

CALCULATION OF MULTIVARIATE NORMAL PROBABILITIES BY
SIMULATION, WITH APPLICATIONS TO MAXIMUM SIMULATED

LIKELIHOOD ESTIMATION

Lorenzo Cappellari
(Università Cattolica, Milano, and ISER)

and

Stephen P. Jenkins

(ISER, University of Essex)

ISER Working Paper
2006-16

Acknowledgement:

This research was supported by core funding to ISER from the UK Economic and Social Research
Council and the University of Essex. The first draft of this article was written when Jenkins visited
the SOEP Group at DIW Berlin. Mark Stewart provided many helpful comments and suggestions.
The code for Halton draws is a generalization of some do file code by Arne Uhlendorff (DIW
Berlin) which, in turn, uses a program posted on Statalist by Nick Cox (Durham University) in
August 2004: see http://www.stata.com/statalist/archive/2004-08/msg00222.html. mdraws also uses
that program, here renamed mdraws_h and modified. We are hugely indebted to Roberto Gutierrez
(StataCorp) for writing the plugin to accompany mvnp(), and to the anonymous referee for
comments.

This article is forthcoming in The Stata Journal, volume 6, 2006. The programs cited in the article
will be available from the journal’s website. To obtain and install them from within Stata, click on
Help / SJ and User-Written Programs, and follow the relevant links.

Readers wishing to cite this document are asked to use the following form of words:

Cappellari, Lorenzo, and Jenkins, Stephen P. (April 2006) ‘Calculation of multivariate normal
probabilities by simulation, with applications to maximum simulated likelihood estimation’,
ISER Working Paper 2006-16. Colchester: University of Essex.

The on-line version of this working paper can be found at http://www.iser.essex.ac.uk/pubs/workpaps/

The Institute for Social and Economic Research (ISER) specialises in the production and analysis of longitudinal data.
ISER incorporates

 MISOC (the ESRC Research Centre on Micro-social Change), an international centre for research into the
lifecourse, and

 ULSC (the ESRC UK Longitudinal Studies Centre), a national resource centre to promote longitudinal surveys

and longitudinal research.

The support of both the Economic and Social Research Council (ESRC) and the University of Essex is gratefully
acknowledged. The work reported in this paper is part of the scientific programme of the Institute for Social and Economic
Research.

Institute for Social and Economic Research, University of Essex, Wivenhoe Park,
Colchester. Essex CO4 3SQ UK
Telephone: +44 (0) 1206 872957 Fax: +44 (0) 1206 873151 E-mail: iser@essex.ac.uk
Website: http://www.iser.essex.ac.uk

© April 2006
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in
any form, or by any means, mechanical, photocopying, recording or otherwise, without the prior permission of
the Communications Manager, Institute for Social and Economic Research.

http://www.stata.com/statalist/archive/2004-08/msg00222.html
http://www.iser.essex.ac.uk/pubs/workpaps/
mailto:iser@essex.ac.uk
http://www.iser.essex.ac.uk/

ABSTRACT

We discuss methods for calculating multivariate normal probabilities by simulation and two
new Stata programs for this purpose: mvdraws for deriving draws from the standard uniform
density using either Halton or pseudo-random sequences, and an egen function mvnp() for
calculating the probabilities themselves. Several illustrations show how the programs may be
used for maximum simulated likelihood estimation.

1 Introduction

This article discusses the program mdraws that produces pseudo-random or Halton draws, and
the egen function mvnp() that uses the Geweke-Hajivassiliou-Keane (GHK) smooth
recursive conditioning simulator to calculate multivariate normal probabilities, and shows
how they may be used for maximum simulated likelihood (MSL) estimation. The article is a
development of our research on estimation of multivariate probit models (Cappellari and
Jenkins, 2003). In the earlier work, we noted that estimation of these models required
evaluation of multivariate normal probability distribution functions but functions for the
evaluation of trivariate and higher dimensional normal distributions did not exist in Stata at
the time. In the mvprobit program accompanying our 2003 article (updated in this issue), we
employed the GHK simulator to do these evaluations, using pseudo-random draws. Because
the GHK simulator is applicable in many contexts besides the one in which we originally
applied it, we were motivated us to write stand-alone programs that could be applied more
generally. The programs mdraws and mvnp(), for Stata version 8.2 or higher, can be used in a
variety of MSL estimation applications.

Because simulation estimation is computationally intensive, we sought to reduce computing
time. This has been done in two ways. First, and thanks to Bobby Gutierrez of StataCorp,
mvnp() has been implemented as a Stata plugin, with an option to use ado code. As we show
below, the plugin leads to substantial gains in speed. Second, mdraws allows users to create
draws variables based on Halton sequences for use by mvnp() or, indeed, by other programs.
(Variables based on pseudo-random uniform variates, as used by mvprobit, can also be
created.) It has been argued that Halton draws are more effective for MSL estimation than
pseudo-random draws on the grounds that they can provide the same accuracy with a smaller
number of draws, thereby saving computer time (Train, 2003). However, most evidence to
date about this has been based on estimation of mixed logit models rather than of multivariate
probit models of the types that we consider in our illustrations.

In this article, the discussion is non-technical and didactic. For more extensive discussion of
the principles underlying MSL estimation, the GHK simulator, and drawing from densities,
see Greene (2003: 931–3), Gourieroux and Monfort (1996), and especially Train (2003) on
whom we rely heavily in the exposition that follows. Also see our earlier article (Cappellari
and Jenkins, 2003) and the other articles in this issue. Section 2 discusses mdraws and Halton
sequences in particular. Section 3 focuses on mvnp() and provides several illustrations of its
use. Section 4 contains concluding comments.

2 Multiple draws from the standard uniform density

MSL works by simulating a likelihood and then averaging over the simulated likelihoods.
These calculations involve expressions that contain a multivariate density – a multivariate
normal density in our case – and, so, to do the simulation, one needs to take draws from this
density. The GHK simulator works by taking draws from upper truncated univariate standard
normal distributions, and then recursively computing a multivariate probability value using
Cholesky factorization. The draws are derived by taking values from a density that is uniform
over the interval [0,1), the so-called standard uniform density. The upper truncated standard
normal distribution values are generated by inversion of the normal probability function
combined with an inversion formula given by, among others, Stern (1997). The key initial
step, then, is taking draws from the standard uniform density.

 1

The most common method of generating these draws has been to use a pseudo-random
number generator. In Stata, this means creating variables using the uniform() function. The
advantages of this method are that it is straightforward and the independence of the draws
facilitates derivation of the statistical properties of the MSL estimator. On the other hand,
‘there are ways to take draws that can provide greater accuracy for a given number of draws’
(Train, 2003, p. 217). Train (2003, chapter 9) emphasizes that coverage and covariance are
the two important criteria for assessing these methods.

With pseudo-random draws, the values may clump together in particular regions of the
domain of the density that we wish to integrate, and this may lead to a poor approximation of
the integral. And, because the draws are independent, the covariance across draws for each
observation is zero. A negative covariance across draws is better, because this reduces the
variance of the simulation compared to the independent draws case: a relatively high value is
balanced by a low value. The negative covariance can also lead to greater coverage.
Antithetic draws are the most commonly used method for this type of variance reduction, and
creation of the most straightforward type is provided as an option in mdraws. For each vector
of draws, z, from the standard uniform distribution, the antithetic draw is 1–z.

A second type of covariance is the covariance of the draws across observations. This is zero
when independent pseudo-random draws are used but, again, a negative correlation is more
desirable. If the average of the draws for one observation is above ½, we want the average for
another observation to be below ½. As Train (2003, p. 218) explains, the maximand in MSL
is a sum across observations of the logs of the simulated probabilities. If draws across
observations are negatively correlated, then the variance of the MSL maximand is smaller
than the variance with independent pseudo-random draws (the sum of the variances for each
observation).

Draws derived from Halton sequences have the advantage of both improving coverage of the
domain of integration and inducing a negative correlation between the draws from different
observations. Each sequence is defined uniquely by a particular prime number, call it P.
Sequence elements are characterised by an iterative process comprising a series of successive
rounds. In the first round, the unit interval (the domain of the standard uniform density) is
split into P equal-width segments, and P sequence elements with values equal to the P–1
segment cut-points are defined. (If P = 3, the values are 1/3 and 2/3.) In the second round,
each segment created in the first round is split into P new segments (9 segments if P = 3).
Then there is a systematic cycling across the segments. In each cycle, P sequence elements
are picked, and the cycling continues until all the relevant segments have been exhausted. (If
P = 3, the values are, in order, the cut-points from segments #1, #4, and #7, and then the cut-
points from segments #2 #5, and #8.) In the next round, each segment is split P ways again,
and the systematic cycling rule is used again, and the rounds and within-round cycles
continue for as long as one needs sequence elements. As the number of rounds increases, the
unit interval gets more and more filled in by sequence elements.

If P = 3, the first elements of the Halton sequence are 1/3, 2/3 (from the initial round), 1/9,
4/9, 7/9, 2/9, 5/9, 8/9 (from the second round), 1/27, 10/27, 19/27, 4/27, 13/27, 22/27, 7/27,
16/27, 25/27, 2/27, 11/27, 20/27 (from the third round), and so on. The sequence elements for
any other prime are defined similarly. For example, if P = 2, the initial elements are 1/2 (from
the first round), 1/4, 3/4 (from the second round), 1/8, 5/8, 3/8, 7/8 (from the third round), and
so on.

 2

The procedure outlined above defines a single long sequence of numbers from the unit
interval. For MSL estimation using data on a sample of observations, we need a set of draws
for each observation, with one draw variable used in each simulation. What one does is
allocate elements to observations in bunches. With five draws, for example, the first five
elements of the sequence are allocated to the first observation, the second five elements are
allocated to the second observation, and so on. (This is often done after discarding some
initial elements of the original sequence: see below.)

