Infusing Time Diary Evidence into Panel Data:
 An exercise in calibrating time-use estimates for the BHPS

Man Yee Kan and Jonathan Gershuny
Institute for Social and Economic Research
University of Essex

ISER Working Paper

2006-19

Acknowledgement:

This paper forms part of the scientific programme of the ESRC Research Centre on Micro-social Change, and also part of the project "Gender, Time Allocation and the 'Wage Gap'" funded by the ESRC Gender Equality Network. The support provided by the ESRC and the University of Essex is gratefully acknowledged.

Readers wishing to cite this document are asked to use the following form of words:

Kan, Man Yee and Gershuny, Jonathan (April 2006) 'Infusing Time Diary Evidence into Panel Data: An exercise in calibrating time-use estimates for the BHPS', ISER Working Paper 2006-19. Colchester: University of Essex.

The on-line version of this working paper can be found at http://www.iser.essex.ac.uk/pubs/workpaps/
The Institute for Social and Economic Research (ISER) specialises in the production and analysis of longitudinal data. ISER incorporates

- MISOC (the ESRC Research Centre on Micro-social Change), an international centre for research into the lifecourse, and
- ULSC (the ESRC UK Longitudinal Studies Centre), a national resource centre to promote longitudinal surveys and longitudinal research.

The support of both the Economic and Social Research Council (ESRC) and the University of Essex is gratefully acknowledged. The work reported in this paper is part of the scientific programme of the Institute for Social and Economic Research.

Institute for Social and Economic Research, University of Essex, Wivenhoe Park,
Colchester. Essex CO4 3SQ UK
Telephone: +44 (0) 1206872957 Fax: +44 (0) 1206873151 E-mail: iser@essex.ac.uk
Website: http://www.iser.essex.ac.uk

© April 2006

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form, or by any means, mechanical, photocopying, recording or otherwise, without the prior permission of the Communications Manager, Institute for Social and Economic Research.

Abstract

In this paper, we calibrate a set of time use variables for a long-running panel survey (the British Household Panel Survey, BHPS, 1994 - 2004) from evidence derived from a smaller scale panel survey that collected time use information by both the survey method and the diary method from the same respondents (the Home On-line Study, HoL, 1999-2001). Past research has suggested that the time diary method produces more accurate and reliable measures of time use than the survey approach. The diary approach, however, usually has a low response rate and is not practicable for a large-scale panel study like the BHPS. On the other hand, direct questioning in survey interviews is a relatively flexible approach to collect time use data. We therefore propose a method to combine the strengths of the survey approach and the diary method to produce time use data. The survey part of the HoL study shares the same questionnaire-derived time-use predictor variables with the BHPS. We use regression of the predictors on the time diary data in the HoL study to calibrate time use in the BHPS by multiplying the resulting regression coefficients with the same predictor variables in the BHPS. Then we get a calibrated index of time-use patterns based on BHPS questionnaire items. The calibrated time use variables cover all major categories of daily activities and are available in Wave 4 (1994) to Wave 14 (2004) of the BHPS. They are useful resources for the study of time use practices and the life course.

Infusing Time Diary Evidence into Panel Data:

An exercise in calibrating time-use estimates for the BHPS

INTRODUCTION

This paper reports an exercise in calibrating time use estimates for the British Household Panel Survey (BHPS). The BHPS collects "stylised estimates" of time use on a regular basis, i.e., respondents were asked about how frequently they were engaged in certain activities, and to report the usual time they spent at paid work and housework per week. These measurements provide useful information about how individuals allocate their time to different activities. Together with the strong panel characteristic of the BHPS, they provide useful and vivid information about changes in people's behaviour (i.e., what people actually do) over the life course and the implications for their social and economic well being.

