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ABSTRACT

This paper stresses the links that exist between concepts that are used in the theory of model
reduction and concepts that arise in the missing data literature. This connection motivates the
extension of the missing at random (MAR) and the missing completely at random (MCAR) concepts

from a static setting, as introduced by Rubin (1976), to the case of dynamic panel data models.

Using this extension of the MAR and MCAR definitions, we emphasize the limits of some tests and
procedures, proposed by Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and others,

to verify the ignorability of the missing data mechanism.



NON-TECHNICAL SUMMARY

The non-response problem is ignorable for a regression model of interest if we can make inference on
this model ignoring the process that causes missing data. In other words, ignorability requires that the
inference on the model of interest, neglecting the missing data generating mechanism (sample
selection process), be affected neither in terms of distortion nor efficiency. The conditions that allow
one to neglect the selection process are given in Rubin (1976) and Little and Rubin (1987) for the
cross-sectional case. In particular, these authors introduced the concepts of missing at random (MAR),

observed at random (OAR), missing completely at random (MCAR) and parameter distinctness.

The extension of MAR and MCAR to the panel data case is straightforward when the data are
independently and identically distributed across units and over time. However, while the data on
different units can generally be assumed to be independent, at least conditionally on some exogenous
variables, the repeated observations on the same unit are likely to be dependent. This is the reason for
the widespread use of dynamic regression models. In this paper, we derive the set of conditions under
which the selection process can be safely ignored when making inference on a dynamic regression
model. Our approach is triggered by ideas that arise in the theory of statistical models reduction (see

Engle, Hendry and Richard 1983; Hendry 1995).

Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed in
the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in
Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition

tests, presented in Verbeek and Nijman (1992).



1. Introduction

The non-response problem is ignorable for a regression model of interest if we can make inference on this model
ignoring the process that causes missing data. In other words, ignorability requires that the inference on the
model of interest, neglecting the missing data generating mechanism, * be affected neither in terms of distortion
nor efficiency. The conditions that allow one to neglect the selection process are given in Rubin (1976) and
Little and Rubin (1987) for the cross-sectional case. In particular, these authors introduced the concepts of
missing at random (MAR), observed at random (OAR), missing completely at random (MCAR) and parameter
distinctness.

The extension of MAR and MCAR to the panel data case is straightforward when the data are
independently and identically distributed across units and over time. However, while the data on different units
can generally be assumed to be independent, at least conditionally on some exogenous variables, the repeated
observations on the same unit are likely to be dependent. This is the reason for the widespread use of dynamic
regression models. In this paper, we derive the set of conditions under which the selection process can be safely
ignored when making inference on a dynamic regression model. Our approach is triggered by ideas that arise in
the theory of statistical models reduction (see Engle, Hendry and Richard 1983; Hendry 1995).

Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed in
the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in Little (1988),
Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition tests, presented in
Verbeek and Nijman (1992).

The paper is organized as follows: in Section 2, we give the formal definitions of MAR and MCAR; in
Section 3, we emphasize the limits of some tests for MCAR and MAR for multivariate data; and in Section 4, we

give some conclusions.

2. Definitions of MAR and MCAR

In this section, after some preliminary definitions and general notation given in Section 2.1, we define the
conditions of MAR and MCAR. These conditions must be properly redefined for different types of models of
interest. For this reason, we dedicate separate sections to define MAR and MCAR for different types of model:
Section 2.2 for marginal models; Section 2.4, for conditional models; Section 2.5 for dynamic panel models with
genera response patterns; Section 2.6 for dynamic panel models with attrition; and Section 2.7 for dynamic
panel models with explanatory variables.

Furthermore, we emphasi ze the differences between our definitions and those given by other authors. In
particular, for the cross-sectional data case, we consider the definitions of Rubin (1976), Little and Rubin (1987)
and Heitjan and Rubin (1991) (see Section 2.3); whereas, for the multivariate data case, we examine the

definitions given by Robins and various co-authors (see Section 2.8).

1 Henceforth we will call the ‘missing data generating mechanism’ more briefly ‘missing data process or ‘selection process (or
‘mechanism’).



Finally, in Section 2.9, we conclude by describing some further possible extensions of the MAR and
MCAR concepts.

2.1 General statement and notation
We begin by considering the cross-sectional data case and focus our attention on a model for the
variabley, {Y, f(y; 8), 6 6}; where Y isthe sample space, f(y; 6) is afamily of probability distributions indexed

by 6, a vector of parameters of interest, and @ is the parameter space. The variable, y, is missing if the dummy

variable r=0, and observable if r=1. Let usindicate with y™ the missing variable associated with r=0 and y°,

the observed variable associated with r=1. By analogy, let Y™ and Y° be the subspaces of Y for the missing
and observed variables, respectively. Let { YxX, f(r,y; ¢) , pe ‘P be the joint model for (r,y). Finaly, let f(rly; ¢)
be the probability that r=1 or 0, conditional on the variable y, that is, the selection mechanism or the missing
data process, where ¢ is a vector of nuisance parameters.

We define three different types of likelihood functions that we could use to make inference on the
model of interest in the presence of missing data. We write the likelihood function for a single observation, but
the extension to arandom sample of N unitsis straightforward.

Thefirst likelihood,

L, =(f(y%;0)) @
let’s say the truncated likelihood, does not take account of the missing data in the variables, as it considers only

the truncated sample of observable values.

The second likelihood function,

1-r
L=(f (y°;6))r[jf(y"‘;e)dme = [f(y:0)y", @
ym ym
let's say the censored likelihood, considers both observed and unobserved variables, but not the missing data
process.
Finally, for the third likelihood function,

L = [f(y:0)f(ry;p)ay™, €)

let's say the likelihood with informative missing data, the model of interest and the selection mechanism are
considered jointly and the missing variables are ‘integrated out’ .

In the following, we say that the selection mechanism is weakly ignorable if we can make a correct and
efficient inference based on the likelihood (1) or (2) disregarding the selection process. Whereas we say that the
selection mechanism is strongly ignorable if any type of inference can be made correctly and efficiently without

considering the selection process.

2 The definition of strong ignorability used in this paper coincides with Verbeek and Nijman (1992)'s definition, whilst the definition of
(weak) ignorability is not equivalent to their definition.



2.2 Definitions of MAR and MCAR for a marginal model of interest
Following Heitjan and Rubin (1991), likelihood-based inference on 6 can be made ignoring the data mechanism
if:

1. f(y,r; ¢) factorizesin f(y; 6) f(rly; ¢), where 8 e ¢ are variation free or, as Rubin (1976) says: [...the
parameter ¢ is distinct from 6], that is|...their joint parameter space factorizesinto a 6-space and a
¢-space],

2. yismissing a random (MAR); that is f(r | y™;¢) takes the same value for any y™ belonging to

the space of possible missing values, say, Y™, that is a subspace or the entire sample space of y, Y.

When conditions (1) and (2) are satisfied, we say that the missing data mechanism is weakly ignorable

or, more briefly, ignorable. Moreover, we say that the missing data mechanism is strongly ignorable if, besides
(1) and (2), the following condition is satisfied:

3. yisobserved at random (OAR), that is f(r|y°,y™;¢) takes the same value for any y° belonging

tothespace Y.

In accordance with the theory of model reduction, we call 1 the statistical cut assumption. When the conditions 2

and 3 are satisfied, then y and r are independent and we will denote this independence as y.Lr . Conditions 2 and

3 together congtitute MCAR. Obvioudly, it isimplicitly assumed that the model of interest, f(y; ), is the reduced

model resulting from an admissible reduction of the data generating process.

To give some indication as to whether weak ignorability indeed suffices for a correct likelihood-based inference
when the selection process is disregarded,® we note that the likelihood ratio when disregarding the selection

processis equal to the likelihood ratio when taking it into account

L @) ijf(y;eo)f(rw;mdy"’ ijf(y;eo)dy'“ L)

LE) JTre)trlyod” [fno)dy” L6)

The observed data allow the identification of the probability distribution f(y|r =1), which is not

equivalent to the marginal distribution of y°, J f(y;0)dy™ . To ensure that inferences based on f(y|r =1) and
o

J' f(y;0)dy™ be equivalent, the data must be MCAR and the variation-free condition must be satisfied. Indeed,
gm

under these conditions, the following equality is true:

P f,)f(rly;¢) o m
Jrood= | Catelnosn®

3 For amore formal proof, see Rubin (1976).



2.3 Differences among MAR definitions
The definition of MAR given here differs dightly from the definition given in Little and Rubin (1987).

Whilst we require that the selection mechanism be constant only when y™ belongs to the subspace of possible

missing values, Y™ c Y, Little and Rubin require that the probability of observing y be constant for any y™

belonging to Y. Our definition of MAR is equivalent to the enlarged definition of coarsened at random given by
Heitjan and Rubin (1991), where the definition of MAR is extended to any type of coarsened data (censored,
heaped, grouped, rounded, etc.). We present this extension of the concept of MAR in Appendix A.

Whilst Little and Rubin (1987) define MAR as the condition which ensures a correct inference based on
the truncated likelihood, we define MAR in the same way as Heitjan and Rubin (1991); i.e., as the condition

which allows a correct inference based on the censored likelihood. When the censored and truncated likelihood

functions are equal, the two definitions coincide. In particular, thisistruewhen Y™ =Y .

If the selection process is deterministic, that isif the dummy variable r conditioning on y is degenerate,
then we say that the data are MAR; in contrast, Little and Rubin (1987) say that the data are not MAR in this
case. This distinction may lead to confusion, the most notable example of which is the case of a censored
variable for which no values are observed when the variable belongs to a specific subset, Y™ < Y. This is
indeed an instance in which correct inference can be based on the censored likelihood, and the censored and
truncated likelihood functions are not equal. The latter observation is proved in Appendix B.

This observation holds more generally. Suppose we can divide the sample space into s digoint

subspaces, Y,Y,,....Y,, and suppose for every missing variable we know to which subspace it belongs,
moreover, assume that the selection processis such that Pr(r =1|ye Y;)=c;, where c, is constant within the

same subspace; then we can say that the data are MAR and that inference can be based on the censored
likelihood.

2.4 MAR and MCAR for a conditional model of interest

As remarked by Shih (1992), some authors do not explicitly mention the variation-free condition (the
condition 1 in Section 2.2). This condition is often implicitly assumed to be valid in econometric literature; in
particular, econometricians usually implicitly assume that the conditional or marginal model of interest is the
result of an admissible reduction of the data generating process.

In this section, to avoid any misunderstanding, we explicitly state all the conditions necessary to ignore
the selection mechanism when the model of interest is a conditional one.

Let us assume that we are interested in the conditional model for the variabley, given a set of variables
x belonging to the space X, {Y, f(y|x; 8), 6 6}, where Y is the sample space, f(y[x; 6) is a family of conditional
probability distributions indexed by the parameter 6, and © is the parameter space. Furthermore, let us assume
that the true data generating process is the joint model {YxXxR, f(y,xr;¢), pe®}. Then, to make a likelihood-
based inference on the conditional model of interest neglecting the selection process, that is the model
{R, f(rly,x;9), eI}, the following conditions must be satisfied:
1. thefollowing two statistical cuts must be satisfied



fly,xri0)= f(y,rpxy) f(x¢), and,
fFCy.rpw) = f(ypow) (Y. xws) ;
2. theindependence of r fromyy, given x, to ensure the MCAR condition; the independence of r from y™ given

X to ensure the MAR condition.
Again, we say that the selection mechanism is weakly ignorable if condition 1 and MAR are satisfied, while we
say that the selection mechanism is strongly ignorable if condition 1 and the MCAR are satisfied.

2.5 MAR and MCAR for a dynamic panel data model

Panel data are congtituted by a sample of units followed over time and they are often used to estimate
dynamic models. Dynamic models are those in which the dependent variable is explained by its past and/or the
present and past of other variables. In the following, we will consider a generic panel composed of N units
followed for T consecutive waves.

