significant positive effect on 

perceptions of financial well-being. The respondent’s share in household income has a 

negative influence on his reported perceptions, which is consistent with the idea that 

diversification of income sources reduces risk and thus increases perceived financial security. 

However, the diversification effect is not very strongly significant. There is stronger evidence 

to support the widely-held view that homeowners’ perceptions respond to rising house 

values. Human capital also appears to be an important element in perceived financial well-

being, with a strong positive influence of educational attainment.  

 However, these ‘objective’ financial factors are not sufficient to explain the 

determination and evolution of perceived financial well-being. Other explanatory variables 

are mostly time-invariant. Ethnicity is represented by dummies for the Black and Asian 

groups and there is weak evidence of a negative difference. The effect of marital status is 

captured by dummies for being married/cohabiting, divorced/separated or widowed. A 

further dummy identifies those who have made a transition into the divorced/separated group 

within the last year. Other status transitions were insignificant or too few in number to permit 

reliable estimation. There is a significant positive influence of a marital or cohabitation 

relationship. Divorce or separation reduces perceived well-being, with a very large temporary 

reduction in the year of separation.  

Labour market status is important, with significant positive effects for employment 

and self-employment. The status of unemployment has a significant negative effect, with a 

further temporary effect in the year of transition into unemployment.  

Differences in household size and structure are important. There are significant 

negative coefficients for the number of school-age children and working-age adult household 

members, but no detectable impact of a new birth on financial perceptions. These effects are 

in addition to the per capita equivalisation used for the household income variables. The 

relationship between perceived well-being and birth cohort of the household head has a 

convex form, decreasing over the cohorts covered by the sample. The year dummies show a 

strongly rising trend up to 1998, then a two-year dip with a recovery in 2001.  

 

5 Conclusions 
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We have considered an alternative to the discrete state dependence (SD) model for dynamic 

modelling of ordinal variables from panel data. The alternative LAR model involves ordinal 

observation of a latent autoregression, rather than lagged feedback of the previous period’s 

discrete outcome. It is argued that this specification is more appropriate for a range of 

applications involving observational, rather than inherent, discreteness. Examples include 

interval regressions and models of expectations, and subjective well-being. 

 The method has been applied to a model of individual perceptions of financial well-

being, applied to UK household panel data. The LAR model provides a robust description of 

the evolution of financial perceptions over time, with a significant role for lagged adjustment. 

The LAR model fits the data considerably better than a static ordered model or the 

conventional dynamic extension of SD form. The LAR model has quite different equilibrium 

and dynamic properties than both static and SD models. In particular, the static and SD 

models display less persistence than the LAR model, and when misused to model data with 

LAR-type dynamics, overcompensate by grossly overestimating the variance of the 

individual effect. This has the important practical consequence of exaggerating the 

importance of inter-individual differences in perceptions of well-being. Neglect of the slow 

adjustment of perceptions in modelling well-being leads to substantial biases in the estimates 

of both short-run impact effects and steady-state equilibrium effects. 
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Appendix 1:  Identification 

 Partition the covariates into a common set of time-invariant variables ζi and a 

sequence of time-varying covariates ξit, so that xit = (ζi, ξit). Assume a full specification of 

the initial condition (9), so that wi = (ζi, ξi1... ξiT). Make the further assumption that the 

matrix plim(n-1∑wiwi′) is positive definite. An ordered probit model for yi0 on wi will 

consistently estimate the normed coefficient vector δ/v0, where v0
2 = ση

2 + γ2σu
2.  

Consider equation (27), for any period, t > 0. Rewrite it in standardised form: 
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(A1) 

where β ′ = (βζ′ , βξ′ ), vt
2 = ct

2σu
2 + (1-α2t )/(1-α2) + α2tση

2  and ωi is the variable δ′wi/v0 

which can be constructed from the coefficients of the initial conditions model (22). Rewrite 

(28) in simplified notation as: 

itittittittititt
*
it avy υω ++++++= −− 1,1110 '...'''/ ξdξdξdζb   (A2) 

Note that the covariates (ωi, ζi, ξi1... ξit) are (asymptotically) non-collinear. Thus, ordered 

probit estimation of (29) will generate consistent estimates of the scaled coefficients (at, bt, 

d0t, ..., dt-1,t). Identification then proceeds as follows. First, the value of α can be constructed 

as any element of any of the vectors of ratios dst/ds-1,t. If α is zero, the model becomes a static 

random effects ordered probit, so there is no new identification issue; we consider the case α 

≠ 0 henceforth. With α known, β can be inferred up to scale as gg /  where g = [bt(1-α)/(1-

αt),  d0t]. Thus, the key behavioural parameters α and the direction of the vector β are 

essentially identifiable from only two waves of the panel. 