Research, however, has shown that these sorts of stylised estimates of time use have systematic biases (e.g., Gershuny, 2005; Kan, 2006; Niemi, 1993). Comparing diary estimates and stylised estimates of housework hours of the same respondents, Kan (2006) found that the gap between the two types of estimates is smaller in the case of women and it is larger when dependent children are present in the household; it is also associated with irregularity in housework hours, amount of housework undertaken as a simultaneous activity and traditionalism in gender role attitudes. In a similar vein, Gershuny (2005) found that in the case of paid work hours, the gap between stylised and diary-based estimates is associated significantly with irregularity of work hours over the week. These results suggest that the accuracy of stylised time use estimates recorded in survey interviews may be biased towards certain characteristics of the respondents.

Moreover, the stylised estimates in the BHPS do not cover all activities on a single day. And even if the stylised estimates did comprehensively cover all the activities of the day, as in some UK 1980s dataset, they would not regularly add up to 1440 minutes of the day, but rather to something like 1600 or 1700 minutes (Gershuny \& Robinson, 1994). Hence there are limitations in using these estimates to provide a full picture of an individual's time budget.

Compared to the survey approach, the time-diary method is less dependent on respondents' calculation and augmentation of the time they spend on various
activities, and can therefore produce more accurate data on time use. Central to the diary method is that individuals' time use at various activities during the day is recorded in a continuous sequence of "slots" in diaries that can be summed to 1440 minutes (i.e., 24 hours). These diary records constitute "round-the-clock" evidence of daily time use. But this method is often not practicable because it is very expensive for researchers and onerous for respondents. It is particularly difficult to produce time diary data within a panel study framework. Since diary-keeping is burdensome, this method has a relatively low response rate and it is likely that only people with certain characteristics will maintain this practice over extended periods of time.

This exercise, hence, proposes an innovative method to combine the strengths of panel survey studies and time diary studies. We have a time-diary data set, the Home On-line (HoL) Study, which shares the same questionnaire-derived time-use predictor variables with a large long-term panel study (BHPS). We use regression of the predictors on the time diary data in HoL to calibrate time use in the BHPS by multiplying the resulting regression coefficients with the same predictor variables in the BHPS. Then we get a calibrated index of time-use patterns based on BHPS questionnaire items. In what follows, we will give details of the estimating procedures and the data.

THE ESTIMATING PROCEDURES

Our approach to calibrating data relies on identifying, in two separate surveys, identical predictors of some variables that occur in only one of the surveys. Regression coefficients derived from the "donor" survey with both the predictor and the target variables can then be combined with the predictor variables in the "recipient" survey to estimate the target variables. We first use the "donor' survey data and regress time use variables derived from the diary method on other variables related to time use collected by the survey method. We then multiply the coefficients of the regression equations with the same set of predictive time use variables in the "recipient" data set to yield a differentiated category of calibrated time-use estimates.

It is worth mentioning that our approach is different from the data imputation method. It attempts to improve the quality of stylised time-use estimates with information derived from diary-based estimates. In our approach, the diary-based estimates are regressed primarily with stylised estimates of time use, rather than, as in
the data imputation approach, with a set of socio-economic and demographic variables that are not directly concerned with time use. In a nutshell, the calibrated time use variables are derived from time-use evidence itself. In addition, we include a wide range of stylised time use variables (e.g., time spent on housework and paid work, frequency of leisure activities and responsibilities for household chores) in the RHS of the equations that estimate the time spent on all the main categories of daily activities. This should produce better estimates of time use on a particular activity (e.g., paid work and housework) than if only one or few stylised time use variables were put on the RHS of the equations. The calibrated estimates of paid work time and housework time in the recipient data set (i.e., the BHPS) should therefore be more accurate than the original stylised estimates.