As aready mentioned, in the case of a random sample of N units observed at a single occasion (T=1),

the definitions of MAR and MCAR stated in Section 2.2 apply. Indeed, (y,,r,) areidentically and independently

distributed (i.i.d.), and the joint likelihood factorizes into the product of N identical likelihood,

N
f(y1 N VIR A o8 ;qo)= I1f (y,,r;9). Thisis no longer true when the variables observed at consecutive time
1=1

periods, for a specific unit, are not independent.

The definition of weak and strong ignorability can be easily extended to the case of a panel, considering

ajoint model for yiT'1 . Condition 1 in Section 2.2 is substituted by a condition of initial cut:

vt Trhie)= Hy et viie)
where y{, isthe vector of the variables y;, for thei-th unit and for t=1,...,T, while r,'; is the vector associated
with the response pattern of the i-th unit, that is the vector of the dummies r,  , taking value 1 when the variable

Y, isobserved, and O otherwise.
Conditions 2 and 3 are replaced by the equivalent assumptions:

2t lyeyme) = fiyeo).

3. f(riTl yiolyim;¢) = f(riT1;¢)'

where y{}' is the sub-vector of the missing variables and y?; is the one of observable variables of the vector

YF,l-
The variables observed for a unit are likely to be dependent from their past; that is, the factorization

T
f(y{l,riTl;(p):Hf(yivt,riyt;(p) is not vaid and we have to use the sequential factorization
t=1



( e ) ]l[f(y,t,r,t|y,l, ris ,q0)4 In other words we assume that (y,l, Il|y,1, ,1) be identically and

t=1

independently distributed across units and time. In this case, a more appropriate model of interest is a dynamic

one, which tries to explain y as a function of its past, f (y, l|yI P ) Then it is useful to restate the conditions 1,

2" and 3'in terms of sequential models.

Condition 1’ requires that:
al. the sequential cut,

Hf(y.“ ffyiritie)= Hf(y.t|r.1 ,y.l,H)Hf(r.Jr.l Vi)

must be applicable;

a2. r does not Granger causey, that is,
v it yiie)= 1l yise)
Further conditions that 2’ and 3’ require are:
b. f ( : l|rI AN )= f (rivt|ritf;¢)) or rith_yi‘vl|riff;¢)
The condition b can be broken down into two parts:

bl rltJ‘y |r|1 y|1!¢!

b2. 1, Ly’

In the case of dynamic panel data, bl is the sequentia MAR condition, b2 is the sequentia OAR
condition, while b is the sequential MCAR assumption. The conditions al, a2 and bl ensure that the missing

data mechanism is weakly ignorable for the maximum likelihood estimation of f(y,t|y,1, ) while the

conditions al, a2, b1 and b2 ensure strong ignorability in any inference.
If we consider a maximum likelihood that completely eliminates the units for which there is a wave non-
response, the weak ignorability is no longer a sufficient condition and we need the MCAR condition, as for any

other type of inference (such as the sampling distribution inference).

2.6 MAR and MCAR conditions in a dynamic panel model with attrition
In this section, we present a proposition which gives a set of necessary and sufficient conditions for the

weak ignorability of the selection mechanism; that is, for the conditions 1’ and 2', in the case of attrition.

4 To simplify notation in the sequential models, we implicitly condition on the set of initial conditions.



Proposition Let (y,t, It|y,t11, ,‘11) bei.i.d. across units and time, and let f( Il,riT1;¢)=ll[f(y.t, .1|yfll, .t11,¢)

t=1

be the associated data generating process. Let y,, be observed when r;, takes value 1, and missing when

r.. =0. Further, whenever r,, =0, let r, ;=0 for any s>t.

Then, if the condition a2 (r does not Granger cause) istrue, a set of hecessary and sufficient conditions for the
weak ignorability of the selection mechanismis:

al. it must be possible to operate a sequential cut

Hf(y.t, oy ne)= Hf(y.t|r.1 ,y.lﬂ)l'[f(.t|r.1 Vio)

cl. r|tJ-y|t|r|1 yll'

Proof
First, we prove that al and c1 are sufficient conditionsto ensure 1’ and 2', that is, weak ignorability.

Applying the condition of Granger non-causality to the factorization al, we obtain:

f( iT,l'riTl;(o)= H f(yi,t'ri,t|yilillril,11;(0)=
(y|t|y| 9)1_[ f(rlt|r|1 Yiad ) Q)f(riT1|yI1;¢),

s0 that al and a2 ensure theinitial cut, 1.

Let us assume that a unit, i, drops out at d-th wave, and let us rewrite the model as the product of three factors:
f( Il'riTl;(0)= L-L L,

where

L1 :|:d_l f(ylt

t=1

L2=[ flyr,

In a likelihood-based inference on the parameter 6, we must eliminate the unobserved variables through the

ol b il

i 9) f(ri,d|r Ly yrfd:¢):|,L3=|:]l[ f(yIt

t=d+1

Yo ym o frit vy 1,yi”,‘at:¢)]-

integration fromthe likelihood, f (yIl,riTl;(p), in the following way:

JEhTroky =L L Ly

Thefactor L, does not depend on unobserved variables, so it can be taken out of the integral sign.

Since we have assumed that (y,t, It|y,t11, ,‘11) arei.i.d., and that f(,l|rI1 ,y,l,qb) has the same distribution form

ot-1

for each t, then the condition c1, r,tJ_y,l|rIl JYi1, is equivalent to r,tJ_y,l|rIl Yi1 . SO that the factor,

(r, d|rI LYy d,q)) (r, d|rI Ly 1,¢), can be taken out of the integral sign too.



For any t>d, (ri,l|ri,d =O) is independent of any variable because if r, , = 0, then Pr(r,, =0|ri'd =0)=1and r;,

becomes degenerate. If r,, =0, then f(,t|r,1,yfldl,yffa‘;qj):l, consequently the selection mechanism,

( It|rI Syt ;q)), cancels out of the likelihood for any t>d.

The integrated likelihood becomes:

J. f(yIl'riTl;(p)jyﬂ'T = I-1 ’ (rl d|r| 1 ’ylold 1'¢) Jll[ (ylt

t=

vy 9) dyy -

yoty ¢9)dyi“];T =1, we can rewrite this as:

|:d1 f (yio,l

.
Since [T f (y, "
t=d

t=1

y?ltl’e)} |:Hf(|t|r|l 1y|l’ )} (rld|rll !yloil(.j 11¢)'
Given that 6 e ¢ are variation free, we can make inference on the parameter 6 ignoring the selection

d-1
mechanism, that is considering the likelihood for the observable variables: T f (yﬁt v 9) .
t=1

In this way, we have also proved that the condition 2’ istrue:

tlyeymo)= Hf(r.tIr.l,y.l, J=TT it viisg) = 1,

t=1

o10)

In the following, we prove that al and c1 are necessary conditions to ensure 1’ and 2. We begin by proving that
when theinitial cut 1' operates and condition a2 holds, then al istrue.

Using condition 1’, we can state that:
f(y?—,l'riTl;(D): f (yiTl;e)f (riT1|yi uo ) H f (y|t|y 9)1_[ f ( i t|r| Y9 )
Since condition a2 may be restated as r,, Ly, |r

(Il’ll‘ Hf(ylt|yll'6)nf(|t|r|1ay.ll )a

1yt we can rewrite the joint likelihood as:

so that f(riT1|yi1 ) Hf(|t|r|1 Yine )and the sequential cut al operate.
The equality, f(riT1|yi1, ) Hf(,l|r Yo ) and condition 2' imply that:

f(riT1|yi1 ) Hf(|t|r|1 y|1¢)

(y,t, It|y,t11, ,‘11) are i.i.d. across units and time; hence f(.1|r.1 ,y,lqb) maintains a common form for any t.

Since for t>d, (rivt|ri'd =0) is a degenerate variable independent of the past value of y, and for t=d, the

sequential selection model does not depend on the value of y at timet, the last equality prove that c1 is satisfied.

5 For a proof of this last equivalence, see Florens and Mouchart (1982).



The theorem states that, in the case of dynamic panel data with attrition, the condition y does not

Granger cause, r, r,,Ly';'[r';", is neither necessary nor sufficient condition for the MAR assumption. This

Granger non-causality is instead a necessary but not sufficient condition for MCAR. The theorem also proves

that the sequential MAR condition is given by (c1) r, tJ_y,l|r Y 1 , in the case of the problem of attrition. In

other words, in the case of attrition, the conditions (al), (b1) and (c1) ensure a correct likelihood-based inference
on the dynamic model of interest, i.e. the weak ignorability.
It is easy to prove that the strong ignorability for a dynamic panel model with attrition requires the

sequential MCAR condition, r, Ly} ,|r;* , instead of the sequential MAR one.

2.7 MAR and MCAR conditions in a dynamic panel model with explanatory variables
The definitions of MAR and MCAR can be easily modified to cover conditiona models of the

form, f(y;, |xi‘1,yI 1,6) , where explanatory variables x are added to the dynamic panel model.
Let f(yi,t|xi1!y|1!0) be the mOdeI Of Intereﬁ Iet f( i1 |1' |1' ) Hf(yll’ |t' |y|t11' |t11' |t11' )

be the associated data generating process and let the missing data problem be narrowed down to the attrition
problem; then, it is easy to prove that weak ignorability requires the following conditions:
dl1. the weak exogeneity of x, that is

T btomox yini )=
—Hf(ym Ay wcvl)l'[f(mlx}f, y'e)
d2. the sequential cut
H Yyt X )=
T £ty X 1l sy dtao)

d3. the Granger non-causality
L Vre
d4. the sequential MAR condition
AN ViR
In the case of a conditional dynamic panel model with general response patterns, the weak irrelevance is

t

more stringent: d4 must be replaced by the sequential MAR r, . Ly™'|r'/*,y?, X, and the following additional

condition is required:

ot-1

d5 XItJ-ymtl |1' |1'y|1

Strong ignorability for a conditional dynamic panel model requires the conditions d1-d3 and d5, and the
following additional conditions:
dé. the sequential MCAR



rl tJ‘yI 1|r| 1 ' i, 1' and
d7 XIlJ‘yIOI 1|r|1 1 |t11 "
We emphasize that the weak and strong ignorability for the joint model, f (y{1|xI1;6), is not equivalent

to the weak and strong ignorability for the sequential model, f(yi,t|xi1,y,1, ). In the former case the

ignorability requires the following conditions:

D1. two initia cuts

FT o) = T )f (e,),

Yoo )= FTfxT o)y xig), and

° XT,:¢) to ensure weak ignorability, or

D2. the MAR condition f(riT1 0 yi"‘,xIl;(z)) = f(riT1

D3. the MCAR condition f(riT1 0 y?“,x{l;qb) = f(riT1|xI1;¢) to ensure strong ignorability.

The equivalence between the ignorability defined for the joint model and for the sequential model is
true only if x is strongly exogenous for the parameters of the dynamic model of interest. We use the definition of
strong exogeneity introduced by Engle et al. (1983); that is, (y,r) does not Granger cause X, and x is weakly
exogenous for the parameter of interest. Therefore, the strong exogeneity of x includes the condition d1, d5 and
ar.

We remark that if the model, f (y; t|xI 1Yi1:6) , is used to forecast y given the value of x, then we need
the strong exogeneity of x. For example, this is the case in causal inference, when the counterfactual response
yt is forecasted conditioning on (x;,,y;;") to assessthe average effect of atreatment. In this case, 1, isequal

to 1 if aperson istreated in the time period t, and O otherwise. In causal inference, we should be aware that any

conditioning variable, x, should be strongly exogenous. In other words, the Granger non-causality condition,
f(x t|X| 1 y|t11 r|t11) =f(x, |Xit,_11

must be satisfied.

2.8 The MAR condition according to Robins et al.
Robins and several different co-authors (Robins, Rotnitzky and Zhao 1995, Gill and Robins 1997,
Robins and Gill 1997) have given definitions of MAR and MCAR for multivariate data in papers. In this section,

we present these definitions and outline their differences from ours.