Where integration is over multiple dimensions, as with calculation of multivariate normal
probabilities, one Halton sequence is created for each dimension using a separate prime and,
again, values are allocated to observations in bunches. It is conventional to use the first M
primes for an M-dimensional calculation, and this is what the multinomial probit program
asmprobit does, for example. Multiple Halton sequences generally provide better multi-
dimensional coverage than the corresponding pseudo-random sequences but issues remain
concerning the correlation between sequences for different primes. The initial elements of
any two sequences can be highly correlated, at least during the first cycle over the unit
interval (before the different cycle periods for the two primes take effect). It is therefore
common practice to drop the initial elements of each Halton sequence before allocating the
elements to observations. There appears to be little guidance available about the optimal
number of elements to drop, with the exception that the number of elements to drop is
recommended to be greater than the largest prime used to create the sequences (Train 2003,
p. 230). The burn() option in the mdraws program allows users to choose how many
elements to drop.

In addition, several authors have pointed to problems of high correlation between the
sequences constructed using relatively large primes, i.e. when the number of dimensions is
relatively high, and thence poorer multi-dimensional coverage. Hess and Polak (2003a,
2003b) discuss the problem and argue in favour of ‘shuffled’ Halton sequences rather than
the ‘scrambled’ Halton sequences that other researchers have suggested to address this issue.
The mdraws program offers the option of shuffled Halton sequences, but users should be
aware that their properties are not yet well-known, especially when used for lower
dimensional problems or for MSL applications other than mixed logit model estimation.

mdraws creates M × D new variables, where each variable contains numbers drawn from the
standard uniform density. M is the number of equations (integration dimensions) and D is the
number of draws created per observation. The numbers are either Halton sequences (the
default) or sequences of pseudo-random numbers. The names of the variables created have a
common prefix specified by the option prefix(string), and the variable name suffixes are
m_d for each integer m = 1, ..., M and each integer d = 1, ..., D. Users may need to set
matsize and set memory to values above the default ones in order to provide sufficient
space for the new variables. Users should also be aware that mdraws uses temporary files, and
will fail to work if there is insufficient free hard disk space for temporary file store. In this
situation (rare in our experience), users should check the path specified by their computer’s
TEMP environment variable, and either create space on the relevant disk or change TEMP to
a location where there is space (e.g. a different disk).

For Halton sequences, users can specify M prime numbers of their own choosing using the
primes(matrix_name) option. If the option is not specified, mdraws uses the first M prime
numbers in ascending order.

 3

Syntax for the multiple draws program mdraws

mdraws [if exp] [in range], draws(#) neq(#) prefix(string) [primes(name)

antithetics burn(#) random seed(#) hrandom shuffle replace]

Options for mdraws

neq(#) specifies M, the number of equations (dimensions of integration).

draws(#) specifies the number of draws. If the antithetics option is not chosen (the

default), the total number of draw variables created for each integration dimension is
D = D*, where D* is the number specified in draws(#).If the antithetics option is
chosen, D = 2D*.

prefix(string) specifies the prefix common to the names of each of the draws variables

created.

primes(name) specifies the name of an existing 1 × M or M × 1 matrix containing M

different prime numbers. If the option is not specified and as long as M ≤ 20, the
program uses the first M prime numbers in ascending order.

antithetics specifies that antithetic draws are also created The antithetic draw for a vector

of draws, z, is 1–z. The variables are named in a manner consistent with the system
outlined above. The first D* variables per dimension are the original draws variables;
the second D* variables are the corresponding antithetic draws.

burn(#) specifies the number of initial sequence elements to drop for each equation when

creating Halton sequences. The default is zero, and the option is ignored if the random
option is specified. Train (2003, p. 230) recommends that # should be at least as large
as the largest prime number used to generate the sequences.

random specifies that pseudo-random number sequences are created rather than Halton

sequences (the default).

seed(#) specifies the initial value of the pseudo-random number seed used by the

uniform() function if random is specified, or if the hrandom or shuffle options are
requested when Halton sequences are specified. Otherwise it is ignored. The value
should be an integer (the default value is 123456789). Use this option to ensure
reproducibility of results.

hrandom specifies that each Halton sequence should be transformed by a random

perturbation. For each dimension, a draw – call it u – is taken from the standard
uniform distribution. Each sequence element for that dimension has u added to it: if
the sum is greater than 1, the element is transformed to the sum minus 1; otherwise,
the element is transformed to the sum. See Train (2003, p. 234).

 4

shuffle specifies that ‘shuffled’ Halton draws should be derived, as proposed by Hess and
Polak (2003a, 2003b). The Halton sequence for each dimension is randomly shuffled
before sequence elements are allocated to observations. Philippe Van Kerm’s program
_gclsort, available via SSC, must be installed for this option to work.

replace specifies that existing variables named using the prefix specified by the prefix

option and the suffix defined by the relevant equation and draw number are replaced.

Saved results

r(type) Local macro containing “halton” if Halton draws created, else

contains “random”.

r(seed) Local macro containing c(seed), if seed option used.

r(prefix) Local macro containing the string specified by the prefix() option.

r(antithetics) Local macro containing “yes” if antithetics option specified, else

containing “no”.

r(n_draws) Scalar equal to D.

r(n_dimensions) Scalar equal to M.

mdraws in action

We begin by reproducing the Halton draws example given by Train (2003, p. 227). He has
two observations, D = 5, P = 3, and the first 9 elements of the sequence are dropped. (Train
refers to dropping 10 initial elements but that is because he uses zero as the first element
when illustrating how to construct the sequence.) Using ‘z’ as the draw variable name prefix,
the command is:

. set obs 2
obs was 0, now 2

. matrix p = (3)
.
. mdraws, prefix(z) dr(5) neq(1) burn(9) prime(p)
Created 5 Halton draws per equation for 1 dimensions. Number of initial draws dropped
per dimension = 9 . Primes used:

 3

.
. list

 +---+
 | z1_1 z1_2 z1_3 z1_4 z1_5 |
 |---|
 1. | .37037037 .7037037 .14814815 .48148148 .81481481 |
 2. | .25925926 .59259259 .92592593 .07407407 .40740741 |
 +---+

The values shown in the five draws variables for observation 1 are 10/27, 19/27, 4/27, 13/27,
and 22/27; those in the corresponding variables for observation 2 are 7/27, 16/27, 25/27, 2/27,
and 11/27 (see earlier). MSL for this sample would be based, at each iteration, on simulation

 5

of the sample likelihood using each of the five z variables in turn and then averaging the
result across simulations.

Suppose that we now have a more realistic sample size, 1000 observations, and three
integration dimensions and require 100 draws. For pseudo-random draws, the command
syntax is:

. set obs 1000
obs was 0, now 1000

. mdraws, neq(3) dr(100) prefix(a) random
Created 100 pseudo-random draws per equation for 3 equations. Seed = 123456789

For 50 Halton draws plus antithetic draws, using primes 7, 11, and 13, and dropping the first
20 sequence elements in each dimension, the syntax is

. mat p1 = (7, 11, 13)

. mdraws, neq(3) dr(50) prefix(b) burn(20) antithetics
Created 50 Halton draws per equation for 3 dimensions. Number of initial draws
dropped per dimension = 20 . Primes used:

 2 3 5
Also created 50 antithetic draws per dimension for 3 dimensions. Note: there are now
100 draws per equation.

Observe in the last case that D* = 50 (the number specified in the draws() option) but, with
antithetics also specified, D = 100.

. return list

scalars:
 r(n_draws) = 100
 r(n_dimensions) = 3
 r(n_burn) = 20

macros:
 r(antithetics) : "yes"
 r(prefix) : "b"
 r(type) : "halton"

matrices:
 r(primes) : 1 x 3

3 An egen function for computing multivariate normal probabilities, mvnp()

Our egen function mvnp() calculates multivariate normal probabilities using the Geweke-
Hajivassiliou-Keane (GHK) simulator and returns the results in a new variable with storage
type double. More specifically, the function returns the multivariate normal probability
Prob[–∞ ≤ xm ≤ am, m = 1, ..., M] where the M variables xm each have mean zero and
covariance matrix V. For computational reasons, users specify not V but the lower triangular
matrix C that is the Cholesky factorization of V: C = cholesky(V). From the MSL estimate
of C, one can recover an estimate of V since V = CC′. We show how to do this using nlcom
later. (Alternatively one could use _diparm.)

Put another way, mvnp() returns the joint cumulative distribution Φ(a1, a2, ..., aM ; V) of an
M-variate normal distribution with covariance matrix V, where the cumulation is over (–∞,
a1] × (–∞, a2] × ... × (–∞, aM]. The upper integration points a1, a2, ..., aM are variables
specified by the user and may vary across observations of course. If the mean of any of the xm

 6

variables is non-zero, the upper integration points should be appropriately centred first. For
MSL estimation of multivariate probit-type models, this is typically unnecessary.

The function assumes the existence of M × D variables containing draws from the standard
uniform distribution. The names of the variables must have a common prefix, specified by the
option prefix(string), and the variable name suffixes are m_d for each integer m = 1, ..., M
and each integer d = 1, ..., D. The variables can be created using mdraws.

The MSL estimator is consistent, asymptotically normal and efficient, and equivalent to ML
if the number of draws tends to infinity faster than the square root of the number of
observations does (Train, 2003, p. 259). When M = 2, and for a ‘large’ number of random
draws, then calculation by mvnp() is asymptotically equivalent to that provided by the built-
in function binorm(). Other things being equal, the more draws, the better. In practice, a
relatively small number of draws may work well in the sense that the change in calculated
probabilities as the number of draws is increased is negligible. It is the responsibility of the
user to check that this is the case.