Data

Our "donor" data come from the Home On-line Study (HoL), which consists of three annual waves of household panel data (1999 - 2001). This study contains about 1,000 households drawn from a national random sample. But it was originally intended for the estimation of changes in time-use practices as a result of the everyday use of information-and-computer technology (ICT), and therefore has an over-sample to make sure that 50% of the households have a personal computer. Individuals aged 16 or over in the selected households were interviewed in all waves. A one-week self-completion diary designed to record what respondents were doing each day of that week every quarter hour of a day was left after the interview. Respondents were asked to fill in the diary with 35 pre-coded activities (see Appendix I) at least once each day and then return it at the end of the designated week. The HoL study collected around 2,300 diaries (i.e., 16,100 diary days) from respondents in all the three waves. The survey parts of the study contained stylised time use estimates of categories that were also used in the BHPS, the "recipient" survey. In fact, the HoL study was designed by the same research team that is also responsible for the BHPS, with such an exercise of calibrating time use estimates in mind. Therefore the two surveys match well for the purpose of this data calibration exercise.

The BHPS is a longitudinal survey that interviewed all members of a random selection of households in 1991, and re-interviews all the original household members, their natural descendents, and all their current household co-residents
annually. The first wave interviewed about 5,000 households and 10,300 individuals. Additional samples of 1,500 households in Scotland and the same number in Wales were added to the main sample in 1999, and a sample of 1,000 households in Northern Ireland was added in 2001. The BHPS currently contains 14 waves of data from around 9,000 households. From Wave 4 (1994) onwards, the BHPS has collected a number of potential predictors of time use by stylised estimate questions. These questions asked about respondents’ normal weekly hours of paid work and housework, their frequency of participation in various leisure activities, and the distribution of various domestic work tasks within the households ${ }^{1}$. As mentioned earlier, the survey part of the HoL study also collected these variables, using the same or very similar question wordings in most cases.

Creating a Calibrating Index from HoL Data

We first estimate the regression coefficients for data calibration from the HoL data. We run separate regressions for men and women, since gender is a key predictor of time use patterns and it interacts with most of variables of time use. The regression takes the following form:

$$
\begin{aligned}
M_{k i}= & \mu_{0 k}+\mu_{1 k} \text { age }_{i}+\mu_{2 k} \text { agesq }_{i}+\mu_{3 k} \text { parent }_{i}+\mu_{4 k} \text { age }_{i} * \text { parent }_{i}+\mu_{5 k} \text { emphrs }_{i}+\mu_{6 k} \text { househrs }_{i} \\
& +\mu_{7 k} \text { emphrs }_{i} * \text { parent }_{i}+\mu_{8 k} \text { shop }_{i}+\mu_{9 k} \text { cook }_{i}+\mu_{10 k} \text { clean }_{i}+\mu_{11 k} \text { wash }_{i}+\mu_{12 k} \text { lesiurea }_{i} \\
& +\mu_{13 k} \text { leisureb }_{i}+\mu_{14 k} \text { lisurec }_{i}+\mu_{15 k} \text { leisured }_{i}+\mu_{16 k} \text { leisuree }_{i}+\varepsilon_{k}
\end{aligned}
$$

where $k=1$ to 5 , indicating the following five main activities respectively: (1) labour market work, study and travel related to work/study; (2) routine housework, such as cleaning, ironing and washing; (3) other household works, including caring for family members, DIY, and shopping for household groceries; (4) sleep, personal care, and rest; (5) consumption and leisure. For a respondent $i, M_{k i}$ is the dependent variable indicating the number of minutes per day spent at activity k, where $\sum_{k=1}^{5} M_{k i}=1440$, calculated from the respondent's diary.

The predictor variables are:

- age and agesq: age and age square respectively;

[^0]- parent: indicates whether the respondent has a child aged under 16 (Yes = 1; No = 0);
- emphrs and househrs: usual weekly hours spent at labour market work (plus travelling time) and routine housework respectively, reported by the respondent in the interview;
- shop, cook, clean, and wash, denote whether the respondent is responsible for shopping, cooking, cleaning and washing in the household respectively (Yes = 1; $N o=0$);
- leisurea to leisuree represent the frequency in participating in the following five leisure activities: (a) doing sports, keeping fit, and walking, (b) watching live sport, (c) going to cinema, theatre and concerts, (d) dining or drinking out, (e) attending leisure groups (coded $1=$ Most days; 2 = At least once a week; 3 = At least once a month; 4 = Several times a year; 5 = Almost never/Never).
- $\mu_{0 k}$ to $\mu_{16 k}$ are parameters to be estimated and ε_{k} is an error term.