The definition of MAR for monotone response patterns in Robins and Gill (1997) and Robins,
Rotnitzky and Zhao (1995) are both equivalent to the sequential MAR definition given in Section 2.6 for the

attrition case, r, Ly, t|r 1Y 11 The k-sequential coarsening at random (denoted briefly by ‘k-sequential CAR’)

definition, given by Gill and Robins (1997) and adapted for the attrition case, is again equal to the sequential
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MAR. In Appendix C, we prove this claim and we present the definitions of a k-sequentia coarsening and of k-
sequential CAR given by Gill and Robins (1997).

We remark that these definitions are not sufficient to ensure a correct likelihood-based inference on the

parameters of the conditional model, f (yi 1 |y}f11;9). Two additional conditions are necessary: the sequential cut

(al) and the Granger non-causality (a2), YtJ_ri‘Y11|y}"11 :
Moreover, we emphasize that the above MAR conditions defined for the sequentia model

f(ri ¢ |yi"1,rif11), which we call sequential MAR conditions, and the MAR condition for the multivariate model

f (riT1|yI1), are not equivalent. As amatter of fact, Robins and Gill find examples in which the sequential MAR

condition does not ensure the MAR one. In borrowing from model reduction theory, it is possible to define
conditions such that the sequential MAR condition is equivalent to the MAR condition for the joint model
defined for T consecutive periods. What is missing in the work of Robins et al. is that the MAR condition is not
enough to ensure the weak ignorability condition; indeed, the initial cut in 1’ must also be satisfied. In terms of
conditions on the sequential models, the initial cut is satisfied if and only if the sequential cut (al) and the
Granger non-causality (a2) are satisfied (see Engle et al. 1983). This is the reason why the sequential MAR
definition does not ensure the MAR condition in any situation. Model reduction theory alows us to prove that
when theinitial cut in 1’ is satisfied (or the sequential cut in al) and the Granger non-causality in a2 are satisfied,
then the sequential MAR and the MAR concepts are equivalent.

When the response pattern is not monotone, following the suggestion given in Robins, Rotnitzky and

Zhao (1995), we can decide to make inference using only the sub-vector of consecutive observed variables and

discharge al the observations after the first non-response. So, for example, if rifl =(1110101), then we use

only the observations on the variable of interest, say y, for the first 3 waves. Let s, =1 (ri“1 =1), wherel(.) isa
dummy variable, taking value 1 if the event between brackets is true and 0 otherwise; then we can artificially
assumethat v, isobserved when s, =1, and missing otherwise. In this way, the response pattern is artificially
monotone and the above definition of sequential MAR applies. As remarked by Robins, Rotnitzky and Zhao

(1995), this a good expedient that allows us to make a correct likelihood-inference based on the sub-sample of

monotone response patterns when s Ly, |S-‘f11,yi‘f11. In any case, this method does not use all the information

available, and is therefore inefficient.
Robins, Rotnitzky and Zhao (1995) show that if we want to use all the information, we should impose

an additional condition to ensure MAR. This additional conditionis:
Pr(ri,t = ()|3/i?it_11 i yiTt+1): Pr(ri,t =0
We emphasi ze that the above additional condition can be rewritten as the following two conditions:

(1) ri ,tJ-y;r,Hl

ot-1 .t-1
Yia hia )

t-1

riihyis s or equivalenty, v, Lry i

ot-1 ,.t-1

) ri,tJ-yin,zl’_tilyi,l g
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Condition (1) is the Granger non-causality condition (a2 in Section 2.5), which is a necessary condition to ensure
weak ignorability, even in the case of monotone response. Condition (2), together with r; Ly, rile,y}fll, is

equivalent to the sequential MAR condition given in Section 2.5.

As proved in Appendix C, in the case of the non-monotone response pattern, the k-sequential CAR in
Gill and Robins (1997) is different from both our definition of MAR and the one given by Robins, Rotnitzky and
Zhao (1995).

In conclusion, the definitions of sequential MAR are not equivalent in the different papers of Robins
and co-authors. Borrowing from reduction model theory we have clarified what is missing in the definitions by
Robins et al. for the special case of panel data, i.e. for the case in which there is a sequentia order for the

observations on the same units.

2.9 Further extensions of the MAR and MCAR conditions

The concepts of Granger causality, sequential cut, and strong and weak exogeneity are meaningful when
working with time series analysis. In the previous sections, we have shown that these concepts are very useful for
panel data too, which can be viewed as a set of time series. In particular, we have shown their usefulness in
extending the definitions of MAR and MCAR from cross-sectional data to panel data. By analogy, the same
extension applies to the definitions of coarsening at random given in Heitjan and Rubin (1991) and described in
Appendix A.

The same type of extension can be useful in causal inference when the treatments or risk exposures, the
effects of which are to be evaluated, are time varying. In particular, this extension is helpful in disentangling
some of the misunderstandings between Holland and Granger (see Holland 1986). Holland's (1986) attempt to
use the definition of Granger causality in causal inference is misleading because he considers the evaluation of
the effect of a treatment lasting in a single period. Granger causality is only meaningful when there are repeated
observations across time and when attention is focused on a sequential model conditioning to past information,
(see Granger 1986). | agree instead with Holland (1986) when, in his reply to Granger, he explains how the
application of Rubin’'s moddl is not limited to cross-sectional data but may be extended to situations in which
there are time series data for each unit or the so-called panel or longitudinal data.

As Holland (1986) remarks, in the 1980s, there were no applications of causal inference to longitudinal
data, but now there are numerous examples of such studies (see, for example Robins, Greenland and Hu 1999).
In these applications, the Granger causality concept is useful to help understand which conditions are necessary
to make a correct causal inference and to clarify the difference between the causal concepts developed by

Granger and Rubin.

3. Limits of Some Tests for MAR and MCAR in Longitudinal Data

Both the MAR and MCAR conditions require that the selection mechanism does not depend on
unobserved variables. Clearly it is hard to verify dependence on unobserved variables whose values are
unknown. Tests for the MAR or the MCAR conditions that verify restrictions on the parameters of the model of
interest ignoring the selection mechanism, or, vice versa, on the parameters of the selection mechanism
disregarding the model of interest, fail the objective, at least partially.
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In this section, we outline the limitations of the procedures proposed by Little (1988), Diggle (1989),
Park and Davis (1993) and Taris (1996, 1997) in detecting the selection problem. These procedures are only
able to detect the MCAR conditions in part, and they cannot check the MAR assumption. These procedures
investigate the dependence of the selection mechanism on the observed variables, but they cannot control for the

selectivity caused by the dependence of the sel ection mechanism on missing variables.

3.1 Limits of the Little and Park-Davis tests
The Little (1988) and Park and Davis (1993) tests are based on a common idea: to divide units into

groups according to the missing (response) pattern, (riTl ),® and to estimate the model of interest for each group

separately, then to test the MCAR condition by verifying if the estimated parameters of the models, associated
with each missing pattern, are different. Little considers the normal probability distribution for a continuous
variable, y, subjected to non-response, and tests the MCAR assumption by alikelihood ratio test. Park and Davis
consider the distribution of a discrete variable, y, conditional on a set of explanatory variables, and use a Wald
test, instead of alikelihood ratio test, to verify the MCAR. Both tests verify a condition that is only necessary but
not sufficient to guarantee the MCAR assumption. Suppose that T different repeated values are observed for the

unit, i, for the variable, y, y/,, then the Little test verifiesif y; Lr",,|r',y9"™, while the Park and Davis test

(o)t= 1

verifiesif yi Lr I,y 9 X!, where X, are variablesthat are always observed.

The null hypothesis used in both tests is inadequate. The reason for this inadequacy is more evident
when the missing data problem is limited to the attrition problem. Let y be a variable that we observe on N units

repeatedly in time, up to the drop out of the unit from the panel or up to T, the last wave of the panel. Little
(1988) assumes that, under MCAR, y/, is distributed as N(x,%), no matter what the response pattern, r/',, is.

Then, Little (1988) tests MCAR verifying if the sub-vector of the observed variables is distributed as a

multivariate normal with mean equal to the corresponding sub-vector of x4 and sub-matrix of X, of the
multivariate normal distribution for y/,. In the case of attrition, the sub-vector of observed variables for a
generic unit dropping out after t periods is y;, and we denote with 1® and £ the mean vector and the

variance matrix corresponding to the sub-vector of first t elements of , and to the txt principal sub-matrix of X.

m
Let m be the number of units that drop out of the panel at period (t+1), let y© = - Zy‘jvl, and let 2 be
=1

equal to the sub-vector of the first t elements of the maximum likelihood estimator of g, then the Little test

;
statistic equals T, =Y m(y"® - aVy=O*y"® - 4©V). Little asserts that under the MCAR assumption, T, is
t=1

distributed as a Chi-square, with Txgr'l)

degrees of freedom. This assertion is true; however, the same

distribution remains valid under the weaker assumption that y, .Lr",lyi 7 .

8 For example, for a panel of T waves there are 2 possible response patterns and therefore 2 corresponding groups in which a unit may
belong.
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Little's test cannot verify if an observable variable, y;,, given its past values, is independent from r'; ;
in fact, if y;, isobservable, r/, isaways equal to the vector of ones. In other words, Little’s test cannot verify

the MAR condition, ;. Lr';ly;", but can only check the condition, ;L.

yi1.r1 . We can prove that the last

condition is equivalent to the hypothesis that y does not Granger causer, ritly§j11|r:;1 . In conclusion, the Little

test verifies a condition that is necessary but not sufficient for MCAR, and that is neither necessary nor sufficient
for the MAR assumption (see Section 2).

The same comments apply to the Park and Davis test, if we change the above conditional independence
hypothesis by adding a set of explanatory variables, X, among the conditioning variables, and consider a discrete
distribution for the variable .

An equivalent reasoning is valid when the missing problem is more general than the attrition problem.

(o)t-1

The true null hypothesis of the Little test is y; .Lr"..|r';,y Q"™ or equivalently r, LyQ**Ir';*; again, thisis a

condition that is necessary but not sufficient for MCAR.

3.2 Limits of the Diggle test
Diggle (1989) has proposed a class of tests to verify if the attrition in a panel survey occurs at random.
Given a panel with T waves, the units can be observed for a number of consecutive periods ranging from 1 to T.

The tests proposed by Diggle verify if units that dropout at the (t+ 1)-th wave represent a random sample of units
that drop out after the (t+1) or more waves. He introduces a score function of the observed past variables y;, ,
h( y}vl ), that should be linked to the probability of drop out, and tests if the score functions for the units dropping

out after (t+1) times are a random sample from the set of scores for units that drop out in the (t+1)th wave or
later. A possible test used to verify thisis a Kolmogorov-Smirnov statistic test.

In other words, Diggle (1989) verifies whether the distribution of {h(y!,)|ri, =11, ., =1} is equal to
the distribution of {h(yitv1 Mrii=1r,= O}; that is, whether the condition {h(yitv1 )Lr Iy :1} holds. Let us
assume that the function h is such that {yi‘,lJ_ri,H1 It =1,h(y;, )}; that is, h is, given the past information of r, a
balancing score, as defined by Rosenbaum and Rubin (1983). In this case, testing {h(yi‘y1 )L |rfy1 :1} is

equivalent to testing {yi“lJ_ri wlri= 1}; that is the condition that y does not Granger cause r, which is not the
MAR condition.

Diggle suggests choosing a function h that reflects the probability that r;,,, =1 asafunction of y/, ; that
is, he implicitly suggests using the propensity score, Pr(r, ., :1|yi“1 , rifl =1). As proven by Rosenbaum and

Rubin (1983), the propensity score is the coarsest balancing score; in other words, any other balancing scoreis a

function of the propensity score.

" For aformal proof, see Florens and Mouchart (1982).
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In conclusion, the Diggle test verifies the Granger non-causality condition, {yf,lJ_ri'Hllrifl:l}.

However, it is not able to verify if {rimJ_yi‘t+1 M= 1,yi"1}, and so it is not a test for the MAR or, as defined by

Diggle, for random dropouts.