The ratio, Rt, of  at to α t gives the value v0/vt, thus: 

Rt vt  = v0     (A3) 

The correlation between the random errors in equations (22) and (27), which can be estimated 

consistently by joint estimation or from the generalised residuals, is ρ0t satisfying the 

following: 
22

00 ησασγρ t
uttt cvv +=              (A4) 
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Equations (30) and (31) are clearly insufficient to determine the three remaining unknowns, 

γ, σu
2 and ση

2, so full identification requires at least two waves of data, in addition to wave 0.  

 Consider the 3-wave case, where we have data for t = 0, 1, 2. Calculate each of the 

ratios (vt/v0)2 as α2t/at
2. Using the definition (31), after some manipulation the quantity γ σu

2 / 

v0
2 can be expressed as: 
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Note that at ≠ 0 for α ≠ 0, so (32) is well-defined. Now express vt
2 as (At + α tγ)2σu

2 + Bt + α 

2tση
2, where At = (1-α t)/(1-α) and Bt = (1-α 2t)/(1-α 2). Thus: 
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We know the value of γ σu
2 / v0

2 from (32) and we know a priori that (γ2σu
2 + ση

2)/v0
2 is 

equal to 1. This gives the following pair of equations with known right-hand sides: 
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 is non-singular for all α ≠ 0, so there 

is a unique solution for (σu
2/v0

2) and (1/v0
2). From these, σu

2 and v0
2 are determined. The 

value of γ is then given by (32) and ση
2 by v0

2 - γ 2σu
2, so all parameters are identified. 
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Appendix 2: Additional tables 

 

Table A1   Summary statistics of variables  
                  (Unbalanced panel of male household heads, 1992-2001; n = 2,219) 

 

Variable Definition 
Sample 
mean 

Level variables 
   Birth cohort (Year of birth-1940)/10 3.138 

Black Self-assessed membership of “black” ethnic group 0.0074 
Asian Self-assessed membership of “Indian”, 

“Pakistani” or “Bangladeshi” ethnic group 0.0096 
Married/cohabiting Living as married or cohabiting 0.649 
Divorced/separated Divorced or separated 0.107 
Widower Widower 0.141 

   Employed In full-time employment (30 hours or more per 
week) 0.458 

   Self-employed Self-employed 0.085 
   Retired Self-assessed as retired 0.308 
   Unemployed Self-assessed as unemployed 0.029 
   Long-term sick Self-assessed as not working  due to long-term 

sickness/incapacity 0.047 
   Degree University degree qualification 0.113 
   Certificate/Diploma Has HND, HNC or comparable qualification 0.070 
   A-level Has at least one A-level 0.141 
   O-level/GCSE Has at least one O-level, CSE or GCSE 0.258 
   Vocational qualifications Has a vocational qualification 0.340 

Pre-school child  Household contains at least one pre-school child 0.107 
   # pre-school children Number of pre-school children in household 0.134 
   # school-age children Number of school-age children in household 0.458 
   # retired members Number of retired household members 0.434 
   # working age adults Number of non-retired adults in household 1.469 
   Owner-occupier House owned outright or with a mortgage 0.730 
   Private rental House rented from a private landlord 0.066 
   Housing equity Housing equity (constant 2001 prices ÷ £100,000) 0.579 
   Household income pc Annual household income per household member 

(constant 2001 prices ÷ £1,000) 1.107 
Income share Income of respondent as proportion of total 

household income 0.657 
Change variables 

Newly divorced Change of marital status to divorced/separated 0.0077 
Newly widowed Change of marital status to widower 0.0038 
Newly retired Change of activity status to retired 0.0128 
Job loss Change of activity status to unemployed 0.0100 
Newly sick Change of activity status to long-term sick 0.0037 
New child New pre-school child in last 12 months 0.0231 
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Table A2a  LAR model parameter estimates: principal equation  
     

Parameter Estimate Std.err. Parameter Estimate Std.err. 
Level variables Autoregressive coefficient 