Age and parental status are selected as predictor variables because they are strongly associated with time use, particularly with housework time and paid work time; other predictor variables are chosen because they are stylised estimates of time use and are available both in the BHPS and HoL Study ${ }^{2}$.

Tables 1 a and 1 b show the summary of the OLS regression models predicting the number of minutes per day that men and women spend at the five categories of daily activities. Since the coefficients of the set of regression equations represent the effect of each of the characteristics on each of the comprehensive list of time-use categories, and given that more time spent by a person with a particular characteristic in one of the activities must imply less time devoted to another, it follows that the sum of each coefficient across all the time use categories must be zero. Similarly, the sum of the intercepts is 1440 .

[^1]Table 1a. Unstandardized Coefficients of OLS Models of Time Use on Categorized Activities - Men only

Variable	Labour market work, study, travelling	Routine housework	Other unpaid household works	Sleep, personal care, and rest	Consumption and leisure	Sum of row
Intercept	355.14***	10.80	-65.19**	631.13***	508.12***	1440
househrs	-1.34*	$2.48 * * *$	1.47***	-1.64**	-0.97	0
emphrs	$5.28 * * *$	-0.09	-0.76***	-1.60***	-2.84***	0
age	-2.43	-0.43	4.68***	-2.54*	0.72	0
agesq	-0.01	0.01*	-0.03**	0.03*	0.00	0
shop	-10.95	7.84	23.90*	-30.59*	9.80	0
cook	-3.92	9.41*	-13.97	14.01	-5.52	0
clean	26.65	15.60**	9.16	-24.91	-26.50	0
wash	-17.93	-5.71	7.34	26.53	-10.23	0
parent	-123.93*	22.03	305.59***	-100.67*	-103.03*	0
emphrs*parent	0.52	-0.13	-1.61***	0.77	0.46	0
age*parent	2.51**	-0.28	-4.29***	1.25	0.81	0
leisurea	-0.39	-1.64	-2.92	3.61	1.34	0
leisureb	1.37	0.11	8.54***	-3.18	-6.83*	0
leisurec	-8.35*	1.06	-3.34	11.46**	-0.83	0
leisured	-0.66	0.33	-3.34	0.81	2.86	0
leisuree	-8.87**	0.49	3.76	5.43	-0.81	0
R-squared	0.71	0.32	0.25	0.20	0.41	

Note: The sample is pooled from all three waves of the Home On-line Study, $1999-2001 . N=1,076$.
${ }^{*} p<.05 .{ }^{* *} p<.01 .{ }^{* * *} p<.001$.

Table 1b. Unstandardized Coefficients of OLS Models of Time Use on Categorized Activities - Women only

Variable	Labour market work, study, travelling	Routine housework	Other unpaid household works	Sleep, personal care, and rest	Consumption and leisure	Sum of row
Intercept	375.90***	-77.18***	8.59	665.86***	466.83***	1440
househrs	$-1.36 * * *$	1.47***	0.67*	-0.37	-0.42	0
emphrs	5.26***	-0.76***	-0.75***	-1.29***	-2.46***	0
age	-4.16***	4.87***	3.02**	-3.79***	0.05	0
agesq	0.01	-0.04***	-0.03**	0.04***	0.02	0
shop	16.93*	2.12	10.72	-9.54	-20.24**	0
cook	13.25	20.37***	-18.43*	-3.20	-11.99	0
clean	-34.57***	11.48**	21.35**	-10.69	12.43	0
wash	0.55	6.14	-0.46	1.27	-7.51	0
parent	-199.90***	-23.04	404.03***	-22.78	-158.32***	0
emphrs*parent	0.02	-0.16	-1.40 ***	0.80**	0.74*	0
age*parent	4.50***	0.95*	-7.20***	-0.23	1.98**	0
leisurea	-0.82	-1.10	-3.33	5.16**	0.09	0
leisureb	-3.07	3.59*	1.15	-1.07	-0.59	0
leisurec	-12.75***	3.87*	0.77	8.54**	-0.43	0
leisured	5.58	2.45	0.64	-0.75	-7.92*	0
leisuree	-4.21*	0.54	0.50	4.52*	-1.35	0
R-squared	0.66	0.43	0.33	0.20	0.38	