3.3 Limits of the Taris test
Let Pr(r, ., =0|r, =1, Xi,,y;,) be the probability to drop out at a specific wave, t, for a generic unit, i,

conditioning on its permanence in the panel until wave (t-1) and on a set of explanatory variables. Let 7 be the

time of permanence of a unit in the panel; then we can rewrite the above probability as:
Pr(z, =t|7, >t-1,%; ,Yi ),
which is a discrete hazard function. If the data are MCAR, then the hazard function should depend neither on
observed variables nor on unobserved ones, and should be constant across waves; that is:
Pr(z; =t|7, >t-1,X{ ,Y{,)=C.

A very interesting result for the hazard function is stated by the “lemma’ of movers and stayers, which
states that when the distribution of a duration T, conditional on a set of variables x, is exponential with a
parameter A(x), a function of x, and x follows any distribution for which the first derivative exists, then the non-
conditional hazard function of T, marginalized with respect to X, is time decreasing (see Lancaster 1990). This
means that a negative time dependence of the hazard function may be caused by the omission of relevant
explanatory variables. Therefore it is necessary to distinguish between spurious and true time dependence.

Under the assumption that there is no true time dependence, a decreasing hazard function implies that
data are not MCAR, while a constant hazard implies that we would not reject the MCAR condition.

Thisis the idea developed by Taris (1996, 1997), who says that '...a decreasing non-response for every
successive wave indicates that non-response is selective to a degree.’ Taris's idea is very useful to verify the
MCAR condition. Taris also explains that it is possible to control for observed variables by trying to identify
different groups of the population for which the hazard function is constant. In this case we would say that data
are MAR but not MCAR. Taris does not use the conditional duration model approach in which variables enter as
explanatories; rather he uses the Markov chains approach (the simple first order Markov chain, the mixed
Markov chain and the mover-stayer model).

We think that the conditional duration model approach can be useful to detect the MAR condition. A
conditional duration model is more general then a Markov chain model because it allows for time non-
homogeneity, and it may be very useful in distinguishing between observed and unobserved heterogeneity
causing the spurious time dependence.

If, after controlling for all observed variables in the hazard model, there is still a time dependence, then
we should conclude that the data are neither MAR nor MCAR; whereas in the absence of time dependence, we
cannot reject that data are MAR. If, without controlling for any explanatory variables, there is time
independence, then we cannot reject the MCAR assumption.

Obvioudly we should not exclude a priori the assumption that the hazard function may be the result of a

mixture of different hazard functions for different populations, asin the mixed Markov chain.
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In conclusion, the Taris idea of verifying the MCAR and MAR conditions by checking the time
dependence is very useful, but its validity is based on the assumption that the hazard function has no true time
dependence. This assumption may not be true. Indeed, there may be a conditioning problem in the behavior of
the person. For example, if a person is always contacted by the same interviewer, it may be that the propensity to
drop out decreases from one wave to another. Furthermore, in testing the MAR condition, a misspecification of

the sel ection mechanism can distort the results.

3.4 Limits of the variable addition test

Another type of test that has been suggested to verify the relevance of the selection mechanism is the
variable addition test. This is a simple test that verifies the influence of variables associated with the non-
response patterns on the regression model of interest. These variables are added to the regression model of
interest as explanatory variables. If these added variables are not significant, then the selection mechanism is
considered ignorable.

One should be careful in choosing the additional variables. In the case of the attrition problem, it is

uselessto add r,, , to aregresson equation at the time t containing also a constant; in fact, r;,, aways takes

T
value 1. If there are time effects in the regression, it is also inappropriate to use z g -
t=1

The MAR condition y, . Lr;[xi,,yi;" isimpossible to verify, because we only have information on y; ,

when 1, =1. We are only able to verify if vy, Lr,,[x .y r =1, that is, if r, Ly}] |x,1,yf11, riit =1, which

is not sufficient to ensure the MCAR and MAR conditions.

Verbeek and Nijman (1992) presented the results of a Monte-Carlo analysis of the properties of the
variable addition tests and found that in some cases, the variable addition tests have no power. In particular,
when they used the following model of interest and missing data mechanism for the simulation experiment:

Yit =Xi,tﬂ+ai +E&s (1)
Pr(r, =1 = Pr(rift >0)=Pr(y, + 7%, +& +m,>0), ©
where ¢, and 7, are error terms i.i.d. with mean zero, V(g,,) =07, V(1) =0, and Cov(g ,7,,) =0, ,,;

o, and & are random effects i.i.d. with mean zeros, V(o;)=02, V(&)= 0'5 , Cov(¢,§)=0,, and
T T

o} + 0, =1, then, they found that each of the following variables, ', , Hr, o T4 » added to equation (1) were
t=1 t=1

not significant.

In the following we prove that the additional variable tests proposed by Verbeek and Njiman (1992) are
adequate to check departure from MAR caused by a correlation between the random effects in the two equations,
while they are not adequate to check departure caused by the correlation between the error terms. Since Verbeek
and Nijman (1992) do not allow for a severe selection bias caused by the correlation between random effects, the
little power of the additional variable tests follows. In the reference experiment situation in Verbeek and Nijman

(1992), the correlation between & and 7 is 0.5, but the importance of the random effects in both equations is too
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low, the ratios o, /(0 +02) and o/(o;+07) are 0.1, so that the resulting selection bias is not severe and the

power of the testsis small.
To prove that the additional variable tests proposed in Verbeek and Nijman (1992) cannot be used to
verify departure from the MAR caused by correlation between error terms, we consider the case of a null

correlation between the random effects in the equations (1) and (2). If the correlation between random effects is

0, then the following independence conditions hold: yi‘tJ_ri‘;l|xfyl,y}"11 and riytJ_y}"11|x}'1,ri‘vf (that is,

Y LrLaX: Ly 7). By consequence, the equation (1) is not affected by r;*and r/',,, , but only by r;, . Obviously

the dependence between y,, and r;, cannot be verified because we observe y, , only when r; =1.

The above authors have carried out the same simulation exercise for the quasi-Hausman test (a test
which verifies if the model coefficients for the balanced and unbalanced panels are equal) and have found that
the power is better but non-satisfactory. Thisis again a consequence of the fact that, ignoring the random effects

t
i

because of their little importance, yith_rff|x Lyirand y Ll

Xi,,yi1, sothat

F Oyt =0=f (Y xyitn =9,
and the balanced and unbalanced panels give the same results.
When instead, the authors simulated the following model for the missing data mechanism:
Pr(r., =1) = Pr(r’, > 0) =Pr(y, + 7% +& +1,, > 0), 3
the power of the variable addition tests and of the quasi-Hausman tests increased. This is not surprising since in

this case, X is not strictly exogenous for the parameters of model (1) and yi,lJ_riTH1

Xi,,yi1. This means that
variables that are linked to the future response path riTM affect the model (1). The results of Verbeek and

T T
Nijman (1992) support this claim; in fact, the power of the tests obtained by adding the variables Z ., e H Mt

t=1 t=1

is good, while the power is very small when the variable r, _; isadded.

The same type of reasoning implies that the quasi-Hausman tests are more powerful when model (3) is
used for simulation instead of model (2), and the results again support our conclusion.

Finally, Verbeek and Nijman (1992) also computed the power for the Lagrange multiplier test and
found that it is good in both simulations. In fact, the Lagrange multiplier test is the only one of the three tests
used that correctly takes account of the joint specification of the model of interest and selection mechanism.

It seems that the simulation results obtained by Verbeek and Nijman (1992) are in support of the
observation that tests trying to verify the ignorability of the selection mechanism without jointly specifying the
model of interest and selection mechanism can be misleading. As these tests under-reject the null hypothesis of

ignorability, their usefulness in the detection of the selection problem is questionable.

3. Conclusions

Rubin (1986) proves that in order to make correct likelihood-based inference, we need two conditions:

the MAR condition and the variation-free condition for the parameters of the model of interest and the selection
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mechanism. In this paper, we have defined the weak ignorability of the selection mechanism as the set of
conditions necessary and sufficient to make correct and efficient inference based on the likelihood function.
Using the terminology of model reduction theory, we have shown that weak ignorability is satisfied if the model
of interest and selection mechanism operate a statistical cut, and if the MAR condition is true. In borrowing from
model reduction theory, we have extended the definitions of weak ignorability to the panel data case. Two
definitions of weak ignorability may be given: onein terms of ajoint model of interest, defined for T consecutive
waves, and another in terms of a sequential model, corresponding to a dynamic model of interest and defined for
a single time period. We have proved that weak ignorability for a joint model of interest requires a MAR
condition and an initial cut, whereas weak ignorability for a dynamic model requires a sequentia cut, a Granger
non-causality condition and a sequential MAR condition. Moreover, we have shown that, if the model of interest
is conditional on a set of explanatory variables, then some additional conditions are necessary. Substituting
MAR with MCAR in the definition of weak ignorability, we have obtained the strong ignorability definition,
which is the condition ensuring a correct inference for any type of inference methodol ogy.

The extension of weak and strong ignorahility to the case of dynamic panel models has allowed us to
emphasize the failure of some tests proposed in the literature to verify the MAR and/or the MCAR conditions.
Indeed, we have proved that the null hypothesis of some tests is given by an assumption that is not necessary for
MAR and which is necessary but not sufficient for MCAR.

Furthermore, the formal definition of weak and strong ignorability has helped us to emphasize some of
the limitations of the MAR and MCAR definitions given by Robins and co-authors, and to disentangle some of
the misunderstandings that occurred between Holland and Granger concerning the concept of causality in the

causal inference.
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Appendix A: Definition of CAR following Heitjan and Rubin (1991)

Heitjan and Rubin (1991) consider a general coarsening mechanism f(rly; ), in which r is a variable
indicating the level of coarsening. For example, if there isonly alevel of coarsening r, is a dummy variable and
we assume that y is coarsened if r=0 and perfectly observable if r=1. When r=0 we have a piece of information
about y that is not precise. For example, in the case of missing data, y is not observable; in grouped data, y is

known to belong to a sub-space of its domain; in right censored duration data, y belong to (c,~) where c isthe
censor value. In general coarsened data occur when we do not know the exact value of y, but we know that y
belongs to a sub-space of Y. Let y be the coarse variable, which defines the sub-space to which y belong, then
y=ywhen r=1 and Ye Bc Y if r=0. In the case of missing data B=Y™ and it is often equal to the entire

space Y .

More generally, r may be a continuous variable, with a sample space given by R, that determines the
coarsening mechanism, so that y can be expressed as a function of y and the variable r, y =\7(y,r). The

distribution function of r giveny, f(rly; @), is the process that determines the level of precision in measuring y. In
the case of missing data the coarsening mechanism is a selection process or missing data mechanism, in the
grouped datait is a grouping mechanism, in the causal inference it is an assignment process, and so on.

The definition of coarsening at random (CAR) given by Heitjan and Rubin (1991), that generalizes the

missing at random (MAR) given by Rubin (1976), is the following one: y is coarsened at random if, for each
fixed value ¥, f(rly; ¢) takes the same value for all ye §=Y (y,r) .

The MAR definition (1) given in Section 2 is equal to the MAR given in Heitjan and Rubin (1991). In
fact wheny is observed, Y is not aninterva but a point, so the requirement that f(rly; ¢) takes the same value for

dlye y :V(y, r) isaways satisfied. Therefore the Heitjan and Rubin (1991) MAR definition reduces to require

that f(rly; ¢) takes the same valuefor al y™e Y™, that is the definition of MAR in Section 2.
The CAR condition together to the variation free condition ensure that the censored likelihood, L, and
the likelihood with informative missing data, L, , are equal. Indeed the two likelihood functions are respectively

given by the following expressions:
1-r
L= [ f(y:6)dy=(* (y°;9))r( [f (y”‘:é’)dy’“J , 0
y yn

and

L =[[f(y.r:6.0) £ (¥ Iy.rpirdy= [ £ (y:O)] £ (F1y.r) £ (r | y:g)crely =
y y (2)
=[fO) (T Iy:o)dy,
y

where the integration is respect to the underlying dominating measure, a Lebesgue measure or a counting

measure, and f (Y |y,r) isthe conditional degenerate distribution of y giveny and r
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1if ¥=Y(y,r)

f(yly’r)={o it §£Y(yr)

Under CAR f(rly;¢) takes the same value for any ye )7=\7(y,r) So]

.[f('yly,r)f(rly;(z))dr:f(')7|y;¢) is a constant, say ¢, for any yey and we can rewrite (2)

as[aj' f(y; H)dy} that is proportional to the likelihood (1). The proportionality between (1) and (2) under CAR
v

ensures that inference on 6 based on the censored likelihood or on the likelihood with informative missing datais

equal.
Sometimes r is unknown. An example is given by the case of a survey in which some units give a

rounded response and some other give the exact value, but we cannot distinguish between the two types of units.