Calculation is numerically intensive, and may be slow if the number of observations is large,
if D is large, or especially if M is large.

Next we introduce the syntax for the egen function mvnp(), and then illustrate the program.
The first example shows how the program can be used for stand-alone one-off calculations.
The remaining three examples illustrate how the program may be used for MSL estimation.
In essence, this means showing how to embed calls to mvnp() within code for likelihood
function evaluation by ml.

Syntax for mvnp()

egen newvar = mvnp(varlist1) [if exp] [in range] , prefix(string) draws(#)

[chol(matrix_name) signs(varlist2) adoonly]

where varlist1 refers to a list of existing variables containing upper integration points. The

variable names should be separated by spaces, not commas.

Options

prefix(string) specifies the prefix common to each of the variables representing draws

from a standard uniform density.

draws(#) specifies the number of draws used when calculating the simulated probability.

The default is 5. (See the discussion above concerning the choice of D.)

chol(matrix_name) specifies the lower triangular matrix that is the Cholesky factorization

of the covariance matrix, V, i.e. matrix matrix_name = cholesky(V). At least one of
the diagonal elements of matrix matrix_name should equal 1. The nature of any
additional constraints on matrix matrix_name depends on the application (see the
examples below). It is the user’s responsibility to ensure that the appropriate
constraints are imposed.

 7

signs(varlist2) may be used if the function is used to evaluate multivariate probit-like
likelihood functions, and helps reduce computation time. For an ordered set of binary
dependent variables i = 1, ..., M, varlist2 contains the names of a set of variables
summarizing the sign of each dependent variable. Specifically, the ith variable of
varlist2 should contain 1 for an observation with the corresponding dependent
variable equal to 1, and contain –1 for an observation with the corresponding
dependent variable equal to 0.

adoonly prevents the use of the Stata plugin to perform the intensive numerical calculations.

Specifying this option results in slower-running code, but may be necessary if you run
under a platform for which the plugin is not available.

Illustration 1: one-off calculations of multivariate normal probabilities

mvnp() may be used to calculate multivariate probabilities in any situation in which one has a
set of upper integration points and a variance matrix or, rather, the Cholesky matrix derived
from the variance matrix. That is, MSL is not the only application. Let us illustrate how the
program can be used in a stand-alone context. Although the first example is artificial, it
demonstrates the relevant principles and also compares the calculated probabilities with those
generated using the built-in function binorm().

Consider probabilities from a standard bivariate normal distribution with correlation ρ = 0.5.
By assumption, the means of the two variables are zero. The correlation matrix and its
Cholesky matrix are created as follows:

. mat r = (1, .5 \ .5, 1)

. mat c = cholesky(r)

Now suppose that we have a set of upper integration points for each of 1000 observations
held in variables v1 and v2, and created for illustrative purposes in the following way:

. ge v1 = uniform()

. ge v2 = uniform()

We will compare calculations based on 50 and 1000 pseudo-random draws and 100 Halton
draws both with and without antithetic draws, creating six sets of draw variables using
mdraws.
.
. // without antithetics
. mdraws, neq(2) dr(50) prefix(p) random seed(123456789)
Created 50 pseudo-random draws per equation for 2 equations. Seed = 123456789

. mdraws, neq(2) dr(1000) prefix(q) random seed(123456789)
Created 1000 pseudo-random draws per equation for 2 equations. Seed = 123456789

. mdraws, neq(2) dr(100) prefix(h) burn(10)
Created 100 Halton draws per equation for 2 dimensions. Number of initial draws
dropped per dimension = 10 . Primes used:

 2 3

.
. // with antithetics
. mdraws, neq(2) dr(25) prefix(pa) random seed(123456789) antithetics
Created 25 pseudo-random draws per equation for 2 equations. Seed = 123456789
Also created 25 antithetic draws per dimension for 2 dimensions. Note: there are now

 8

50 draws per equation

. mdraws, neq(2) dr(500) prefix(qa) random seed(123456789) antithetics
Created 500 pseudo-random draws per equation for 2 equations. Seed = 123456789
Also created 500 antithetic draws per dimension for 2 dimensions. Note: there are
now 1000 draws per equation

. mdraws, neq(2) dr(50) prefix(ha) burn(10)
Created 50 Halton draws per equation for 2 dimensions. Number of initial draws
dropped per dimension = 10 . Primes used:

 2 3

Now compute the probabilities using binorm() and also mvnp() with and without antithetic
draws, and then summarize the probabilities in order to compare them.

. * built-in

. ge pr_b = binorm(v1,v2,.5)

. * egen function with plugin
.
. egen pr_s1p = mvnp(v1 v2), dr(50) chol(c) prefix(p)

. egen pr_s1q = mvnp(v1 v2), dr(1000) chol(c) prefix(q)

. egen pr_s1h = mvnp(v1 v2), dr(100) chol(c) prefix(h)
.
. * with antithetics
.
. egen pr_s1pa = mvnp(v1 v2), dr(25) chol(c) prefix(pa)

. egen pr_s1qa = mvnp(v1 v2), dr(500) chol(c) prefix(qa)

. egen pr_s1ha = mvnp(v1 v2), dr(50) chol(c) prefix(ha)

. su pr_b pr_s*

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 pr_b | 1000 .5266067 .0873916 .3459497 .7430622
 pr_s1p | 1000 .5256626 .0878951 .33602 .7438492
 pr_s1q | 1000 .5265468 .0874462 .3449283 .7432088
 pr_s1h | 1000 .5266263 .0874035 .3461671 .7434686
 pr_s1pa | 1000 .525534 .0885168 .3367507 .7538532
-------------+--
 pr_s1qa | 1000 .5264492 .0873688 .3430853 .7437653
 pr_s1ha | 1000 .5266424 .0873857 .3466564 .7428755

The simulated probabilities have a similar distribution to those calculated using binorm()
regardless of the number of draws and whether antithetic draws are used. Nonetheless and
unsurprisingly, the mean probability based on 1000 pseudo-random uniform draws is
markedly closer than the mean probability based on 50 pseudo-random draws to the mean
probability based on binorm(). The mean based on 100 Halton draws, with or without
antithetics, gets even closer.

The second, and perhaps more useful, application of one-off calculations is generation of
predicted probabilities of multiple outcome variables after estimation of multivariate probit
(and related) models. Our post-estimation program mvppred generates predicted probabilities
from multivariate probit estimates derived using mvprobit, but only for the probability that
every observed outcome variable equals one, and for the probability that every observed
outcome variable equals zero. (Updated versions of these programs are available with this
issue.) With mvnp, the predicted probability of any combination of ones and zeros can be
derived.

 9

The multivariate probit model is characterized, for each observation, by M pairs of equations,
one describing each latent dependent variable and the other describing the corresponding
binary observed outcome.

ym
* = βm′Xm + εm , m = 1, …, M

ym = 1 if ym

* > 0 and 0 otherwise

εm , m = 1, …, M, are error terms distributed as multivariate normal, each with a mean
of zero, and variance-covariance matrix V, where V has values of 1 on the leading
diagonal and correlations ρjk = ρkj as off-diagonal elements for j, k = 1, …, M and j ≠
k.

The predicted probability of the observed outcomes for any observation is ΦM(µ ; Ω) where
ΦM(.) is the M-variate standard normal cumulative distribution function with arguments µi
and Ω, and µ = (κ1β1′X1 , κ2β2′X2 , …, κMβM′XM). The κk are ‘signs’ variables, being equal to
1 or –1 depending on whether the observed binary outcome equals 1 or 0: κk = 2yk – 1 for
each observation for k = 1,…, M. Matrix Ω has constituent elements Ωjk , where Ωjj = 1 for j
= 1, …, M, and Ωjk = Ωkj = κkκjρkj.

Estimates of the βm and V can be derived using the egen-based code shown in the next
illustration, or with mvprobit. To calculate the predicted probabilities using mvnp(), one first
generates several new variables. There are the M signs variables appropriate to the outcome
combinations of interest: these will be the arguments specified in the signs() option. The
upper integration point variables are the M linear index variables Im = bm′Xm which can be
derived using matrix score or mvppred, xb after mvprobit (bm is the estimate of βm).
Next, use mdraws to generate the draws variables and, finally, calculate the probabilities
using the egen command with the Im variables as arguments and referring to a matrix equal to
cholesky(V) in the chol() option. Substantial savings in computer time can be achieved if
the probability calculations are not made for every observation. Instead create a small number
of new observations that have the specific values for X1, X2, …, XM that are of interest, and
generate the linear index variable values for them using Stata’s ability to generate out-of-
sample predictions. Then calculate the probabilities only for these observations:
mvnp()accepts if and in qualifiers.

Illustration 2: MSL estimation of multivariate probit models

Now we show how our program may be used to estimate multivariate probit models. The
main advantage of using mvnp() rather than mvprobit is that one may achieve substantial
savings in computational time by taking advantage of the plugin and Halton draws. These
savings may be particularly valuable when the number of outcome variables is large (four or
more, say) and the number of observations is large.