Black -0.5622 0.4318 α1 0.3288 0.0115 
Asian -0.1604 0.1612 Difference variables 
Married/cohabiting 0.1812 0.0519 Newly divorced -0.3466 0.0852 
Divorced/separated -0.1091 0.0630 Newly widowed 0.1679 0.1338 
Widower 0.1181 0.0726 Newly retired -0.0513 0.0680 
Employed 0.3398 0.0898 Job loss -0.2311 0.0869 
Self-employed 0.3665 0.0945 Newly sick -0.7199 0.1166 
Retired 0.1968 0.1036 New child -0.0805 0.0600 
Unemployed -0.2888 0.1025 Year effects (reference year = 2003) 
Long-term sick -0.0435 0.0997 1994 -0.4395 0.1544 
Degree 0.2812 0.0529 1995 -0.1575 0.0394 
Certificate/Diploma 0.2149 0.0658 1996 -0.0471 0.0391 
A-level 0.1613 0.0525 1997 0.0112 0.0387 
O-level/GCSE 0.1494 0.0451 1998 0.0263 0.0390 
Vocational qualifications -0.0493 0.0359 1999 -0.0846 0.0397 
# pre-school children -0.0336 0.0550 2000 -0.0943 0.0415 
# school-age children -0.0294 0.0156 2001 0.0338 0.0425 
# retired members 0.0061 0.0385 2002 0.0213 0.0419 
# working age adults -0.0413 0.0195 Random effect variance 
Pre-school child -0.0466 0.0717 σu

2 0.3775 0.0499 
Owner-occupier 0.2431 0.0436 Threshold parameters 
Private rental 0.1018 0.0524 Γ1 -1.8172 0.2110 
Housing equity 0.0184 0.0086 Γ2 -1.0357 0.1905 
Household income pc 0.1998 0.0134 Γ3 0.4400 0.1856 
Income share -0.0601 0.0467 Γ4 1.6734 0.2163 
Birth cohort -0.1058 0.0173    
Birth cohort2 0.0184 0.0070    
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Table A2b  LAR model parameter estimates: initial conditions 
    
Parameter Estimate Std.err. Parameter Estimate Std.err. 

Variables dated wave 0  Variables averaged over all time periods 
Black -0.5697 0.5803 Married/cohabiting -0.2032 0.2645
Asian -0.5131 0.2474 Divorced/separated -0.3175 0.3342
Married/cohabiting 0.5491 0.2248 Widower -0.3186 0.3721
Divorced/separated -0.1216 0.2968 Employed -0.4039 0.4899
Widower 0.4690 0.3568 Self-employed -0.3266 0.5072
Employed 0.7814 0.2233 Retired -0.1717 0.5490
Self-employed 0.4753 0.2501 Unemployed -1.1242 0.5637
Retired 0.5480 0.3111 Long-term sick -0.4084 0.5139
Unemployed 0.1408 0.2449 # pre-school children 0.1966 0.1473
Long-term sick 0.2833 0.2789 # school-age children -0.0554 0.0953
Degree 0.1649 0.1206 # retired members -0.0525 0.2104
Certificate/Diploma 0.2107 0.1407 # working age adults -0.1752 0.1099
A-level 0.3121 0.1078 Owner-occupier 0.2091 0.2774
O-level/GCSE 0.1106 0.0898 Private rental 0.2617 0.3191
Vocational qualifications -0.0300 0.0724 Housing equity 0.0138 0.0855
# pre-school children 0.0051 0.1694 Household income pc 0.1251 0.0849
# school-age children 0.0518 0.0739 Income share -0.1655 0.2788
# retired members -0.0200 0.1607 Coefficient of random effect 
# working age adults 0.0607 0.0698 γ 1.3624 0.0899
Pre-school child -0.1864 0.2091 Threshold parameters 
Owner-occupier 0.1886 0.2431

0
1Γ  -1.1674 0.4863

Private rental 0.0913 0.2613
0
2Γ  -0.2905 0.4849

Housing equity 0.1259 0.0994
0
3Γ  1.2811 0.4833

Household income pc 0.4188 0.0666
0
4Γ  2.4494 0.4845

Income share 0.3924 0.1727 Initial condition variance 
Birth cohort -0.1140 0.0462 ση

2 0.7049 0.0910
Birth cohort2 0.0332 0.0154   
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Table A3a  SD model parameter estimates: principal equation  
     

Parameter Estimate Std.err. Parameter Estimate Std.err. 
Level variables Autoregressive coefficients 