When r is unknown, the definition of coarsened at random is: y is coarsened at random if, for each fixed value
y, f(?|y;¢):J'f()7|y,r)f(r |y;¢)dr takesthe same valuefor all ye y=Y(y,r) .

For aformal proof of the equivalence between inference based on likelihood (1) and (2) see Heitjan and
Rubin (1991), for detailed examples see Heitjan (1993).

Appendix B: The case of a deterministically censored variable

In this section we present a very simple example of a censored variable to show that MAR condition
does not require that the selection mechanism is constant for any y but only for any ye Y™.

Let y be a continuous variable with support Y = (—e,+0) and let us assume that we observe y only
when its value is lower than or equal to a constant ¢, then Y™ =(c,) c Y andyis MAR because for any value

greater than c the probability to observey is equal to 0.
In this specific example the likelihood (1) in appendix A becomes

] f(y:e)dy=(f(y°;e))r[ [ f(ym:e)dy"’J =(ry0)) a-Feo).

The selection mechanism f(rly; ¢) is deterministic, in fact

(e 1 if y<c with probabiltiy1
|0 if y>c with probabiltiy1’

1
Whenyismissing f(y|y™¢)=> f(Y"|y",r)f(r|y™;¢)=1 forany y"e Y™, whenyisobservable
r=0

1
f(Y1y%e)=Y, f(y’|y°.r)f(r|y°;¢) isasoequal to 1. This allows us to write the informative likelihood (1)

r=0

as
[0 Ty =(f(y*:0)) a-F(co),

which is equal to the likelihood with informative missing data (2).
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This equality proves that the weak ignorability of selection mechanism does not require that the

sel ection mechanism be constant for any ye Y, but only for any ye Y™.

Appendix C: The sequential CAR condition in Gill and Robins
(1997) and our sequential MAR condition

A variable X is said to be coarsened if we cannot observe its exact value, but we know the subset of the
sample space to which it belongs. In other words we observe a coarse variable y, instead of X, which defines the
subset to which X belongs.

Following Gill and Robins (1997) we assume that “... y is a coarsening of an underlying random
variable X. We suppose that X takes valuesin afinite space E. Its power set (the set of all subset of E) is denoted
by {. So y takes valuesin {\{ [} and X5y with probability one.”

Definition of a k-sequential coarsening: (Gill and Robins 1997) “We say that the random sets ;... ¥, ¥

with each y, and x5{\{ [} form a k-sequential coarsening of a random variable X if for m=0,..., k+1,

Zm € X With probability 1 where y, ={X} and y,, =y

Definition of a k-sequential CAR: (Gill and Robins 1997) “A k-sequential coarsening is a k-sequential CAR if,

for m=1,..., k, the conditional distribution of y,, given y,,, does not depend on the particular realization of
Xma €Xcept through the fact that is compatible with y . In the discrete case, this means Pr(;(m = A{ Y = B)

isthe samefor al B in the support of y,,, suchthat BCA.”

When the coarsening is due to the attrition problem, we prove that the k-sequential CAR definition of Gill and
Robins (1997) is equivalent to the sequential MAR definition given in this work.

Let us consider a random sample of N units, for each unit i we observe repeatedly in time a variable y,

which takes values in the sample space Y, and we denote this multivariate variable yiT ,» Where T is the number

of repeated observations. If y,, is missing, then the successive variables, Y, ,;,..., ¥, 1 , are aso unknown (thisis

the case of the attrition problem). Each missing variable, y, takes value in Y, so that the corresponding coarse

variable, y, which defines the sub-space to which y belongs, is equal to the entire sample space Y. Let

X =[Yi1,Yir]=Y; then the coarsened multivariate variable associated to a unit i, for which the last k

variables are not observed, isdenoted by ¥ =[, 1, ¥i1oi1r Yrkazreer Yo =[Yigoee Vi toars Y
If wedefine y,,..., %, ¢ inthefollowing way:

o =[Yizr Yiraen Yizawz e Yra ¥r I

X1 =[Yiaro Yiroons iz koo YT-1137T]:[YL1 ----- Vit Yitokazren Yoo Y1
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2= X =i Yiran Yooz VeI =Yg Yizaon Yoo Y15
then y,.., < x., forany m=0,....kand y can be viewed asthe result of ak-sequential coarsening.
To prove that y is a k-sequential CAR, we have to show that Pr(;(m = A{ Y1 = B):c, where c is a
constant, for all B in the support of ¥, such that BCA (see the above definition of k-sequential CAR).
If the first (T-1) elements of y, are not equal to the corresponding observed elements of y,, then
Pr(%, = Az, = B) =0; so that verifying
Pr(y, = Ay, =B)=c

is equivalent to verify that

P"(ri 7= Olyi areens Yira Yirofi = 1) = Pr(ri.T = 0|Yi e i Tin = 1)'
wherer isthe dummy indicator of response.
By analogy Pr(;(m = A{;(M = B) =c for al B inthe support of y,,, suchthat BcAistrueif and only if

Pr(ri = 0|Yi,1 ----- Yiea Vi T =L = 0):

Pr(ri.t = 0|Yi o Vi rit,l_l =1 riI+1 = 0)

last equality as
Pr(ri,t = 0|yi,11---a Vi1 Yieo rifil = 1)= Pr(ri.t = O|yi,t e Yigoan rifil = 1)!
.t

that is the sequential MAR condition given in Section 2.6, r; Ly, , |r,f, Yis -

If we consider a more general response pattern, possibly non-monotone, then the definition of k-sequential CAR
givenin Gill and Robins (1997) does not correspond to our definition of sequential MAR.
Indeed, the k-sequential CAR condition for non-monotone response patterns is equivalent to the

following condition,

Pr(ri = OIYiOI Yol riI+1): Pr(ri = 0|Yi?1 T riI+1);
while our sequential MAR definition is

Pr(ri,t = O|yi(?11! Yits rifil)z Pr(ri = 0|yi(?t11 rifil)-
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ABSTRACT

This paper stresses the links that exist between concepts that are used in the theory of model reduction
and concepts that arise in the missing data literature. This connection motivates the extension of the
missing at random (MAR) and the missing completely at random (MCAR) concepts from a static
setting, as introduced by Rubin (1976), to the case of dynamic panel data models.

Using this extension of the MAR and MCAR definitions, we emphasize the limits of some tests and
procedures, proposed by Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and others,
to verify the ignorability of the missing data mechanism.



NON-TECHNICAL SUMMARY

The non-response problem is ignorable for a regression model of interest if we can make inference on
this model ignoring the process that causes missing data. In other words, ignorability requires that the
inference on the model of interest, neglecting the missing data generating mechanism (sample
selection process), be affected neither in terms of distortion nor efficiency. The conditions that allow one
to neglect the selection process are given in Rubin (1976) and Little and Rubin (1987) for the cross-
sectional case. In particular, these authors introduced the concepts of missing at random (MAR),
observed at random (OAR), missing completely at random (MCAR) and parameter distinctness.

The extension of MAR and MCAR to the panel data case is straightforward when the data are
independently and identically distributed across units and over time. However, while the data on
different units can generally be assumed to be independent, at least conditionally on some exogenous
variables, the repeated observations on the same unit are likely to be dependent. This is the reason for
the widespread use of dynamic regression models. In this paper, we derive the set of conditions under
which the selection process can be safely ignored when making inference on a dynamic regression
model. Our approach is triggered by ideas that arise in the theory of statistical models reduction (see
Engle, Hendry and Richard 1983; Hendry 1995).

Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed in
the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in
Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition
tests, presented in Verbeek and Nijman (1992).



1. Introduction

The non-response problem is ignorable for a regression model of interest if we can make inference on this
model ignoring the process that causes missing data. In other words, ignorability requires that the inference on
the model of interest, neglecting the missing data generating mechanism, * be affected neither in terms of
distortion nor efficiency. The conditions that allow one to neglect the selection process are given in Rubin
(1976) and Little and Rubin (1987) for the cross-sectional case. In particular, these authors introduced the
concepts of missing at random (MAR), observed at random (OAR), missing completely at random (MCAR)
and parameter distinctness.

The extension of MAR and MCAR to the panel data case is straightforward when the data are
independently and identically distributed across units and over time. However, while the data on different units
can generally be assumed to be independent, at least conditionally on some exogenous variables, the repeated
observations on the same unit are likely to be dependent. Thisis the reason for the widespread use of dynamic
regression models. In this paper, we derive the set of conditions under which the selection process can be safely
ignored when making inference on a dynamic regression model. Our approach is triggered by ideas that arise
in the theory of statistical models reduction (see Engle, Hendry and Richard 1983; Hendry 1995).

Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed
in the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in
Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition tests,
presented in Verbeek and Nijman (1992).

The paper isorganized as follows: in Section 2, we give the formal definitions of MAR and MCAR; in
Section 3, we emphasize the limits of some tests for MCAR and MAR for multivariate data; and in Section 4,

we give some conclusions.

2. Definitions of MAR and MCAR

In this section, after some preliminary definitions and general notation given in Section 2.1, we define the
conditions of MAR and MCAR. These conditions must be properly redefined for different types of models of
interest. For this reason, we dedicate separate sections to define MAR and MCAR for different types of modd!:
Section 2.2 for marginal models; Section 2.4, for conditional models, Section 2.5 for dynamic panel models
with general response patterns;, Section 2.6 for dynamic pane models with attrition; and Section 2.7 for
dynamic panel models with explanatory variables.

Furthermore, we emphasize the differences between our definitions and those given by other authors.
In particular, for the cross-sectional data case, we consider the definitions of Rubin (1976), Little and Rubin
(1987) and Heitjan and Rubin (1991) (see Section 2.3); whereas, for the multivariate data case, we examine the

definitions given by Robins and various co-authors (see Section 2.8).

! Henceforth we will call the ‘ missing data generating mechanism’ more briefly ‘ missing data process or * selection process (or ‘mechanism’).



Finally, in Section 2.9, we conclude by describing some further possible extensions of the MAR and

MCAR concepts.

2.1 General statement and notation

We begin by considering the cross-sectional data case and focus our attention on a modd for the
variable y, {Y, f(y;6), 6e6}; where Y is the sample space, f(y;6) is a family of probability distributions
indexed by 6, avector of parameters of interest, and © is the parameter space. The variable, y, ismissing if the

dummy variable r=0, and observable if r=1. Let usindicate with y™ the missing variable associated with r=0

and y°, the observed variable associated with r=1. By analogy, let Y™ and Y° be the subspaces of Y for the

missing and observed variables, respectively. Let {YxX, f(r,y; ¢) , o ¥} be the joint model for (r,y). Findly,
let f(rly; @) be the probability that r=1 or 0, conditional on the variabley, that is, the selection mechanism or the
missing data process, where ¢is a vector of nuisance parameters.

We define three different types of likelihood functions that we could use to make inference on the
model of interest in the presence of missing data. We write the likelihood function for a single observation, but
the extension to arandom sample of N unitsis straightforward.

Thefirst likelihood,

L, =(f(y°:0)) (1)
let’s say the truncated likelihood, does not take account of the missing data in the variables, asit considers only

the truncated sample of observable values.
The second likelihood function,

1-r
L. =(f(y°;0))r{j f(ym;e)dme = jf(Y;B)dym , @
ym ym
let’s say the censored likelihood, considers both observed and unobserved variables, but not the missing data
process.
Finally, for the third likelihood function,

L = [ f(y:0) f(r | y;p)ay™ 3)

let’s say the likelihood with informative missing data, the model of interest and the sdlection mechanism are
considered jointly and the missing variables are ‘integrated out’.