The illustration considers the trivariate probit model. (It is straightforward to generalize the
likelihood evaluation code below to estimate multivariate probit models with a larger number
of equations.) In order to benchmark the estimates, we create a data set with 5,000
observations from a model with known parameters, using the same methods as in Cappellari
and Jenkins (2003):

 10

. set seed 123456789

. set obs 5000
obs was 0, now 5000
.
. matrix R = (1, .25, .5 \ .25, 1, .75 \ .5, .75, 1)

. drawnorm u1 u2 u3 , corr(R)

. corr u*
(obs=5000)

 | u1 u2 u3
-------------+---------------------------
 u1 | 1.0000
 u2 | 0.2501 1.0000
 u3 | 0.4913 0.7575 1.0000

. ge x1 = uniform()-.5

. ge x2 = uniform() + 1/3
.
. ge x3 = 2*uniform() + .5

. * Equations
.
. ge y1s = .5 + 4*x1 + u1

. ge y2s = 3 + .5*x1 - 3*x2 + u2

. ge y3s = 1 - 2*x1 + .4*x2 -.75*x3 + u3

. ge y1 = y1s>0

. ge y2 = y2s>0

. ge y3 = y3s>0

The equations for y1s, y2s, y3s correspond to the equations for yim
*, i = 1, …, M, given

earlier, and those for y1, y2, y3 correspond to those for for yim. The correlations between
the error terms (the elements of the matrix V) are shown in the output from the correlate
command.

The log-likelihood contribution for each observation, log(Φ3(µ ; Ω)), is what needs to be
calculated by the user-written evaluation program that is called by ml. Code for doing this
using ml evaluation method lf is set out below and then the key elements are explained. (For
a general introduction to ML estimation using Stata, see Gould et al. 2006.)

program define myll
 args lnf xb1 xb2 xb3 c21 c31 c32
 tempvar sp k1 k2 k3
quietly {
 gen double `k1' = 2*$ML_y1 - 1
 gen double `k2' = 2*$ML_y2 - 1
 gen double `k3' = 2*$ML_y3 - 1
 tempname cf21 cf22 cf31 cf32 cf33 C
 // Following needed since lf evaluator
 su `c21', meanonly
 scalar `cf21' = r(mean)
 su `c31', meanonly
 scalar `cf31' = r(mean)
 su `c32', meanonly
 scalar `cf32' = r(mean)
 // constraints on diagonal elements
 scalar `cf22' = sqrt(1 - `c21'^2)
 scalar `cf33' = sqrt(1 - `c31'^2 - `c32'^2)
 mat `C' = (1, 0, 0 \ `cf21', `cf22', 0 \ `cf31',`cf32', `cf33')

egen `sp' = mvnp(`xb1' `xb2' `xb3') , ///
 chol(`C') draws($dr) prefix(z) ///

 11

 signs(`k1' `k2' `k3')
 replace `lnf'= ln(`sp')
}
end

The args statement refers first to lnf, the variable that will contain the observation-specific
values of log(Φ3(µ ; Ω)). Cited next are the variables containing the observation-specific
values of the linear indices for each of the three model equations (βm′Xm) and finally there are
three variables containing scalar values of the three Cholesky factors associated with
correlation matrix V. The first three lines after the quietly statement define the observation-
specific signs variables that were introduced earlier. Next, six lines define three Cholesky
factor scalars that are used to specify the lower triangular Cholesky matrix (`C') that will be
passed to mvnp(). These lines are required because, although the Cholesky factors to be
estimated are scalars, each of the arguments of a method lf evaluator is a variable with a
value that is the same for each observation. The procedure shown avoids problems that may
arise if there are any observations with missing values on those variables, e.g. observations
excluded using an if qualifier in a subsequent ml model statement.

The lines defining scalars `cf22' and `cf33' place constraints on the Cholesky matrix, `C'.
Recall that for a multivariate probit model, each element of the covariance matrix V equals 1
(the variance of each error is normalized to unity). The off-diagonal elements are
correlations. Since V = CC′, V11 = (C11)2, V22 = (C21)2 + (C22)2, and V33 = (C31)2 + (C32)2 +
(C33)2. Requiring V11 = V22 = V33 = 1 leads to the constraints shown. C11 is not a function of
the estimated parameters and simply set equal to 1: note the first element in the definition of
matrix `C'.

The egen command calculates the observation-specific values of Φ3(µ ; Ω). The upper
integration points are the linear indices for each equation and specified using mvnp(`xb1’
`xb2’ xb3’). The draws($dr) option refers to a global that will be filled in later, and we
shall create the required draws variables that have a prefix z. The signs() option is used to
refer to the signs variables created earlier in the evaluation program; the aa option means that
antithetic draws are also used.

Good starting values are important. An obvious strategy for the multivariate probit model is
to assume that the cross-equation correlations are each equal to zero and to set the regression
coefficients in each equation equal to the corresponding univariate probit estimates for that
equation. (The univariate estimates are consistent but inefficient estimators of the
multivariate probit ones.)

quietly {
 probit y1 x1
 mat b1 = e(b)
 mat coleq b1 = y1
 probit y2 x1 x2
 mat b2 = e(b)
 mat coleq b2 = y2
 probit y3 x1 x2 x3
 mat b3 = e(b)
 mat coleq b3 = y3

 mat b0 = b1, b2, b3
}

All that is now required to fit the trivariate probit model is to choose and set the number of
draws and to create the draws variables using mdraws, the ml model statement, specification
of the vector containing starting values using ml init, and then, finally, the call to ml

 12

maximize. We will use 250 pseudo-random draws combined with antithetic draws (500
draws in total). The ml model statement specifies equations corresponding to the data
generation process.

. mdraws, dr(250) neq(3) prefix(z) random seed(123456789) antithetics replace
Created 250 pseudo-random draws per equation for 3 equations. Seed = 123456789
Also created 250 antithetic draws per dimension for 3 dimensions. Note: there are now 500
draws per
equation

. global dr = r(n_draws)
.
. ml model lf myll (y1: y1=x1) (y2: y2=x1 x2) (y3: y3 = x1 x2 x3) ///
> /c21 /c31 /c32 , title("MV Probit by MSL, $dr pseudo-random draws")

. ml init b0

. ml maximize

After estimation, the estimates of the cross-equation correlations and their standard errors can
be derived using nlcom applying the definition V = CC′. The estimates were as follows:

initial: log likelihood = -7263.7365
rescale: log likelihood = -7263.7365
rescale eq: log likelihood = -7263.7365
Iteration 0: log likelihood = -7263.7365
Iteration 1: log likelihood = -6786.6968
Iteration 2: log likelihood = -6750.4414
Iteration 3: log likelihood = -6749.2538
Iteration 4: log likelihood = -6749.249
Iteration 5: log likelihood = -6749.249

MV Probit by MSL, 500 pseudo-random draws Number of obs = 5000
 Wald chi2(1) = 1705.86
Log likelihood = -6749.249 Prob > chi2 = 0.0000

--
 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
y1 |
 x1 | 3.939239 .0953764 41.30 0.000 3.752304 4.126173
 _cons | .496217 .0232598 21.33 0.000 .4506286 .5418054
-------------+--
y2 |
 x1 | .4808888 .0708867 6.78 0.000 .3419534 .6198243
 x2 | -2.998213 .0805319 -37.23 0.000 -3.156052 -2.840373
 _cons | 2.94806 .0750775 39.27 0.000 2.800911 3.09521
-------------+--
y3 |
 x1 | -2.037973 .0711971 -28.62 0.000 -2.177516 -1.898429
 x2 | .324464 .0648008 5.01 0.000 .1974569 .4514711
 x3 | -.7676863 .0316202 -24.28 0.000 -.8296607 -.7057119
 _cons | 1.082151 .0740849 14.61 0.000 .9369469 1.227354
-------------+--
c21 |
 _cons | .2090744 .0306232 6.83 0.000 .1490541 .2690947
-------------+--
c31 |
 _cons | .4664248 .0263437 17.71 0.000 .4147921 .5180576
-------------+--
c32 |
 _cons | .6666989 .0214556 31.07 0.000 .6246466 .7087512
--
.
. nlcom (r21: [c21]_b[_cons]) ///
> (r31: [c31]_b[_cons]) ///
> (r32: [c21]_b[_cons]*[c31]_b[_cons] ///
> + sqrt(1 - [c21]_b[_cons]^2)*[c32]_b[_cons])

 r21: [c21]_b[_cons]
 r31: [c31]_b[_cons]
 r32: [c21]_b[_cons]*[c31]_b[_cons] + sqrt(1 - [c21]_b[_cons]^2)*[c32]_b[_cons]

 13

--
 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 r21 | .2090744 .0306232 6.83 0.000 .1490541 .2690947
 r31 | .4664248 .0263437 17.71 0.000 .4147921 .5180576
 r32 | .7494822 .0179106 41.85 0.000 .714378 .7845864
--

The program provides good estimates of the underlying model, not only of the regression
coefficients, but also the correlation matrix. The largest divergences from the ‘true’ model are
for the estimates of correlations r21 and r31 though, even for these, the 95% confidence
interval spans the ‘true’ value.

The gain in estimation speed from using the plugin is substantial. Using a Win XP Pentium
P4/1.8Ghz computer, convergence took about 57 minutes with the plugin, whereas the
adoonly version of the program and mvprobit each took more than 3.5 hours.

Estimates will vary depending on the number and type of draws used. Cappellari and Jenkins
(2003) illustrated this issue for a bivariate probit model estimated with mvprobit, varying the
number of pseudo-random draws and also the seed. Here we focus on differences in results
for pseudo-random and Halton draws. Train (2003, pp. 231–234) cites several studies
including one of his own, each demonstrating that Halton draws are more effective for
simulation than pseudo-random draws. All the studies were based on mixed logit models, and
so it is of interest to know whether similar conclusions also apply to multivariate probit
models.