Note: The sample is pooled from all three waves of the Home On-line Study, $1999-2001 . N=1,369$.
${ }^{*} p<.05 .{ }^{* *} p<.01 .{ }^{* * *} p<.001$.

To cater for research interest in social capital, networking and consumption, we apply the same techniques and divide further the consumption and leisure category into two sub-categories, i.e., "social leisure", which includes leisure and consumption activities involving meeting or talking with people and "passive leisure", which is leisure or pastime usually consumed by an individual alone and are not usually conducive to establishing social networks. Alternatively, we subdivide the category into "home leisure" and "leisure outside the home" according to whether the consumption and leisure take place in the home or outside the home. (Definitions of the categories of daily activities are provided in Appendix II).

Coefficients of the OLS models predicting the number of minutes that men and women spend per day on these refined categories of daily activities are shown in Tables 2a and 2 b .

Table 2a. Unstandardized Coefficients of OLS Models of Time Use in Sub-categories of Consumption and Leisure - Men only

	"Passive leisure" e.g. eating at home,	"Social leisure" e.g. visiting friends, matching TV, magazines	playing sports.	Leisure and consumption at home
Intercept	$231.78^{* * *}$	$276.34^{* * *}$	$256.32^{* * *}$	Leisure and consumption outside home
househrs	-0.78	-0.19	-0.82	$251.80^{* * *}$
emphrs	$-1.92^{* * *}$	$-0.91^{* * *}$	$-2.04^{* * *}$	-0.15
age	-0.10	0.81	-0.05	$-0.80^{* * *}$
agesq	0.02	-0.02	0.02	0.77
shop	8.92	0.88	5.76	-0.02
cook	9.85	-15.37	10.94	4.04
clean	-18.64	-7.86	-15.67	-16.46
wash	-5.00	-5.23	-8.96	-10.83
parent	-32.98	-70.04	-42.20	-1.27
emphrs*parent	0.25	0.20	0.23	-60.82
age*parent	0.33	0.48	0.39	0.22
leisurea	5.88^{*}	-4.54^{*}	5.63^{*}	0.41
leisureb	0.77	$-7.60^{* *}$	0.40	-4.29^{*}
leisurec	5.64	-6.47^{*}	4.30	$-7.23^{* *}$
leisured	$12.41^{* * *}$	$-9.54^{* * *}$	$12.28^{* * *}$	-5.14
leisuree	0.21	-1.01	$-9.41^{* * *}$	
R-squared			1.13	-1.93

[^2]Table 2b. Unstandardized Coefficients of OLS Models of Time Use in Sub-categories of Consumption and Leisure - Women only