In the following, we say that the selection mechanism is weakly ignorable if we can make a correct
and efficient inference based on the likelihood (1) or (2) disregarding the selection process. Whereas we say
that the selection mechanism is strongly ignorable if any type of inference can be made correctly and

efficiently without considering the selection process.?

2 The definition of strong ignorability used in this paper coincides with Verbeek and Nijman (1992)'s definition, whilst the definition of (weak)
ignorability is not equivalent to their definition.



2.2 Definitions of MAR and MCAR for a marginal model of interest
Following Heitjan and Rubin (1991), likelihood-based inference on @ can be made ignoring the data
mechanism if:
1. f(yr;¢) factorizesin f(y; 6) f(rly; ¢), where 8 e g arevariation free or, as Rubin (1976) says: [...the
parameter gisdistinct from 4], that is[...their joint parameter space factorizes into a 6-space and
a ¢-space],

2. yismissing at random (MAR); that is f(r | y™;¢) takes the same value for any y™ belonging to
the space of possible missing values, say, Y™, that is a subspace or the entire sample space of v,
Y.

When conditions (1) and (2) are satisfied, we say that the missing data mechanism is weakly ignorable
or, more briefly, ignorable. Moreover, we say that the missing data mechanism is strongly ignorable if, besides
(1) and (2), the following condition is satisfied:

3. yisobserved at random (OAR), thatis f(r |y°,y™;¢) takesthe samevaluefor any y° belonging

tothespaceY.

In accordance with the theory of model reduction, we call 1 the statistical cut assumption. When the conditions

2 and 3 are satisfied, then y and r are independent and we will denote this independence as y.Lr . Conditions 2

and 3 together congtitute MCAR. Obvioudly, it is implicitly assumed that the model of interest, f(y; ), is the
reduced model resulting from an admissible reduction of the data generating process.

To give someindication as to whether weak ignorability indeed suffices for a correct likelihood-based inference
when the selection process is disregarded,® we note that the likelihood ratio when disregarding the selection
processis equal to the likelihood ratio when taking it into account
F(y:0) F(r1y;)ay™ | f(y:6,)dy”
Lie) L1077 LY | )

LG) [Tya)trlyod”™ [fre)dy™ L)

The observed data allow the identification of the probability distribution f(y|r =1), which is not

equivalent to the marginal distribution of y°, jf(y;e)dym. To ensure that inferences based on f(y|r =1
gm

and j f(y;0)dy™ be equivalent, the data must be MCAR and the variation-free condition must be satisfied.
gm

Indeed, under these conditions, the following equality is true:

f(y;0)f(rly,¢) dy™.

f(y;0)dy™ =
JHoo8 = | ooy

% For amore formal proof, see Rubin (1976).



2.3 Differences among MAR definitions
The definition of MAR given here differs dightly from the definition given in Little and Rubin

(1987). Whilst we require that the selection mechanism be constant only when y™ belongs to the subspace of

possible missing values, Y™ < Y, Little and Rubin require that the probability of observing y be constant for
any y™ belonging to Y. Our definition of MAR is equivalent to the enlarged definition of coarsened at random

given by Heitjan and Rubin (1991), where the definition of MAR is extended to any type of coarsened data
(censored, heaped, grouped, rounded, etc.). We present this extension of the concept of MAR in Appendix A.
Whilst Little and Rubin (1987) define MAR as the condition which ensures a correct inference based
on the truncated likelihood, we define MAR in the same way as Heitjan and Rubin (1991); i.e., as the condition
which allows a correct inference based on the censored likelihood. When the censored and truncated likelihood

functions are equal, the two definitions coincide. In particular, thisistruewhen Y™ =Y .

If the selection process is deterministic, that is if the dummy variable r conditioning on vy is
degenerate, then we say that the data are MAR,; in contrast, Little and Rubin (1987) say that the data are not

MAR in this case. This distinction may lead to confusion, the most notable example of which is the case of a

censored variable for which no values are observed when the variable belongs to a specific subset, Y" c Y.
Thisisindeed an instance in which correct inference can be based on the censored likelihood, and the censored
and truncated likelihood functions are not equal. The latter observation is proved in Appendix B.

This observation holds more generally. Suppose we can divide the sample space into s digoint

subspaces, Y,Y,,....Y, and suppose for every missing variable we know to which subspace it belongs;
moreover, assume that the selection processis such that Pr(r =1|ye Y,;)=c,, where c; is constant within the

same subspace; then we can say that the data are MAR and that inference can be based on the censored
likelihood.

2.4 MAR and MCAR for a conditional model of interest

As remarked by Shih (1992), some authors do not explicitly mention the variation-free condition (the
condition 1 in Section 2.2). This condition is often implicitly assumed to be valid in econometric literature; in
particular, econometricians usually implicitly assume that the conditional or marginal model of interest is the
result of an admissible reduction of the data generating process.

In this section, to avoid any misunderstanding, we explicitly state all the conditions necessary to
ignore the selection mechanism when the model of interest is a conditional one.

Let us assume that we are interested in the conditional model for the variable y, given a set of
variables x belonging to the space X, {Y, f(y|x;8), O &}, where Y is the sample space, f(y|x; 6) is a family of
conditional probability distributions indexed by the parameter 6, and @ is the parameter space. Furthermore,
let us assume that the true data generating process is the joint model {YxXxR, f(y,x,r;¢), ¢e®}. Then, to
make a likelihood-based inference on the conditional model of interest neglecting the selection process, that is
the modd {R, f(rly,x;7), eI}, the following conditions must be satisfied:



1. thefollowing two statistical cuts must be satisfied
Fy,xre) = f(y.rjxy) f(x¢), and,
FQyrpw) = f Oy f(rly, xvs) ;
2. the independence of r from y, given x, to ensure the MCAR condition; the independence of r from y™

given x to ensure the MAR condition.
Again, we say that the selection mechanism isweakly ignorableif condition 1 and MAR are satisfied, while we
say that the selection mechanism is strongly ignorable if condition 1 and the MCAR are satisfied.

2.5 MAR and MCAR for a dynamic panel data model

Panel data are constituted by a sample of units followed over time and they are often used to estimate
dynamic models. Dynamic models are those in which the dependent variable is explained by its past and/or the
present and past of other variables. In the following, we will consider a generic panel composed of N units
followed for T consecutive waves.

As already mentioned, in the case of a random sample of N units observed at a single occasion (T=1),

the definitions of MAR and MCAR stated in Section 2.2 apply. Indeed, (y,,r) are identically and
independently distributed (i.i.d.), and the joint likelihood factorizes into the product of N identical likelihood,

N
f(y1 yeer YN ,rl,...,rN;(p)z IIf (y;.r,;@). Thisisno longer true when the variables observed at consecutive time
1=1

periods, for a specific unit, are not independent.

The definition of weak and strong ignorability can be easily extended to the case of a pand,

considering a joint model for yIl. Condition 1 in Section 2.2 is subgtituted by a condition of initial cut:

1 flyTrlie)= fyio) (o)
where y/, isthe vector of thevariables y;, for thei-th unit and for t=1,...,T, while r; isthe vector associated
with the response pattern of the i-th unit, that is the vector of the dummies r,,, taking value 1 when the

variable y;, isobserved, and O otherwise.
Conditions 2 and 3 are replaced by the equivalent assumptions:

2. f(rile?,yf”;¢)= f(rile?;¢),

3. flyeyme) = (10),

where y}' is the sub-vector of the missing variables and y?; is the one of observable variables of the vector

Yia-
The variables observed for a unit are likely to be dependent from their past; that is, the factorization

;
f(y{l,riTl;q))=Hf(ym,rivt;(p) is not vaid and we have to use the sequential factorization
t=1



f( Il,riTl;q)) =]l[ f(y,t, It|y,1, 1 ,(p) * In other words we assume that (y,t, It|y,1, 1 ) be identically and

t=1

independently distributed across units and time. In this case, a more appropriate model of interest is a dynamic

one, which tries to explain y as a function of its past, f(y,t|yI 1,60 ) Then it is useful to restate the conditions

1', 2" and 3' in terms of sequential models.

Condition 1' requires that:
al. the sequential cut,

Hf(y.t, lyrsie)= Hf(y.tIrl ,y.lﬁ)l'[f(r.tIrl Vi)

must be applicable;

a2. r does not Granger causey, that is,
flyrist vio)= v lyiso).
Further conditionsthat 2' and 3' require are:
b. f(,t|rI1 ,y,l,(b): f(rivt|rff;¢)) or rith_y}'1|rfvf;¢
The condition b can be broken down into two parts:
bl. r Ly} |rI Y 1,(1),

b2. 1, Ly?i|rihe .

In the case of dynamic panel data, bl is the sequential MAR condition, b2 is the sequential OAR
condition, while b is the sequential MCAR assumption. The conditions al, a2 and bl ensure that the missing

data mechanism is weakly ignorable for the maximum likelihood estimation of f(y,t|y,1, ) while the

conditions al, a2, b1l and b2 ensure strong ignorability in any inference.
If we consider a maximum likelihood that completely eliminates the units for which there is a wave
non-response, the weak ignorability is no longer a sufficient condition and we need the MCAR condition, as

for any other type of inference (such as the sampling distribution inference).

2.6 MAR and MCAR conditionsin a dynamic panel model with attrition
In this section, we present a proposition which gives a set of necessary and sufficient conditions for

the weak ignorability of the selection mechanism; that is, for the conditions 1' and 2', in the case of attrition.

4 To simplify notation in the sequential models, weimplicitly condition on the set of initial conditions.



Proposition Let (y,t, It|yf11, fll) bei.i.d. across units and time, and let f( Il,riTl;(b):]I[ f(y,t, It|yf11, fll,(b)

t=1
be the associated data generating process. Let y;, be observed when r;, takes value 1, and missing when
r.. =0. Further, whenever r,, =0, let r, ;=0 for any s>t.

Then, if the condition a2 (r does not Granger cause y) istrue, a set of necessary and sufficient conditions for
the weak ignorability of the selection mechanismis:

al. it must be possible to operate a sequential cut

Hf(y.t, )= Hf(y.tIrl ,y.lﬁ)l'[f(r.tIrl Vi)

Cl r|tJ-y|t|r|1 ’yll '

Proof
First, we prove that al and c1 are sufficient conditionsto ensure 1' and 2', that is, weak ignorability.

Applying the condition of Granger non-causality to the factorization al, we obtain:

f( RO ) Hf(ym |t|y|1’ i1 ,(P)
(y.t|y.1 ,9)1'[ f(r.tIr.l Viie)= f(yTl;H)f(riT1|yI1;¢),

so that al and a2 ensure the initial cut, 1'.
Let us assume that a unit, i, drops out at d-th wave, and let us rewrite the model as the product of three

factors:
f( iT,11riT1;(P)= L-L-Ls,
where

d-1

L= {H f (y| Y
t=1

Lz = |: f (yir,nd

In a likelihood-based inference on the parameter 6, we must eliminate the unobserved variables through the

|

yos o) ety 1,yi”?d:¢)}L3={lI[ 1%

Yooty o) frist ,y."f‘l,yi”?at;fp)}-

t=d+1

integration from the likelihood, f( i1 ,1, ) in the following way:
m m,T
_[ f(yIlrriTl;¢)jyi,iT szl Ly L dyi,l
The factor L, does not depend on unobserved variables, so it can be taken out of the integral sign.

Snce we have assumed that (y,t, It|yf11, fll) arei.i.d., and that f(,t|r,1 ,y,l,(b) has the same distribution

form for each t, then the condition c1, |tJ-y|t|r|1 ,Yi1, isequivalent to r,tLy,t|r ,y0t, so that the factor,

o,d-1 o,d-1.

(r,d|r,1 Yt o Yid ;¢)— f(r,d|r,1 WYin ,¢),can be taken out of the integral sign too.