Our comparisons took the same format as Train’s. First, a trivariate probit model was
estimated five times using 500 pseudo-random draws plus antithetics, but with a different
seed each time, where the seeds were chosen randomly. The 5 seeds were selected, to avoid
overlaps in sequences, using the following code (derived from Stewart 2006):

set seed 123456789
ge long seedvar = int((uniform() + 5 - _n)*100000000) in 1/5
local seed1 = seedvar[1]
local seed2 = seedvar[2]
local seed3 = seedvar[3]
local seed4 = seedvar[4]
local seed5 = seedvar[5]

Estimates were compared with those derived from the same model estimated using 50 Halton
draws plus antithetic draws, with 10 initial sequence elements dropped in each dimension.
Primes 2, 3, and 5 were used, in different permutations, for different dimensions to produce
the different estimates. The estimates of parameters and their standard errors are summarized
in Tables 1 (pseudo-random draws) and 2 (Halton draws).

 14

Table 1. Trivariate probit model estimates: pseudo-random draws

500 pseudo-random draws plus antithetic draws

 Row
Mean

Row
s.d.

Seed 413698407 364322066 255780169 160479494 68417597
 (1) (2) (3) (4) (5)
–logL 6750.34 6749.94 6749.56 6749.19 6749.47 6749.6990 0.3994
Time (secs) 6803.16 6829.94 6906.33 6880.56 6973.20 6878.6380 59.6338
[y1]_b[x1] 3.9391450 3.9392590 3.9392470 3.93907 3.9389380 3.9391 0.0001
[y1]_se[x1] 0.0953744 0.0953770 0.0953797 0.0953833 0.0953632 0.0954 0.0000
[y1]_b[_cons] 0.4963101 0.4963739 0.4964035 0.4964518 0.4962911 0.4964 0.0001
[y1]_se[_cons] 0.0232582 0.0232589 0.0232624 0.0232609 0.0232553 0.0233 0.0000
[y2]_b[x1] 0.4816162 0.4819739 0.4821864 0.4815196 0.4811402 0.4817 0.0004
[y2]_se[x1] 0.0708839 0.0708854 0.0708736 0.0708734 0.0708819 0.0709 0.0000
[y2]_b[x2] –2.9985280 –2.9981170 –2.9976140 –2.9980880 –2.9977320 –2.9980 0.0003
[y2]_se[x2] 0.0805410 0.0805375 0.0805302 0.0805265 0.0805371 0.0805 0.0000
[y2]_b[_cons] 2.9485970 2.9480640 2.9474610 2.9480880 2.9475610 2.9480 0.0004
[y2]_se[_cons] 0.0750873 0.0750833 0.0750729 0.0750709 0.0750777 0.0751 0.0000
[y3]_b[x1] –2.0333280 –2.0352470 –2.0366050 –2.0357180 –2.0339860 –2.0350 0.0012
[y3]_se[x1] 0.0711889 0.0712167 0.0712413 0.0711961 0.0711190 0.0712 0.0000
[y3]_b[x2] 0.3217575 0.3230236 0.3255635 0.3254686 0.3234068 0.3238 0.0015
[y3]_se[x2] 0.0647607 0.0647823 0.0648078 0.0647764 0.0646952 0.0648 0.0000
[y3]_b[x3] –0.7668600 –0.7673650 –0.7674080 –0.7671380 –0.7661510 –0.7670 0.0005
[y3]_se[x3] 0.0315997 0.0316022 0.0316263 0.0316034 0.0315734 0.0316 0.0000
[y3]_b[_cons] 1.0841960 1.0837090 1.0812000 1.0809790 1.0810330 1.0822 0.0014
[y3]_se[_cons] 0.0740604 0.0740689 0.0741090 0.0740383 0.0739905 0.0741 0.0000
[c21]_b[_cons] 0.2086790 0.2073670 0.2082024 0.2081035 0.2096905 0.2084 0.0008
[c21]_se[_cons] 0.0307609 0.0307244 0.0307358 0.0307378 0.0306816 0.0307 0.0000
[c31]_b[_cons] 0.4676432 0.4672187 0.4662095 0.4675385 0.4681019 0.4673 0.0006
[c31]_se[_cons] 0.0263845 0.0263691 0.0263675 0.0263965 0.0264144 0.0264 0.0000
[c31]_b[_cons] 0.6665950 0.6672873 0.6674139 0.6674673 0.6665139 0.6671 0.0004
[c31]_se[_cons] 0.0215065 0.0214476 0.0214307 0.0214068 0.0214541 0.0215 0.0000
r32 0.7495067 0.7496684 0.7498540 0.7501507 0.7498524 0.7498 0.0002
se(r32) 0.0179468 0.0179033 0.0178797 0.0178633 0.0178969 0.0179 0.0000
Note: c21 = r21 and c31 = r31.

Train (2003, Tables 9.1 and 9.2) reports estimates for mixed logit models (N = 4,308), five
estimated using 100 Halton draws and five estimated using 1000 pseudo-random draws. The
means of the estimated model parameters were much the same in each case, suggesting that
the smaller number of Halton draws provided estimates much the same on average. But the
standard deviation of his Halton estimates was lower suggesting, given much the same mean,
that with 100 Halton draws a researcher can expect to be closer to the expected values of the
estimates than with 1000 pseudo-random draws. For our trivariate probit model, we get an
approximately tenfold saving in computation time, as Train did. According to the ‘Time’ row
in Table 1, mean estimation time is 10.2 percent smaller using Halton draws. Corresponding
means of estimates are also similar (see the ‘row mean’ entries). However the row standard
deviations are not unambiguously lower for the Halton estimates. Our results underline
Train’s (2003, p. 233) remarks that simple statements about the relative advantages of Halton
draws need to be viewed with caution. More research is required before definitive
conclusions can be drawn about the trade-off between speed and accuracy.

 15

Table 2. Trivariate probit model estimates: Halton draws

50 Halton draws plus antithetic draws (10 initial draws dropped)

 Row
Mean

Row
s.d.

Primes 2,3,5 3,2,5 5,3,2 2,5,3 3,5,2
 (1) (2) (3) (4) (5)
–logL 6750.92 6750.332 6750.364 6749.907 6750.192 6750.3430 0.3306
Time (secs) 703.99 702.30 700.03 703.92 683.80 698.8080 7.6409
[y1]_b[x1] 3.9388990 3.9386530 3.9385420 3.9385820 3.9385950 3.9387 0.0001
[y1]_se[x1] 0.0953799 0.0953742 0.0953760 0.0953675 0.0953814 0.0954 0.0000
[y1]_b[_cons] 0.4963090 0.4962998 0.4961965 0.4961129 0.4961550 0.4962 0.0001
[y1]_se[_cons] 0.0232611 0.0232602 0.0232600 0.0232571 0.0232613 0.0233 0.0000
[y2]_b[x1] 0.4821302 0.4818128 0.4809724 0.4819018 0.4813064 0.4816 0.0004
[y2]_se[x1] 0.0708865 0.0708894 0.0708929 0.0708850 0.0709040 0.0709 0.0000
[y2]_b[x2] –2.9982050 –2.9984710 –2.9987860 –2.9980170 –2.9984140 –2.9984 0.0003
[y2]_se[x2] 0.0805421 0.0805402 0.0805527 0.0805527 0.0805631 0.0806 0.0000
[y2]_b[_cons] 2.9480800 2.9481210 2.9484980 2.9478830 2.9481380 2.9481 0.0002
[y2]_se[_cons] 0.0750866 0.0750821 0.0751001 0.0750986 0.0751062 0.0751 0.0000
[y3]_b[x1] –2.0325070 –2.0330360 –2.0358330 –2.0337580 –2.0373120 –2.0345 0.0018
[y3]_se[x1] 0.0711341 0.0711083 0.0711919 0.0711608 0.0712849 0.0712 0.0001
[y3]_b[x2] 0.3223934 0.3221294 0.3224382 0.3249884 0.3240396 0.3232 0.0011
[y3]_se[x2] 0.0648024 0.0647506 0.0648555 0.0648144 0.0648916 0.0648 0.0001
[y3]_b[x3] –0.7656050 –0.7659450 –0.7667760 –0.7665520 –0.7675070 –0.7665 0.0007
[y3]_se[x3] 0.0316383 0.0316004 0.0316483 0.0315646 0.0316592 0.0316 0.0000
[y3]_b[_cons] 1.0813130 1.0814320 1.0826200 1.0802830 1.0823640 1.0816 0.0008
[y3]_se[_cons] 0.0741471 0.0740966 0.0741638 0.0740542 0.0741773 0.0741 0.0001
[c21]_b[_cons] 0.2084468 0.2062338 0.2089133 0.2083446 0.2069897 0.2078 0.0010
[c21]_se[_cons] 0.0308445 0.0307262 0.0306878 0.0308136 0.0307486 0.0308 0.0001
[c31]_b[_cons] 0.4658724 0.4648260 0.4651382 0.4671057 0.4644295 0.4655 0.0009
[c31]_se[_cons] 0.0264159 0.0263092 0.0262384 0.0264215 0.0264397 0.0264 0.0001
[c31]_b[_cons] 0.6667344 0.6675500 0.6662109 0.6672030 0.6666491 0.6669 0.0005
[c31]_se[_cons] 0.0215791 0.0215287 0.0215076 0.0214571 0.0215259 0.0215 0.0000
r32 0.7491984 0.7490623 0.7486839 0.7498806 0.7483437 0.7490 0.0005
se(r32) 0.0179779 0.0179679 0.0179383 0.0179089 0.0179304 0.0179 0.0000
Note: c21 = r21 and c31 = r31.