Black -0.7717 0.5392 α1 0.3108 0.0661 
Asian -0.2343 0.2115 α2 0.6081 0.0629 
Married/cohabiting 0.2505 0.0646 α3 1.1026 0.0659 
Divorced/separated -0.1325 0.0794 α4 1.4757 0.0690 
Widower 0.1730 0.0917 Difference variables 
Employed 0.4437 0.1067 Newly divorced -0.3808 0.0965 
Self-employed 0.4726 0.1122 Newly widowed 0.1842 0.1572 
Retired 0.2537 0.1262 Newly retired -0.0372 0.0807 
Unemployed -0.3526 0.1240 Job loss -0.2102 0.1016 
Long-term sick -0.0579 0.1227 Newly sick -0.7937 0.1266 
Degree 0.4058 0.0664 New child -0.0722 0.0693 
Certificate/Diploma 0.3089 0.0847 Year effects (reference year = 2003) 
A-level 0.2327 0.0680 1994 -0.2489 0.0443 
O-level/GCSE 0.2136 0.0583 1995 -0.2198 0.0455 
Vocational qualifications -0.0729 0.0477 1996 -0.0838 0.0458 
# pre-school children -0.0499 0.0672 1997 -0.0025 0.0452 
# school-age children -0.0420 0.0196 1998 0.0241 0.0456 
# retired members 0.0013 0.0474 1999 -0.1021 0.0465 
# working age adults -0.0475 0.0240 2000 -0.1177 0.0486 
Pre-school child -0.0637 0.0873 2001 0.0303 0.0500 
Owner-occupier 0.3260 0.0525 2002 0.0260 0.0476 
Private rental 0.1504 0.0653 Random effect variance 
Housing equity 0.0237 0.0105 σu

2 0.8386 0.0230 
Household income pc 0.2423 0.0047 Threshold parameters 
Income share -0.0454 0.0559 Γ1 -1.4030 0.1640 
Birth cohort -0.1497 0.0205 Γ2 -0.4740 0.1621 
Birth cohort2 0.0249 0.0092 Γ3 1.2797 0.1608 
  Γ4 2.7424 0.1612 
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Table A3b  SD model parameter estimates: initial conditions 
    
Parameter Estimate Std.err. Parameter Estimate Std.err. 

Variables dated wave 0  Variables averaged over all time periods 
Black -0.6027 0.5805 Married/cohabiting -0.2121 0.2623
Asian -0.5187 0.2501 Divorced/separated -0.2696 0.3303
Married/cohabiting 0.5662 0.2224 Widower -0.2742 0.3706
Divorced/separated -0.1176 0.2931 Employed -0.3188 0.4735
Widower 0.4480 0.3538 Self-employed -0.2403 0.4910
Employed 0.7733 0.2184 Retired -0.1274 0.5345
Self-employed 0.4562 0.2457 Unemployed -1.0164 0.5492
Retired 0.5518 0.3051 Long-term sick -0.3218 0.4963
Unemployed 0.1112 0.2395 # pre-school children 0.1921 0.1461
Long-term sick 0.2839 0.2715 # school-age children -0.0545 0.0940
Degree 0.2279 0.1218 # retired members -0.0474 0.2099
Certificate/Diploma 0.2357 0.1417 # working age adults -0.1620 0.1093
A-level 0.3318 0.1089 Owner-occupier 0.1959 0.2722
O-level/GCSE 0.1291 0.0908 Private rental 0.2873 0.3115
Vocational qualifications -0.0379 0.0731 Housing equity -0.0001 0.0858
# pre-school children 0.0038 0.1672 Household income pc 0.0984 0.0847
# school-age children 0.0444 0.0733 Income share -0.1499 0.2768
# retired members -0.0183 0.1590 Coefficient of random effect 
# working age adults 0.0580 0.0696 γ 1.0250 0.0540
Pre-school child -0.1901 0.2061 Threshold parameters 
Owner-occupier 0.2187 0.2382

0
1Γ  -1.1313 0.4727

Private rental 0.0777 0.2544
0
2Γ  -0.2319 0.4715

Housing equity 0.1275 0.0994
0
3Γ  1.3551 0.4700

Household income pc 0.4105 0.0669
0
4Γ  2.5267 0.4709

Income share 0.3765 0.1703   
Birth cohort -0.1210 0.0464   
Birth cohort2 0.0343 0.0155   
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Table A4a  Static model parameter estimates: principal equation  
   