	"Passive leisure" e.g. eating at home,	"Social leisure" e.g. visiting friends, watching TV, magazines	playing sports.	Leisure and consumption at home
	$172.98^{* * *}$	$293.85^{* * *}$	Leisure and consumption outside home	
Intercept	-0.54^{*}	0.12	$197.54^{* * *}$	$269.28^{* * *}$
househrs	$-1.50^{* * *}$	$-0.95^{* * *}$	-0.26	-0.16
emphrs	0.52	-0.47	$-1.77^{* * *}$	$-0.69^{* * *}$
age	0.01	0.00	1.34	-1.28
agesq	$-23.83^{* * *}$	3.59	0.01	0.01
shop	2.54	-14.53^{*}	$-29.38^{* * *}$	9.14
cook	9.18	3.24	-0.29	-11.70^{*}
clean	7.10	-14.61^{*}	10.54	1.88
wash	-58.56^{*}	$-99.76^{* * *}$	2.47	-9.97
parent	0.51	0.22	$-75.51^{* *}$	$-82.81^{* * *}$
emphrs*parent	0.43	$1.55^{* *}$	0.71^{*}	0.03
age*parent	2.73	-2.64	0.62	$1.36^{* *}$
leisurea	-0.77	0.18	3.22	-3.13^{*}
leisureb	$9.27^{* *}$	$-9.70^{* *}$	0.78	-1.37
leisurec	3.92	$-11.84^{* * *}$	5.40	-5.83^{*}
leisured	2.43	-3.78^{*}	3.64	$-11.56^{* * *}$
leisuree			2.47	$-3.82^{* *}$
R-squared	0.37	0.15		

Note: The sample is pooled from all three waves of the Home On-line Study, $1999-2001 . N=1,369$.
${ }^{*} p<.05 .{ }^{* *} p<.01 .{ }^{* * *} p<.001$.

Table 3 presents the average time spent on the major daily activities estimated by coefficients of the regression models of Tables 1 a and 1 b . It also shows the stylised estimates of paid work time and routine housework time. We can see that the average labour market work time estimated by the regression equation is higher than that derived from the survey data. This is, however, within our expectation. We have taken account of time spent at training and studying in the calibrated estimates of labour work time, but these activities were not included in the stylised question. We can also see that the average time at routine housework estimated by the equation is lower than that computed from the survey data. This is consistent with findings of past studies, which suggest that respondents generally report longer hours of housework in surveys than in diaries (see, for example, Bianchi, Milkie, Sayer, \& Robinson, 2000; Robinson, 1985). Since the diary recorded time spent at a number of items of household work that distinguish routine housework from non-routine
household work (e.g., care and shopping), while respondents might not distinguish these two categories clearly in their minds and therefore might not report them accurately in the survey interview. Furthermore, it is likely that respondents count housework that is undertaken simultaneously with other activities when reporting their housework time in surveys. In the diary approach, respondents can distinguish between primary and secondary activities performed in a given time slot. The correlations between the values estimated by the two methods are actually very high (being 0.948 and 0.818 respectively in the case of men, and 0.916 and 0.707 in the case of women). So we proceed to applying the coefficients to the relevant waves of the BHPS.

Calibrating Time Use Estimates for the BHPS

Our next step is to multiply the coefficients that we have obtained with the same set of stylised time use estimates in the BHPS. First of all, however, we have to combine some measures of the leisure activities in order to make them compatible with those in the HoL Study. Frequencies of cinema going, and theatre and concert going are measured in two separate questions in the BHPS but in a single question in the HoL Study. Therefore, we combine the two items in the BHPS and take the higher frequency of the original two items. Similarly, eating out and drinking out are measured in two questions in the BHPS but only one in the HoL Study. These two items are also combined and the higher frequency of the two is taken. Furthermore, we need to interpolate the variables of leisure activities in some waves of the BHPS. The BHPS asked respondents about their habits of leisure and consumption in Waves $6,8,10,12$ and 14 . Since this calibration exercise is for BHPS Waves $4-14$, we therefore interpolate values of leisure consumption for the waves that did not collect this information. First, any missing values of leisure activities in Waves 6, 8, 10, 12 and 14 are replaced by the mean of the values in other available waves that have no missing values. Second, for Waves $7,9,11$, and 13 the values are interpolated by taking the mean of the values of the two adjacent waves. The values for Waves 4 and 5 are taken as those of Wave 6 (the closest available wave).