Illustration 3: MSL estimation of multivariate probit models with sample selection

mvnp() can also be used to estimate multivariate probit models with sample selection
(otherwise known as ‘incidental truncation’). The built-in program heckprob is a bivariate
example of this type of model: there is one equation describing the binary outcome of interest
and a second equation that characterizes whether the first outcome is observed or not. If the
cross-equation error terms are correlated, sample selection is ‘endogenous’, in which case
simply estimating a univariate probit model for the binary outcome of interest leads to
inconsistent estimators of the parameters of interest. Models with multiple outcomes of
interest and possibly more than one selection equation are obvious generalizations of the
heckprob case. For example, Jenkins et al. (2006) have an equation system with four binary
outcomes, of which two describe sample selections. Cappellari and Jenkins (2004) model
three binary outcomes including one sample selection equation. We consider a similar
trivariate model here.

 16

We use data on 1098 working-age employees who responded to the Bank of Italy’s Survey of
Households’ Income and Wealth in a base year (either 1993 or 1995), and with whom follow-
up interviews were sought two or three years later (1995 or 1998 respectively). We model the
determinants of whether a respondent was low paid in the base year, and also whether the
respondent was low paid in the later (‘current’) year. Low pay in each year is defined as
having a wage in the poorest fifth of the earnings distribution of that year. The complication
is that not all respondents in the base year provided data in the current year, and so we wish
to model current year low pay probabilities controlling for the potential sample selection
biases that may arise from differential sample drop-out. (Drop-out here includes either
sample attrition or sample retention but not having a job.) In this illustrative data set,
‘trial.dta’, lph20 = 1 if low paid in the base year and 0 otherwise. For the current year,
flph20 is defined similarly, but is observed only if the sample retention indicator retent1 =
1 (retent1 = 0 for the 382 observations who dropped out). Age (eta), age-squared (eta2),
and the sex of the employee (female = 1 if a woman) are the only predictor variables used
in this simple illustration, and all three are included as regressors in each of the three
equations.

The equations for this model have the following form for each observation:

Low pay, base year: L* = W′β + l, where L = I(L* > 0)

Sample retention: R* = Y′δ + r, where R = I(R* > 0)

Low pay, current year: F* = Z′θ + f, where F = I(F* > 0) if R = 1,
 and is missing otherwise.

The variables denoted by asterisks are the latent outcomes, and those without them are binary
indicators summarising the observed outcomes. I(.) is the indicator function equal to one if its
argument is true, and zero otherwise. Observe the sample selection condition in the current
year low pay equation. We assume the error terms (l, r, f) ~ N3(0, V), where V is a symmetric
matrix with typical element ρrs = ρsr for r, s ∈ {l, r, f } and r ≠ s, and ρrr = 1, for all r. The
errors in each equation are assumed to be orthogonal to the predictors (elements of the
vectors W, Y, and Z respectively).

Define a set of signs variables κT = 2T – 1 for T ∈ {L, R, F}. The likelihood contribution for
an employee who is observed in both the base year and the current year, i.e. with R = 1, is

L3 = Φ3(κLW′β, κRY′δ, κFZ′θ; κLkRρlr, κLκFρlf, κRκFρrf).

By contrast, the likelihood contribution for someone who responded only in the first year is

L2 = Φ2(κLW′β, κRY′δ, κLκRρlr).

It follows that the log-likelihood contribution to be calculated by the evaluator function for

each observation is:

(1 – R) log L2 + R log L3.

The evaluator function for method lf estimation is coded with a very similar structure to that
used for multivariate probit example earlier. Any differences reflect the fact that the three

 17

outcome variables are observed only for employees who are retained in the sample; for drop-
outs, there are only two observed outcomes.

program define myll

 args lnf x1 x2 x3 c21 c31 c32
 tempvar sp2 sp3 k1 k2 k3
quietly {
 gen double `k1' = 2*$ML_y1 - 1
 gen double `k2' = 2*$ML_y2 - 1
 gen double `k3' = 2*$ML_y3 - 1
 tempname cf21 cf22 cf31 cf32 cf33 C1 C2
 su `c21', meanonly
 scalar `cf21' = r(mean)
 su `c31', meanonly
 scalar `cf31' = r(mean)
 su `c32', meanonly
 scalar `cf32' = r(mean)
 scalar `cf22' = sqrt(1 - `cf21'^2)
 scalar `cf33' = sqrt(1 - `cf31'^2 - `cf32'^2)
 mat `C1' = (1, 0 , 0 \ `cf21', `cf22', 0 \ `cf31' , `cf32' , `cf33')
 mat `C2' = (1, 0 \ `cf21', `cf22')
 egen `sp3' = mvnp(`x1' `x2' `x3') if $ML_y1==1, ///
 chol(`C1') dr($dr) ml prefix(z) signs(`k1' `k2' `k3')
 egen `sp2' = mvnp(`x1' `x2') if $ML_y1==0, ///
 chol(`C2') dr($dr) ml prefix(z) signs(`k1' `k2')
 replace `lnf'= cond($ML_y1, ln(`sp3'), ln(`sp2'), .)

}
end

There are two principal differences from the earlier illustration. First, there are now two
Cholesky matrices defined, `C1', `C2', with the latter being a sub-matrix of the former. (This
ensures that the appropriate parameter constraints hold for all observations, regardless of
whether they dropped out or not.) Second, the call to mvnp() differs depending on drop-out
status. Although it is not essential to add the if qualifier to the egen command, it is wise to
do so, because restricting the number of observations for whom the simulation calculations is
undertaken reduces computation time.

Starting values were derived from three independent univariate probit regressions (the same
method as for trivariate probit example) and, again, they were stored in a matrix named b0.
mdraws was used to create 100 Halton draws with antithetics, and then the calls were made to
ml model and ml maximize. Because observations who dropped out of the sample have
missing values for the current year low pay status variable flph20, we used the missing
option on the ml model statement so that these cases are not dropped from the estimation
sample.

. mdraws, dr(100) neq(3) prefix(z) burn(10) antithetics
Created 100 Halton draws per equation for 3 dimensions. Number of initial draws dropped per
dimension =
10 . Primes used:

 2 3 5
Also created 100 antithetic draws per dimension for 3 dimensions. Note: there are now 200
draws per equation

. global dr = r(n_draws)

. ml model lf myll (retent1: retent1 = female eta eta2) ///
 (lph20: lph20 = female eta eta2) ///
 (flph20: flph20 = female eta eta2) ///
 /c21 /c31 /c32 ///
 , missing title("3-var probit, 1 selection, MSL, $dr Halton draws")

. ml init b0

 18

. ml maximize

The resulting estimates were:

initial: log likelihood = -1387.3445
rescale: log likelihood = -1387.3445
rescale eq: log likelihood = -1387.3445
Iteration 0: log likelihood = -1387.3445 (not concave)
Iteration 1: log likelihood = -1347.2291 (not concave)
Iteration 2: log likelihood = -1338.9097
Iteration 3: log likelihood = -1338.758
Iteration 4: log likelihood = -1338.7247
Iteration 5: log likelihood = -1338.7247

3-var probit, 1 selection, MSL, 200 Halton draws Number of obs = 1098
 Wald chi2(3) = 32.88
Log likelihood = -1338.7247 Prob > chi2 = 0.0000

--
 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
retent1 |
 female | -.0282483 .0838161 -0.34 0.736 -.1925249 .1360282
 eta | .1605634 .0280407 5.73 0.000 .1056047 .2155221
 eta2 | -.0020581 .0003605 -5.71 0.000 -.0027646 -.0013515
 _cons | -2.500076 .5174225 -4.83 0.000 -3.514206 -1.485947
-------------+--
lph20 |
 female | .1314453 .0992667 1.32 0.185 -.0631139 .3260045
 eta | -.2443421 .0335981 -7.27 0.000 -.3101932 -.178491
 eta2 | .0026242 .00044 5.96 0.000 .0017618 .0034867
 _cons | 4.152685 .6008135 6.91 0.000 2.975112 5.330258
-------------+--
flph20 |
 female | .2920033 .1215901 2.40 0.016 .0536912 .5303155
 eta | -.2204496 .061037 -3.61 0.000 -.34008 -.1008192
 eta2 | .0025759 .0008164 3.16 0.002 .0009757 .0041761
 _cons | 3.322164 1.461194 2.27 0.023 .4582771 6.186051
-------------+--
c21 |
 _cons | -.1382572 .0597632 -2.31 0.021 -.255391 -.0211234
-------------+--
c31 |
 _cons | -.2608714 .6659741 -0.39 0.695 -1.566157 1.044414
-------------+--
c32 |
 _cons | .6888566 .1274468 5.41 0.000 .4390655 .9386477
--
.
. // Derive correlations from cholesky factors
. // C is lower triangular, with 1s on the leading diagonal
. // r21 = c21, r31 = c31, r32 = c21*c31 + c22*c32
.
. nlcom (r21: [c21]_b[_cons]) ///
> (r31: [c31]_b[_cons]) ///
> (r32: [c21]_b[_cons]*[c31]_b[_cons] ///
> + sqrt(1 - [c21]_b[_cons]^2)*[c32]_b[_cons]) ///
> , post

 r21: [c21]_b[_cons]
 r31: [c31]_b[_cons]
 r32: [c21]_b[_cons]*[c31]_b[_cons] + sqrt(1 - [c21]_b[_cons]^2)*[c32]_b[_cons]

--
 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 r21 | -.1382572 .0597632 -2.31 0.021 -.255391 -.0211234
 r31 | -.2608714 .6659741 -0.39 0.695 -1.566157 1.044414
 r32 | .7183084 .0557379 12.89 0.000 .6090642 .8275526
--

The results suggest that there is a U-shaped relationship between age and the probability of
being low paid, whereas the relationship between age and the probability of sample retention
is inverse-U shaped. Those with unobserved characteristics favouring sample retention are

 19

less likely to have been low paid in the base year (r21 < 0). And low pay propensities in the
current and base years are correlated (r32 > 0). A formal test of whether sample selection is
ignorable is based on a test of the null hypothesis r21 = 0 = r31. This can be implemented
using test after nlcom. Observe the use of the post option to nlcom. This saves the nlcom
output as eclass results.