For any t>d, (ri‘t|ri'd :0) isindependent of any variable becauseif r, ; = 0, then Pr(r;, =0|ri'd =0)=1and r,

becomes degenerate. If r,, =0, then f(,t|r,1,yf’f‘l,y[f‘;;(b):l, consequently the selection mechanism,

o,d-1

(,t|rI LYy ;¢), cancels out of the likelihood for any t>d.
The integrated likelihood becomes:

j f(yIl,riTl;(p)jyﬂ‘T = Ll ’ (rl d|r| 1 'yf)ld_l’ )J-g f(ylt

vy B)dy

Yoty 6’)dy,d =1, we can rewrite this as:

,
Snce [T]f (y,t
t=d

i

t=1

y?i 110):| |:H f(|t|r| 1 ’yl 11¢):| (rl d|r| 1 !ylof_1!¢)'
Given that 0 e ¢ are variation free, we can make inference on the parameter 6 ignoring the selection

ot-1. )

d-1
mechanism, that is considering the likelihood for the observable variables: T f (yi‘fI
t=1

In this way, we have also proved that the condition 2' istrue:

f(riTl DY ) Hf(r|t|r|1 !yll! )zll[f(rut|r|1 !y|1 ¢) (riTl

t=1

)

In the following, we prove that al and cl are necessary conditions to ensure 1' and 2'. We begin by proving
that when the initial cut 1' operates and condition a2 holds, then al istrue.

Using condition 1', we can state that:

f( iT,lvriTl;(/’): f(ym (r,1|y,1, ) Hf(y,t|y,1,9)l_[f(,t|r,1 Yiai# )

Since condition a2 may be restated as r, Ly ,|[r';, vt ,° we can rewrite the joint likelihood as:

f( iTvl’ril' Hf(ylt|yll'9)l_[f(lt|r|1 vy.lv )!

S0 that f(riT1|yi1, ) Hf(|t|r|1 ,y,l, )and the sequential cut al operate.
The equality, f(riT1|yi1, ) l_[f(,t|rI1 ,y,l, ) and condition 2' imply that:

f(riT1|yi11 ) Hf(|t|r|11y|1¢)

(y,t, It|yf11, ,tll) arei.i.d. across units and time; hence f(.t|f.1 ,y,1¢)) maintains a common form for any t.

Snce for t>d, (ri‘t|ri'd =O) is a degenerate variable independent of the past value of y, and for t=d, the

sequential selection model does not depend on the value of y at time t, the last equality prove that cl is
satisfied.



The theorem gtates that, in the case of dynamic pand data with attrition, the condition y does not
Granger cause, I, r,tLyIl ,1 , IS neither necessary nor sufficient condition for the MAR assumption. This
Granger non-causality is instead a necessary but not sufficient condition for MCAR. The theorem aso proves
that the sequential MAR condition is given by (c1) r,tLy,t|r Y17, in the case of the problem of attrition. In

other words, in the case of attrition, the conditions (al), (bl) and (cl) ensure a correct likelihood-based
inference on the dynamic model of interest, i.e. the weak ignorability.
It is easy to prove that the strong ignorability for a dynamic panel model with attrition requires the

sequential MCAR condition, 1, Ly; ,Ir';", instead of the sequential MAR one.

2.7 MAR and MCAR conditionsin a dynamic panel model with explanatory variables
The definitions of MAR and MCAR can be easily modified to cover conditiona models of the

form, f(yivt|xi1,yIl ;8) , where explanatory variables x are added to the dynamic panel model.

Let f(y,[x';,yi36) bethe model of interest, let f(y[,,r%,x\;i¢)= Hf(ymm)q VX g)

171 |1'¢

be the associated data generating process and let the missing data problem be narrowed down to the attrition
problem; then, it is easy to prove that weak ignorability requires the following conditions:
d1. the weak exogeneity of x, that is

Hf(y.t, X i X )=
-11 Fyhrst s ,xi,l;(pl)l'[ it yite,)
d2. the sequential cut
IT° (yi,t,ri,t|y?,‘f,ri11,><?1;¢1)=
(Y.t|r.1 ,y,l,xll,e)l_[f(,t|rI1 Vi X0 )
d3. the Granger non-causality
Vi drGyid Xt
d4. the sequential MAR condition
fayirsh Y X
In the case of a conditional dynamic panel model with general response patterns, the weak irrelevance
is more stringent: d4 must be replaced by the sequentidl MAR 1 Ly™'|rii%,y2i,x{; and the following
additional condition isrequired:

d5. X, Ly T Xy

® For aproof of thislast equivalence, see Florens and Mouchart (1982).



Strong ignorability for a conditional dynamic panel model requires the conditions d1-d3 and d5, and
the following additional conditions:
dé. the sequential MCAR

t-1 t
rltJ-y|1|r|11 |1!and

d7. X Lypi X
We emphasize that the weak and strong ignorability for the joint modd, f(yI1|xI1;9), is not

equivalent to the weak and strong ignorability for the sequential model, f(yivt|xi1,y,1, 0) . In the former case

theignorability requires the following conditions:
D1. twoinitial cuts
(Yo io)= FhTr e )i Kio,),
fy T )= £y Tfx0 ) oy i), and
X/ -¢) to ensure weak ignorability, or

D2. the MAR condition f(riT1 9y[",xL;¢))= f(riT1 0

D3. the MCAR condition f(riT1 0 y[",xIl;¢) = f(riT1|xI1;¢) to ensure strong ignorability.

The equivalence between the ignorahility defined for the joint model and for the sequential model is
true only if x is strongly exogenous for the parameters of the dynamic model of interest. We use the definition
of strong exogeneity introduced by Engle et al. (1983); that is, (y,r) does not Granger cause x, and X is weakly
exogenous for the parameter of interest. Therefore, the strong exogeneity of x includes the condition d1, d5 and
d7.

We remark that if the modd, f(yivt|xi LYi156) , is used to forecast y given the value of x, then we
need the strong exogeneity of x. For example, this is the case in causal inference, when the counterfactual
response Yy is forecasted conditioning on (x;,,y:;") to assess the average effect of a treatment. In this case,
r.. isequal to 1if a person istreated in the time period t, and O otherwise. In causal inference, we should be
aware that any conditioning variable, x, should be strongly exogenous. In other words, the Granger non-
causality condition,

PO XY = T O XD

must be satisfied.

2.8 The MAR condition according to Robins et al.
Robins and several different co-authors (Robins, Rotnitzky and Zhao 1995, Gill and Robins 1997,
Robins and Gill 1997) have given definitions of MAR and MCAR for multivariate data in papers. In this

section, we present these definitions and outline their differences from ours.
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The definition of MAR for monotone response patterns in Robins and Gill (1997) and Robins,
Rotnitzky and Zhao (1995) are both equivalent to the sequential MAR definition given in Section 2.6 for the

t—

attrition case, rivtLyi‘t|ri'11,y}f11 . The k-sequential coarsening at random (denoted briefly by ‘k-sequential CAR’)

definition, given by Gill and Robins (1997) and adapted for the attrition case, is again equal to the sequential
MAR. In Appendix C, we prove this claim and we present the definitions of a k-sequential coarsening and of
k-sequential CAR given by Gill and Robins (1997).

We remark that these definitions are not sufficient to ensure a correct likelihood-based inference on

the parameters of the conditional model, f (yi Vt|y}"11;0). Two additional conditions are necessary: the sequential
cut (al) and the Granger non-causality (a2), yivtervf|y}f11 :

Moreover, we emphasize that the above MAR conditions defined for the sequential mode

f(rivt|y}‘1,r[;1), which we call sequential MAR conditions, and the MAR condition for the multivariate model

f(riT1|yI1), are not eguivalent. As a matter of fact, Robins and Gill find examples in which the sequential

MAR condition does not ensure the MAR one. In borrowing from model reduction theory, it is possible to
define conditions such that the sequential MAR condition is equivalent to the MAR condition for the joint
model defined for T consecutive periods. What is missing in the work of Robins et al. is that the MAR
condition is not enough to ensure the weak ignorability condition; indeed, the initial cut in 1' must also be
satisfied. In terms of conditions on the sequential models, theinitial cut is satisfied if and only if the sequential
cut (al) and the Granger non-causality (a2) are satisfied (see Engle et al. 1983). This is the reason why the
sequential MAR definition does not ensure the MAR condition in any situation. Model reduction theory allows
us to prove that when theinitial cut in 1' is satisfied (or the sequential cut in al) and the Granger hon-causality
in a2 are satisfied, then the sequential MAR and the MAR concepts are equivalent.

When the response pattern is not monotone, following the suggestion given in Robins, Rotnitzky and

Zhao (1995), we can decide to make inference using only the sub-vector of consecutive observed variables and

discharge all the observations after the first non-response. So, for example, if r’; = (11,10,10), then we use

only the observations on the variable of interest, say y, for the first 3 waves. Let s, = 1(r{; =1) , where(.) isa
dummy variable, taking value 1 if the event between brackets is true and O otherwise; then we can artificially
assume that y;, is observed when s, =1, and missing otherwise. In this way, the response pattern is

artificially monotone and the above definition of sequential MAR applies. As remarked by Robins, Rotnitzky
and Zhao (1995), this a good expedient that allows us to make a correct likelihood-inference based on the sub-

sample of monotone response patterns when s Ly, |s}f11,y}f11. In any case, this method does not use all the

information available, and istherefore inefficient.
Robins, Rotnitzky and Zhao (1995) show that if we want to use all the information, we should impose

an additional condition to ensure MAR. This additional condition is;

11



(r _qylot 1,ylmt 1, |t111y|t+1) (r _qylot 1, Itll)_

We emphasize that the above additional condition can be rewritten as the following two conditions:

(1) rl IJ—yI A+l

|1 ’yll !Or a:{l,”valently, yi,tJ-r |y|1 ’

ot-1 .t-1

(2) rltJ-ylmlt_lyll ’ |1 .

Condition (1) is the Granger non-causality condition (a2 in Section 2.5), which is a necessary condition to

ensure weak ignorability, even in the case of monotone response. Condition (2), together with r,tLy,t|rI1 YT,

is equivalent to the sequential MAR condition given in Section 2.5.

As proved in Appendix C, in the case of the non-monotone response pattern, the k-sequential CAR in
Gill and Robins (1997) is different from both our definition of MAR and the one given by Robins, Rotnitzky
and Zhao (1995).

In conclusion, the definitions of sequential MAR are not equivalent in the different papers of Robins
and co-authors. Borrowing from reduction model theory we have clarified what is missing in the definitions by
Robins et al. for the special case of panel data, i.e. for the case in which there is a sequential order for the

observations on the same units.

2.9 Further extensions of the MAR and MCAR conditions

The concepts of Granger causality, sequential cut, and strong and weak exogeneity are meaningful
when working with time series analysis. In the previous sections, we have shown that these concepts are very
useful for panel data too, which can be viewed as a set of time series. In particular, we have shown their
usefulness in extending the definitions of MAR and MCAR from cross-sectional data to panel data. By
analogy, the same extension applies to the definitions of coarsening at random given in Heitjan and Rubin
(1991) and described in Appendix A.

The same type of extension can be useful in causal inference when the treatments or risk exposures,
the effects of which are to be evaluated, are time varying. In particular, this extension is hepful in
disentangling some of the misunderstandings between Holland and Granger (see Holland 1986). Holland's
(1986) attempt to use the definition of Granger causality in causal inference is misleading because he considers
the evaluation of the effect of a treatment lasting in a single period. Granger causality is only meaningful when
there are repeated observations across time and when attention is focused on a sequential model conditioning
to past information, (see Granger 1986). | agree instead with Holland (1986) when, in his reply to Granger, he
explains how the application of Rubin’s modd is not limited to cross-sectional data but may be extended to
situationsin which there are time series data for each unit or the so-called pand or longitudinal data.

As Holland (1986) remarks, in the 1980s, there were no applications of causal inference to
longitudinal data, but now there are numerous examples of such studies (see, for example Robins, Greenland
and Hu 1999). In these applications, the Granger causality concept is useful to help understand which
conditions are necessary to make a correct causa inference and to clarify the difference between the causa

concepts devel oped by Granger and Rubin.
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3. Limits of Some Tests for MAR and MCAR in Longitudinal Data

Both the MAR and MCAR conditions require that the selection mechanism does not depend on
unobserved variables. Clearly it is hard to verify dependence on unobserved variables whose values are
unknown. Tests for the MAR or the MCAR conditions that verify restrictions on the parameters of the model
of interest ignoring the selection mechanism, or, vice versa, on the parameters of the selection mechanism
disregarding the modd of interest, fail the objective, at least partially.