Table 3. Mean Values of Predicted and Stylised Estimates of Time Use (Standard Deviation in Parentheses), Home On-line Study 1999 - 2001

	Minutes per day	
		Correlations
between predicted		
Activities	Predicted values	Stylised estimates

estimates\end{array}\right]\)

Men

Paid work, study and travel	$291(173)$	$248(218)$	0.948
Routine housework	$40(25)$	$56(58)$	0.818
Other domestic work	$102(48)$	-	-
Sleep, rest, and personal care	$588(51)$	-	-
Consumption and leisure	$418(92)$	-	-
"Passive leisure"	$291(77)$	-	-
"Social leisure"	$128(36)$	-	-
			-
Leisure at home	$307(81)$	-	-
Leisure outside home	$111(32)$	-	-

Women

Paid work, study and travel	$201(143)$	$151(173)$	0.916
Routine housework	$118(48)$	$126(95)$	0.707
Other domestic work	$116(65)$	-	-
Sleep, rest, and personal care	$613(43)$	-	-
Consumption and leisure	$392(81)$	-	-
"Passive leisure"	$254(66)$	-	-
"Social leisure"	$138(34)$	-	-
Leisure at home			-
Leisure outside home	$106(72)$	-	-

Note: The sample is pooled from all three waves of the Home on Line Study, 1999-2001. All values are unweighted and rounded to the nearest minute.
For men. $N=1,076$; for women, $N=1,369$.

Table 4. Mean Values of Stylised and Calibrated Time Use Estimates (Minutes per Day) by Year

Note: Data from the British Household Panel Suvey, 1994 - 2004. The figures are weighted and rounded to the nearest minute.

Finally, by multiplying the variables with the coefficients obtained from the regression models of HoL data, we obtain calibrated time use estimates for the BHPS. These results are given in Table 4.

As we can see, the calibrated time-use values in the BHPS correspond reasonably well to the diary data in the HoL Study (Table 3).

THE DATA SET

The calibrated time use estimates for the BHPS are kept in the calibrated_time file. Data users can match this data set with other files in the BHPS readily by PID, the cross wave person identifier. The data set contains 9 calibrated time use endvariables for Waves $4-14$ of the BHPS that are prefixed with the wave number (indexed by " d " to " n "). The first five times use end-variables represent a complete categorization of all activities on a single day. Users are reminded that the last four end-variables (wCSOCLE and wCPASLE; wCHOMLE and wCOUTLE) are subcategories of the category of consumption and leisure. Descriptions of the data set are given in Table 5.

Table 5. Description of Variables in the calibrated_time File

Variable	Description
PID	Cross Wave Person Identifier wCPWORK
Calibrated time: minutes per day doing paid work, studying, and travelling	
wCHWORK	Calibrated time: minutes per day doing routine housework, e.g. cooking, cleaning, and washing
wCOTHDOM	Calibrated time: minutes per day doing other unpaid domestic work, e.g. DIY, care, and shopping
wCSLEEP	Calibrated time: minutes per day sleeping, resting, and personal care
wCCONS	Calibrated time: minutes per day for leisure, consumption and other activities
wCPASLE	Calibrated time: minutes per day for "passive leisure", e.g. watching video, reading books and magazines
wCSOCLE	Calibrated time: minutes per day for "social leisure", e.g., meeting friends, playing sports, and cinema going
wCHOMLE	Calibrated time: minutes per day having leisure at home Calibrated time: minutes per day having leisure outside the home

Note: $\mathrm{w}=\mathrm{d}-\mathrm{n}$, indicating Wave Number

CONCLUDING REMARKS

We have proposed and used a new method to produce calibrated time use estimates for a large-scale panel survey from evidence derived from a relatively small scale study that has both survey and diary data. This method has enabled us to enhance the quality of the time use estimates of the BHPS. The calibrated time use estimates produced cover all main categories of activities during a day. In addition to the strong panel characteristic of the BHPS, they are useful resources for the analysis of lifestyle patterns among different social groups and of how behaviours change over time. Specimen results derived from the calibrated time use estimates can be found in our forthcoming paper, which aims to investigate men's and women's use of time over the life course (See Kan \& Gershuny, forthcoming).