. // sample selection ignorable if r21 = r31 = 0
.
. test r21 r31

 (1) r21 = 0
 (2) r31 = 0

 chi2(2) = 5.40
 Prob > chi2 = 0.0670

With a p-value for the test of 0.067, we cannot reject the null hypothesis of ignorability at the
5% significance level.

Illustration 4: MSL estimation of a probit model for panel data

Our final illustration provides an example of a method d0 estimator applied to panel data.
(The earlier illustrations considered method lf estimators and cross-section data.) File
‘long4.dta’ contains data on 1,334 men and women aged 50–59 who were respondents to the
UK Quarterly Labour Force Survey between 1993 and 2004. Each individual was
interviewed for five consecutive quarters (‘waves’), providing a balanced panel. We
investigate the predictors of the probability of being employed rather than being unemployed
or economically inactive.

Because we have repeated observations on the same individuals over time, we can control for
unobserved differences in employment probabilities. One common way of doing this is with a
random effects probit model (xtprobit in Stata) but this has the disadvantage that it imposes
an equi-correlation structure on the error terms for the different time periods, as well as equal
variances. We generalize this model to allow for an unrestricted error variance-covariance
structure.

More formally, we assume that the model for the latent employment propensity and observed
employment outcome for each individual is

yt* = β′Xt + ut , t = 1,…, T

yt = 1 if yt
* > 0, and 0 otherwise

where Xt is a vector of observed predictors. The error terms ut are assumed to have a
multivariate normal distribution of dimension T, with zero mean and covariance matrix V: ut
~ NT(0, V). The covariance matrix is unconstrained, except that one variance is normalised to
unity, for identification. The random effects probit model is a special case of this
specification. It assumes ut = α + εt, with α ~ N(0, σα

2), and εt ~ NT(0, σε
2IT) implying that

cov(ut, us) = σα
2 + σε

2 if t = s, and σα
2 if t ≠ s.

The likelihood contribution for each individual, given T = 5 in each case, is:

 20

Φ5(κ1β′X1, κ2β′X2, …, κ5β′X5 ; KVK)

where K = diag(κ1….κ5), Φ5(.) is the five-variate standard normal distribution function, and
the signs variables (κt) are defined as earlier.

The likelihood evaluation function for this model is as follows. It assumes that the data are in
‘long’ form, with one row for each person-wave observation. The personal identifier for each
individual is held in the global macro $pid and the numbers of waves observed (5) is held in
global macro $M. The data are assumed to be sorted by $pid and wave.

global cs " "
global csbar " "
forvalues i = 2/$M {
 forvalues j = 1/`i' {
 global cs "$cs c`i'`j'"
 global csbar "$csbar /c`i'`j'"
 }
}

program define myll
 args todo b lnf
 tempvar theta1 T fi xb1 xb2 xb3 xb4 xb5 k1 k2 k3 k4 k5
 tempname $cs
 mleval `theta1' = `b' , eq(1)
 local c = 1
 forvalues i = 2/$M {
 forvalues j = 1/`i' {
 local c = `c' + 1
 mleval `c`i'`j'' = `b' , eq(`c') scalar
 }
 }
 quietly {
 forvalues i = 1/$M {
 by $pid: gen double `k`i'' = (2*$ML_y1[`i']) - 1
 by $pid: gen double `xb`i'' = `theta1'[`i']
 }
 by $pid: gen double `T' = (_n == $M)
 tempname C
 mat `C' = I($M)
 forvalues i = 2/$M {
 forvalues j = 1/`i' {
 local c`i'`j' = `c`i'`j''
 mat `C'[`i',`j'] = (`c`i'`j'')
 }
 }
 egen `fi' = mvnp(`xb1' `xb2' `xb3' `xb4' `xb5') , ///
 chol(`C') dr($dr) prefix(z) ///

 signs(`k1' `k2' `k3' `k4' `k5')
 mlsum `lnf' = ln(`fi') if `T'
 }
end

The first piece of code defines, for convenience, a global macro that will hold the names of
all the Cholesky matrix elements (cs), together with another global macro containing the
corresponding equation names (csbar), to be used on the later ml model statement.

. di "$cs"
 c21 c22 c31 c32 c33 c41 c42 c43 c44 c51 c52 c53 c54 c55

. di "$csbar"
 /c21 /c22 /c31 /c32 /c33 /c41 /c42 /c43 /c44 /c51 /c52 /c53 /c54 /c55

Because we use a method d0 estimator, the evaluation program has a different format from
those used in the earlier illustrations. In particular, the Cholesky factors are not declared on
the args statement, but using mleval statements instead. (Each factor is no longer a variable,

 21

but a constant term in an equation.) The first lines within the quietly block create the signs
variables and the linear indices (β′Xt). Observe the indexing of the variables to each quarter.
And, since only one equation (`theta1') was declared earlier to refer to the regression
coefficients, the coefficients are constrained to be the same for each quarter, as required. The
next lines specify the Cholesky matrix. No constraints are placed on the elements except that
C11 = 1. (Observe that matrix `C' is first declared as an identity matrix and subsequent lines
replace lower triangular elements with Cholesky factors – with the exception of element (1,1)
which therefore stays equal to 1.) The call to mvnp() creates the simulated probabilities of the
observed employment/non-employment sequence for each respondent. Finally, the mlsum
statement sums, for each individual, the log of these probabilities and stores the result in the
last data row.

To fit the model, we need to start by declaring starting values and creating the draws
variables for a chosen number of draws. The predictor variables used are female (a binary
indicator equal to 1 if the individual is a woman, and 0 otherwise) and age (age, in years).
Code for these steps, to specify the ml model statement, and to maximize the model, could
be:

probit employed female age
mat b0 = e(b)

mdraws, dr(50) neq($M) prefix(z) antithetics

global dr = r(n_draws)

ml init b0

ml model d0 myll (employed = female age) $csbar, title(Multiperiod Probit, $dr Halton draws)

ml maximize

In practice, we had to use several variations on these statements in order to fit a model that
converged satisfactorily. We often experienced non-concavities and non-convergence, and so
experimented with different numbers and types of draws, and also with different starting
values. One successful strategy was to fit the model with a small number of draws, and to use
the resulting estimates as starting values for estimation using a larger number of draws, and
then to repeat this process until the estimates stabilized. When doing so, we also employed
the technique(dfp nr) option on the ml model statement and the difficult option on the
ml maximize statement.

Example output, from a run based on 250 Halton draws plus antithetics, is as follows.

<output omitted>

Multiperiod Probit, 500 Halton draws Number of obs = 6670
 Wald chi2(2) = 118.07
Log likelihood = -1537.467 Prob > chi2 = 0.0000

--
 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
employed |
 female | -.4531049 .0736375 -6.15 0.000 -.5974317 -.3087782
 age | -.0877273 .0083794 -10.47 0.000 -.1041507 -.0713039
 _cons | 5.488687 .4846871 11.32 0.000 4.538718 6.438656
-------------+--
c21 |
 _cons | 1.073389 .0386209 27.79 0.000 .9976932 1.149084
-------------+--
c22 |

 22

 _cons | .1729371 .0234292 7.38 0.000 .1270167 .2188576
-------------+--
c31 |
 _cons | 1.044281 .043958 23.76 0.000 .9581245 1.130437
-------------+--
c32 |
 _cons | .1773736 .0288286 6.15 0.000 .1208705 .2338767
-------------+--
c33 |
 _cons | .1462416 .0201903 7.24 0.000 .1066694 .1858138
-------------+--
c41 |
 _cons | .9886117 .0466896 21.17 0.000 .8971018 1.080122
-------------+--
c42 |
 _cons | .1765436 .0336247 5.25 0.000 .1106404 .2424468
-------------+--
c43 |
 _cons | .1682321 .0277484 6.06 0.000 .1138461 .222618
-------------+--
c44 |
 _cons | .1135522 .0190432 5.96 0.000 .0762283 .1508762
-------------+--
c51 |
 _cons | .9701103 .0477173 20.33 0.000 .8765862 1.063634
-------------+--
c52 |
 _cons | .1569621 .0383303 4.09 0.000 .081836 .2320882
-------------+--
c53 |
 _cons | .1145818 .0341573 3.35 0.001 .0476347 .1815289
-------------+--
c54 |
 _cons | .1627055 .0317603 5.12 0.000 .1004565 .2249546
-------------+--
c55 |
 _cons | .0955757 .031963 2.99 0.003 .0329293 .1582221
--

The results indicate that employment probabilities are lower for women than men and decline
with age. The estimate of the covariance matrix of the error terms is as follows, derived by
applying nlcom in an analogous manner to before.

--
 employed | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 v21 | 1.073389 .0386209 27.79 0.000 .9976932 1.149084
 v22 | 1.18207 .0851815 13.88 0.000 1.015118 1.349023
 v31 | 1.044281 .043958 23.76 0.000 .9581245 1.130437
 v32 | 1.151593 .0809325 14.23 0.000 .9929687 1.310218
 v33 | 1.14337 .0956865 11.95 0.000 .9558277 1.330912
 v41 | .9886117 .0466896 21.17 0.000 .8971018 1.080122
 v42 | 1.091696 .0792027 13.78 0.000 .936461 1.24693
 v43 | 1.088305 .0899833 12.09 0.000 .9119406 1.264669
 v44 | 1.049717 .0977442 10.74 0.000 .8581417 1.241292
 v51 | .9701103 .0477173 20.33 0.000 .8765862 1.063634
 v52 | 1.06845 .0780511 13.69 0.000 .9154726 1.221427
 v53 | 1.057665 .0856769 12.34 0.000 .8897413 1.225588
 v54 | 1.024525 .0918157 11.16 0.000 .8445694 1.20448
 v55 | 1.014488 .0985217 10.30 0.000 .821389 1.207587
--

The estimates of the variances are close to one, which implies – given the covariance
estimates – that each correlation is also close to one. A formal test of the equicorrelation
assumptions incorporated in the random effects probit model can be implemented using test
after nlcom with the post option.