Parameter Estimate Std.err. Parameter Estimate Std.err. 
Level variables Difference variables 

Black -1.0763 0.6809 Newly divorced -0.3303 0.0981
Asian -0.3223 0.2749 Newly widowed 0.1849 0.1691
Married/cohabiting 0.3163 0.0659 Newly retired 0.0125 0.0804
Divorced/separated -0.1891 0.0825 Job loss -0.0266 0.1052
Widower 0.2159 0.0945 Newly sick -0.6609 0.1330
Employed 0.5676 0.1054 New child -0.0203 0.0711
Self-employed 0.6002 0.1104 Year effects (reference year = 2003) 
Retired 0.3076 0.1248 1994 -0.3920 0.0438
Unemployed -0.4192 0.1232 1995 -0.3467 0.0452
Long-term sick -0.1080 0.1215 1996 -0.1986 0.0455
Degree 0.5833 0.0823 1997 -0.0746 0.0449
Certificate/Diploma 0.4413 0.1081 1998 -0.0172 0.0452
A-level 0.3415 0.0822 1999 -0.1246 0.0460
O-level/GCSE 0.3234 0.0729 2000 -0.1631 0.0479
Vocational qualifications -0.1036 0.0609 2001 -0.0244 0.0501
# pre-school children -0.0869 0.0633 2002 0.0142 0.0524
# school-age children -0.0541 0.0190 Random effect variance 
# retired members 0.0044 0.0475 σu

2 1.1793 0.0240
# working age adults -0.0355 0.0236 Threshold parameters 
Pre-school child -0.0829 0.0825 Γ1 -2.1604 0.1630
Owner-occupier 0.4113 0.0567 Γ2 -1.2251 0.1607
Private rental 0.2166 0.0668 Γ3 0.5391 0.1592
Housing equity 0.0093 0.0114 Γ4 2.0100 0.1601
Household income pc 0.2696 0.0043  
Income share 0.0550 0.0552   
Birth cohort -0.2077 0.0240   
Birth cohort2 0.0334 0.0116   
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Table A4b  Static model parameter estimates: initial conditions 
    
Parameter Estimate Std.err. Parameter Estimate Std.err. 

Variables dated wave 0  Variables averaged over all time periods 
Black -0.7198 0.5883 Married/cohabiting -0.2051 0.2591
Asian -0.5254 0.2556 Divorced/separated -0.2091 0.3249
Married/cohabiting 0.5457 0.2174 Widower -0.2604 0.3723
Divorced/separated -0.1688 0.2853 Employed -0.2899 0.4459
Widower 0.4296 0.3514 Self-employed -0.2247 0.4648
Employed 0.7329 0.2105 Retired -0.1292 0.5079
Self-employed 0.4272 0.2380 Unemployed -0.9367 0.5227
Retired 0.5125 0.2971 Long-term sick -0.2843 0.4697
Unemployed 0.0618 0.2322 # pre-school children 0.1771 0.1451
Long-term sick 0.2328 0.2642 # school-age children -0.0625 0.0931
Degree 0.3014 0.1225 # retired members -0.0632 0.2078
Certificate/Diploma 0.2897 0.1429 # working age adults -0.1471 0.1077
A-level 0.3648 0.1079 Owner-occupier 0.1578 0.2717
O-level/GCSE 0.1748 0.0912 Private rental 0.2894 0.3069
Vocational qualifications -0.0536 0.0736 Housing equity -0.0199 0.0852
# pre-school children 0.0128 0.1643 Household income pc 0.0419 0.0840
# school-age children 0.0482 0.0726 Income share -0.1199 0.2715
# retired members -0.0172 0.1576 Coefficient of random effect 
# working age adults 0.0545 0.0686 γ 0.7818 0.0335
Pre-school child -0.1959 0.2029 Threshold parameters 
Owner-occupier 0.2515 0.2361

0
1Γ  -1.2788 0.4489

Private rental 0.0997 0.2493
0
2Γ  -0.3627 0.4483

Housing equity 0.1218 0.0978
0
3Γ  1.2672 0.4468

Household income pc 0.4057 0.0663
0
4Γ  2.4719 0.4477

Income share 0.3604 0.1669   
Birth cohort -0.1401 0.0461   
Birth cohort2 0.0344 0.0157   

 