REFERENCES

Bianchi, S. M., Milkie, M. A., Sayer, L. C., \& Robinson, J. P. (2000). Is anyone doing housework? Trends in the gender division of household labor. Social Forces, 79, 191-222.

Gershuny, J. (2005). Stylised estimates, activity logs and diaries: estimating paid and unpaid work time. Paper presented at the XXVII International Association for Time-Use Research Conference (2 November-4 November). Halifax, Canada.
Gershuny, J., \& Robinson, J. P. (1994). Measuring hours of paid work: time-diary vs. estimate questions. In Bulletin of Labour Statistics. Geneva: International Labour Office.

Kan, M. Y. (2006). Measuring housework participation: the gap between "stylised" questionnaire estimates and diary-based estimates. In Institute for Social and Economic Research Working Paper 2006-11. Colchester, UK: University of Essex.

Kan, M. Y., \& Gershuny, J. (forthcoming). Gender and time use over the life course. In Institute for Social and Economic Research Working Paper 2006-xx. Colchester, UK: University of Essex.
Niemi, I. (1993). Systematic error in behavioural measurement: Comparing results from interview and time budget studies. Social Indicators Research, 30, 229244.

Robinson, J. P. (1985). The validity and reliability of diaries versus alternative time use measures. In F. T. Juster \& F. P. Stafford (Eds.), Time, goods, and wellbeing (pp. 33-62). Ann Arbor, MI: The University of Michigan.

APPENDIX I

The 35 Pre-coded Activities in Home On-line Study

1. Sleep, rest
2. Washing, dressing
3. Eating at home
4. Cooking
5. Child-adult care
6. Housework
7. DIY, odd jobs, gardening
8. Travel
9. At the workplace
10. Paid work at home
11. Study at home
12. Study out of home
13. Voluntary work
14. Shopping etc
15. Concerts, cinema, theatre, etc
16. Walking, outings etc
17. Eating/drinking out
18. Visiting friends
19. Sports activity
20. Hobbies, games
21. TV
22. Videos
23. Radio, CD etc
24. Books/papers/magazines
25. Visited by friends
26. Getting phone calls
27. Making phone calls
28. PC games or consoles
29. Emailing
30. Using the internet
31. Using a PC for education
32. Using a PC for work at home
33. Using a PC for other purposes
34. Doing nothing, may include illness
35. Doing other things, not elsewhere specified

APPENDIX II

Definitions of the Categories of Activities in the calibrated_time file

Variable	Description of activities	Pre-coded activities in				
the HoL Study			,			
:---	:---	:---				
wCPWORK	Paid work, study and travel	4,6				
wCHWORK,	Routine housework	$5,7,13,14$				
wCOTHDOM	Other unpaid domestic work	$1,2,34,35$				
wCSLEEP	Sleep, rest and personal care	$3,15-31,33$				
wCCONS	Consumption and leisure	$3,21-24,28-31,33$				
wCPASLE	"Passive leisure"	$15-20,25-27$				
wCSOCLE	"Social leisure"	$3,21-31,33$				
wCHOMLE	Leisure at home	$15-20$				
wCOUTLE	Leisure outside the home					

[^0]: ${ }^{1}$ Full documentation of the BHPS is available at http://www.iser.essex.ac.uk/ulsc/bhps/doc/ .

[^1]: ${ }^{2}$ There are a number of missing cases for travelling time to work (about 10% of the sample) in both the HoL study and the BHPS. These missing values are imputed using information about region of the household, whether the respondent is employed or self-employed, whether the respondent works in the private sector, and the respondent's socio-economic group.

[^2]: Note: The sample is pooled from all three waves of the Home On-line Study, $1999-2001 . N=1,076$. ${ }^{*} p<.05 .{ }^{* *} p<.01 .{ }^{* * *} p<.001$.