. test _b[v22] = _b[v33] = _b[v44] = _b[v55] = 1

 (1) v22 - v33 = 0
 (2) v22 - v44 = 0

 23

 (3) v22 - v55 = 0
 (4) v22 = 1

 chi2(4) = 6.21
 Prob > chi2 = 0.1841

. test _b[v21] = _b[v31] = _b[v32] = _b[v41] = _b[v42] = _b[v43] = _b[v51] = _b[v52] = _b[v53]
= _b[v54] ,
> accum

 (1) v22 - v33 = 0
 (2) v22 - v44 = 0
 (3) v22 - v55 = 0
 (4) v22 = 1
 (5) v21 - v31 = 0
 (6) v21 - v32 = 0
 (7) v21 - v41 = 0
 (8) v21 - v42 = 0
 (9) v21 - v43 = 0
 (10) v21 - v51 = 0
 (11) v21 - v52 = 0
 (12) v21 - v53 = 0
 (13) v21 - v54 = 0

 chi2(13) = 29.25
 Prob > chi2 = 0.0060

According to the first test, the null hypothesis that each error variance is equal to one cannot
be rejected. However, according to the second test, one can reject the null hypothesis of unit
variances combined with equal cross-wave correlations, i.e. the assumptions of the random
effects probit model (for which the estimated cross-wave correlation is around 0.96).

One might also investigate other hypotheses about the structure of the covariance matrix, for
example whether the estimates were consistent with some particular ARMA error structure
and implement the test in terms of the Cholesky factors using testnl. Estimation of models
that incorporate ARMA error structures is harder since e.g. ml does not currently allow
specification of nonlinear constraints (constraint define refers to linear constraints). It
would also be desirable to incorporate some genuine dynamics into the model, e.g. to have
the current quarter’s employment probability to depend on whether the individual worked last
quarter. This, in turn, raises ‘initial conditions’ issues. That is, the state in which the
respondent is first observed is endogenous and this needs to be accounted for. For a program
that estimates by MSL a dynamic probit model controlling for initial conditions and with
first-order autocorrelated errors, see redpace by Stewart (2006). Allowing for unbalanced
panels would be another useful extension.

5. Conclusions

In this article, we have extended the range of models that can be estimated in Stata. Users can
estimate many types of model by MSL and do so using less computation time than they might
otherwise have done. Although our examples have focused on estimation of multivariate and
multiperiod probit models, one can also estimate models in which some outcomes are
continuous and some are binary. Use of mdraws and mvnp() does place the responsibility on a
user to code the appropriate likelihood evaluation function, but the template code used in our
illustrations aims to make that task easier.

Effective estimation is also partly a matter of experience. Complicated models require good
starting values, and finding them may require some experimentation. We have referred, for
example, to ‘tricks’ such as starting by estimating a model with small number of draws and

 24

using estimates from this model as starting values for a model with more draws. If the
process takes a long time, then saving intermediate results to disk using utilities such as
Michael Blasnik’s estsave program (available from SSC) may prove useful.

There remain many gaps in our knowledge about the performance of MSL estimators and the
different types of draw variables. Most empirical investigations of estimator properties have
focused on mixed logit models, and it is not clear yet whether the conclusions derived in that
context also apply to the multivariate normal case. Our comparisons of multivariate probit
model estimates based on pseudo-random and Halton draws (Table 1) underline this point.
Nevertheless some promising evidence is provided by Sándor and András (2004). They
studied the performance of a number of sampling methods for estimation of multivariate
normal probabilities using the GHK simulator. Draws variables based on Halton sequences
are shown to perform better than those based on pseudo-random draws (with or without
antithetic draws). Both are dominated by other more complicated methods such as
Niederreiter sequences and those based on orthogonal arrays.

Our programs intentionally separate the tasks of creation of the draws variables from the
calculation of the multivariate normal probabilities. This modular approach means that it
should be easier to incorporate extensions and innovations. These improvements might also
take advantage of Mata. We note, for example, that after the completion of the first draft of
this paper, Mata functions for calculation of Halton sequences and multivariate normal
probabilities using the GHK simulator were made available: see halton() and ghk(),
released in the 20 January 2006 update to Stata version 9.1. These are welcome innovations,
but we would point out that our programs provide similar functionality for Stata users of
version 8.2 and later, and our use of a plugin means that calculations are also relatively fast.
Moreover, mdraws allows users to choose the prime numbers that are used to create Halton
sequences, and allocates the sequence elements to observations.

Our programs do not have to be used together in combination. For example, mdraws can be
used separately for a wide range of MSL applications. Haan and Uhlendorff (2006) use MSL
to estimate a random intercept multinomial logit model with panel data. Because the latent
outcome variables do not have a multivariate normal distribution, mvnp() is inapplicable.
However, each simulation requires a set of draws variables, and they use mdraws to derive
Halton draws.

6. Acknowledgements

This research was supported by core funding to ISER from the UK Economic and Social
Research Council and the University of Essex. The first draft of this article was written when
Jenkins visited the SOEP Group at DIW Berlin. Mark Stewart provided many helpful
comments and suggestions. The code for Halton draws is a generalization of some do file
code by Arne Uhlendorff (DIW Berlin) which, in turn, uses a program posted on Statalist by
Nick Cox (Durham University) in August 2004: see
http://www.stata.com/statalist/archive/2004-08/msg00222.html. mdraws also uses that
program, here renamed mdraws_h and modified. We are hugely indebted to Roberto
Gutierrez (StataCorp) for writing the plugin to accompany mvnp(), and to the anonymous
referee for comments.

 25

http://www.stata.com/statalist/archive/2004-08/msg00222.html

7. References

Cappellari, L. and S.P. Jenkins. 2003. Multivariate probit regression using simulated

maximum likelihood. The Stata Journal 3: 278–294.
Cappellari, L. and S.P. Jenkins. 2004. Modelling low income transitions. Journal of Applied

Econometrics 19: 593–610.
Gould, W., J. Pitblado and W. Sribney. 2006. Maximum Likelihood Estimation with Stata,

third edition. College Station TX: Stata Press.
Gourieroux, C. and A. Monfort. 1996. Simulation-Based Econometric Methods, Oxford:

Oxford University Press.
Greene, W.H., 2003. Econometric Analysis, fifth edition, Upper Saddle River NJ: Prentice-

Hall.
Haan, P. and A. Uhlendorff. 2006. Estimation of multinomial logit models with unobserved

heterogeneity using maximum simulated likelihood. Unpublished paper. Berlin: DIW
Berlin.

Hess, S. and J. Polak. 2003a. An alternative method to the scrambled Halton sequence for
removing correlation between standard Halton sequences in higher dimensions.
Paper presented at the 2003 European Regional Science Conference, Jyväskylä,
Finland. http://www.jyu.fi/ersa2003/cdrom/papers/406.pdf

Hess, S., J. Polak, and A. Daly. 2003b. On the performance of the shuffled Halton sequence
in the estimation of discrete choice models. Paper presented at the European
Transport Conference, Strasbourg.

 http://www.cts.cv.imperial.ac.uk/StaffPages/StephaneHess/papers/Hess_Polak_Daly
_ETC_oct_16.pdf

Jenkins, S.P., L. Cappellari, P. Lynn, A. Jäckle, and E. Sala. 2006 forthcoming. Patterns of
consent: evidence from a general household survey. Journal of the Royal Statistical
Society, Series A, 169. Earlier version available from
http://www.iser.essex.ac.uk/pubs/workpaps/pdf/2004-27.pdf

Sándor, Z. and P. András. 2004. Alternative sampling methods for estimating multivariate
normal probabilities. Journal of Econometrics 120: 207–234.

Stern, S. 1997. Simulation-based estimation, Journal of Economic Literature 35: 2006–2039.
Stewart, M. 2006. Maximum simulated likelihood estimation of random effects dynamics

probit models with autocorrelated errors. Unpublished paper. University of Warwick.
Train, K.E. 2003. Discrete Choice Methods with Simulation. Cambridge: Cambridge

University Press. Pre-print version available from
http://emlab.berkeley.edu/users/train/distant.html

About the authors

Lorenzo Cappellari is an associate professor at the Università Cattolica (Milano, Italy) and a
research associate of the Institute for Social and Economic Research (ISER) at the University
of Essex, Colchester, UK. Stephen Jenkins is a professor at ISER, research professor at DIW
Berlin, and an associate editor of The Stata Journal. Both authors are research associates of
IZA (Bonn) and CHILD (Turin).

 26

http://www.jyu.fi/ersa2003/cdrom/papers/406.pdf
http://www.cts.cv.imperial.ac.uk/StaffPages/StephaneHess/papers/Hess_Polak_Daly_ETC_oct_16.pdf
http://www.cts.cv.imperial.ac.uk/StaffPages/StephaneHess/papers/Hess_Polak_Daly_ETC_oct_16.pdf
http://www.iser.essex.ac.uk/pubs/workpaps/pdf/2004-27.pdf
http://emlab.berkeley.edu/users/train/distant.html

	wp-frontmatter.pdf
	CALCULATION OF MULTIVARIATE NORMAL PROBABILITIES BY SIMULATI
	ABSTRACT