In this section, we outline the limitations of the procedures proposed by Little (1988), Diggle (1989),
Park and Davis (1993) and Taris (1996, 1997) in detecting the selection problem. These procedures are only
able to detect the MCAR conditions in part, and they cannot check the MAR assumption. These procedures
investigate the dependence of the selection mechanism on the observed variables, but they cannot control for

the selectivity caused by the dependence of the selection mechanism on missing variables.

3.1 Limits of the Little and Park-Davis tests

The Little (1988) and Park and Davis (1993) tests are based on a common idea: to divide units into
groups according to the missing (response) pattern, (riTl),6 and to estimate the modd of interest for each group
separately, then to test the MCAR condition by verifying if the estimated parameters of the models, associated
with each missing pattern, are different. Little considers the normal probability distribution for a continuous
variable, y, subjected to non-response, and tests the MCAR assumption by a likelihood ratio test. Park and
Davis consider the distribution of a discrete variable, y, conditional on a set of explanatory variables, and use a
Wald tedt, instead of a likelihood ratio test, to verify the MCAR. Both tests verify a condition that is only

necessary but not sufficient to guarantee the MCAR assumption. Suppose that T different repeated values are

(o)t-1

observed for the unit, i, for the variable, y, y;,, then the Little test verifies if y; . Lr,|r',y S, while the

Park and Davis test verifiesif yi,Lr..r',y 9™ x{,, where X!, are variables that are always observed.

The null hypothesis used in both tests is inadequate. The reason for this inadequacy is more evident
when the missing data problem is limited to the attrition problem. Let y be a variable that we observe on N
units repeatedly in time, up to the drop out of the unit from the panel or up to T, the last wave of the pandl.

Little (1988) assumes that, under MCAR, y/, is distributed as N(x,X), no matter what the response pattern,
ri,, is. Then, Little (1988) tests MCAR verifying if the sub-vector of the observed variables is distributed as a
multivariate normal with mean equal to the corresponding sub-vector of x4 and sub-matrix of X, of the
multivariate normal distribution for y{,. In the case of attrition, the sub-vector of observed variables for a
generic unit dropping out after t periodsis y;, and we denote with x#® and = the mean vector and the

variance matrix corresponding to the sub-vector of first t elements of u, and to the txt principal sub-matrix of

m
. Let m bethe number of unitsthat drop out of the panel at period (t+1), let y© =%Zy}l, and let 4 be

=1

® For example, for apanel of T wavesthere are 2" possible response patterns and therefore 2" corresponding groupsin which a unit may belong.
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equal to the sub-vector of the first t elements of the maximum likelihood estimator of x, then the Little test

.
statistic equals T, => m(yY — 24V)Y=O(yY - 2©). Little asserts that under the MCAR assumption, T, is
t=1

Tx(T-1)
2

distributed as a Chi-square, with degrees of freedom. This assertion is true; however, the same

distribution remains valid under the weaker assumption that y; . Lr;%,.lyi 7,1, -
Little'stest cannot verify if an observable variable, vy, given its past values, is independent from ri
infact, if y;, isobservable, r/, isaways equal to the vector of ones. In other words, Little's test cannot verify

the MAR condition, v, .Lr,lyi7, but can only check the condition, v ,Lr/\,.lyi7,r',. We can prove that the

last condition is equivalent to the hypothesis that y does not Granger cause r, ritLy}11|r:;1 ."In conclusion, the

Little test verifies a condition that is necessary but not sufficient for MCAR, and that is neither necessary nor
sufficient for the MAR assumption (see Section 2).

The same comments apply to the Park and Davis test, if we change the above conditional
independence hypothesis by adding a set of explanatory variables, x, among the conditioning variables, and
consider a discrete distribution for the variabley.

An equivalent reasoning is valid when the missing problem is more general than the attrition

(o)t-1 (o)t-1

problem. The true null hypothesis of the Little test is y;,Lr/\,,[r',y 9™ or equivalently r, LyQ*|r';*; again,

thisisacondition that is necessary but not sufficient for MCAR.

3.2 Limits of the Diggle test

Diggle (1989) has proposed a class of teststo verify if the attrition in a panel survey occurs at random.
Given a pand with T waves, the units can be observed for a number of consecutive periods ranging from 1 to
T. The tests proposed by Diggle verify if units that dropout at the (t+1)-th wave represent a random sample of

units that drop out after the (t+1) or more waves. He introduces a score function of the observed past variables
yi., h(y;,), that should be linked to the probability of drop out, and tests if the score functions for the units

dropping out after (t+1) times are a random sample from the set of scores for units that drop out in the (t+1)th

wave or later. A possibletest used to verify thisis a Kolmogorov-Smirnov statistic test.
In other words, Diggle (1989) verifies whether the distribution of {h(y{1 Mt =10, = 1} isequal to

the distribution of {h(y,)|rl, =1,r,,,, =0}; that is, whether the condition{h(y', )Lt ,, |r{, =1} holds. Let us
assume that the function h is such that {y}vlj_rivn1 Ir' =1,h(y;, )}; that is, his, given the past information of r,
a balancing score, as defined by Rosenbaum and Rubin (1983). In this case, testing {h(y}'1 )L 1 = 1} is
equivalent to testing {y{ler1 Iri, = 1}; that is the condition that y does not Granger cause r, which is not the

MAR condition.
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Diggle suggests choosing a function h that reflects the probability that r, ., =1 as a function of y;, ;
that is, he implicitly suggests using the propensity score, Pr(r,,,, =1|y;,,r{; =1). As proven by Rosenbaum

and Rubin (1983), the propensity score is the coarsest balancing score; in other words, any other balancing

score is afunction of the propensity score.

In conclusion, the Diggle test verifies the Granger non-causality condition, {y}vlLrime'l:l}.

However, it is not able to verify if {rimLyimr{l = 1,y}'1}, and so it is not a test for the MAR or, as defined by

Diggle, for random dropouts.

3.3 Limits of the Taris test
Let Pr(r,.,,=0[r{, =1, Xi,,y;,) be the probability to drop out at a specific wave, t, for a generic unit,

i, conditioning on its permanence in the panel until wave (t-1) and on a set of explanatory variables. Let 7 be

the time of permanence of a unit in the panel; then we can rewrite the above probability as:
Pr( 7, =t|7, >t-1,Xi,,Yi1)s

which is a discrete hazard function. If the data are MCAR, then the hazard function should depend neither on
observed variables nor on unobserved ones, and should be constant across waves; that is:
Pr(z =t|7, >t-1,x;,,y|,)=C.

A very interesting result for the hazard function is stated by the “lemma’ of movers and stayers, which
states that when the distribution of a duration T, conditional on a set of variables x, is exponential with a
parameter A(x), a function of x, and x follows any distribution for which the first derivative exists, then the
non-conditional hazard function of T, marginalized with respect to x, is time decreasing (see Lancaster 1990).
This means that a negative time dependence of the hazard function may be caused by the omission of relevant
explanatory variables. Thereforeit is necessary to distinguish between spurious and true time dependence.

Under the assumption that there is no true time dependence, a decreasing hazard function implies that
data are not MCAR, while a constant hazard implies that we would not reject the MCAR condition.

Thisistheidea developed by Taris (1996, 1997), who says that '...a decreasing non-response for every
successive wave indicates that non-response is selective to a degree” Taris's idea is very useful to verify the
MCAR condition. Taris also explains that it is possible to control for observed variables by trying to identify
different groups of the population for which the hazard function is constant. In this case we would say that
data are MAR but not MCAR. Taris does not use the conditional duration model approach in which variables
enter as explanatories; rather he uses the Markov chains approach (the smple first order Markov chain, the
mixed Markov chain and the mover-stayer model).

We think that the conditional duration model approach can be useful to detect the MAR condition. A
conditional duration model is more general then a Markov chain mode because it allows for time non-
homogeneity, and it may be very useful in distinguishing between observed and unobserved heterogeneity

causing the spurious time dependence.

" For aformal proof, see Florens and Mouchart (1982).

15



If, after controlling for al observed variables in the hazard modd, there is ill a time dependence,
then we should conclude that the data are neither MAR nor MCAR; whereas in the absence of time
dependence, we cannot reject that data are MAR. If, without controlling for any explanatory variables, thereis
time independence, then we cannot reject the MCAR assumption.

Obviously we should not exclude a priori the assumption that the hazard function may be the result of
amixture of different hazard functions for different populations, asin the mixed Markov chain.

In conclusion, the Taris idea of verifying the MCAR and MAR conditions by checking the time
dependence is very useful, but its validity is based on the assumption that the hazard function has no true time
dependence. This assumption may not be true. Indeed, there may be a conditioning problem in the behavior of
the person. For example, if a person is always contacted by the same interviewer, it may be that the propensity
to drop out decreases from one wave to another. Furthermore, in testing the MAR condition, a misspecification

of the selection mechanism can distort the results.

3.4 Limits of the variable addition test

Ancther type of test that has been suggested to verify the relevance of the selection mechanism is the
variable addition test. This is a simple test that verifies the influence of variables associated with the non-
response patterns on the regression model of interest. These variables are added to the regression mode of
interest as explanatory variables. If these added variables are not significant, then the selection mechanism is
considered ignorable.

One should be careful in choosing the additional variables. In the case of the attrition problem, it is
uselessto add r,,_, to aregression equation at the time t containing also a constant; in fact, r;,, aways takes

.
value 1. If there aretime effects in the regression, it is also inappropriatetouse > r;, .
t=1

The MAR condition vy, . Lr,|x; ,yi7" isimpossible to verify, because we only have information on y; ,
when r!; =1. We are only able to verify if y, Lr[xi,yi ' =1, that is, if rith_y}"11|x}'1,y}"11,rff =1, which

is not sufficient to ensure the MCAR and MAR conditions.
Verbeek and Nijman (1992) presented the results of a Monte-Carlo analysis of the properties of the
variable addition tests and found that in some cases, the variable addition tests have no power. In particular,

when they used the following model of interest and missing data mechanism for the simulation experiment:
Vi =% B+o+&,, (1)
Pr(r, =) =Pr(r;, >0)=Pr(y, + 1%, +& +1,, >0), 2
where ¢, and 7, are error terms i.i.d. with mean zero, V(¢,,) =02, V(1) =0} and Cov(g.7,,)=0,,;

o, and & are random effects i.i.d. with mean zeros, V(e;)=0;, V(§)=0f, Cov(¢.§)=0,, and
T T

of+0;=1; then, they found that each of the following variables, > r,,, []r,. 1., added to equation (1)
t=1 t=1

were not significant.
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In the following we prove that the additional variable tests proposed by Verbeek and Njiman (1992)
are adeguate to check departure from MAR caused by a correlation between the random effects in the two
equations, while they are not adequate to check departure caused by the correlation between the error terms.
Since Verbeek and Nijman (1992) do not allow for a severe selection bias caused by the correation between
random effects, the little power of the additional variable tests follows. In the reference experiment situation in
Verbeek and Nijman (1992), the correlation between £ and 7 is 0.5, but the importance of the random effects
in both equationsistoo low, theratios o} /(o +0?) and o7/(c7+0}) are0.1, so that the resulting selection
biasis not severe and the power of the testsis small.

To prove that the additional variable tests proposed in Verbeek and Nijman (1992) cannot be used to
verify departure from the MAR caused by correlation between error terms, we consider the case of a null
correlation between the random effects in the equations (1) and (2). If the correlation between random effectsis

0, then the following independence conditions hold: yi‘tLrif;1|x}'1,y}ff and rivtLy}"11|x}'1,r{;1 (that is,

Y LrlalXi1yi7). By consequence, the equation (1) is not affected by r';*and r'.,, but only by r,,.

Obviously the dependence between y,, and r,, cannot be verified because we observe y;, only when r; =1.

The above authors have carried out the same simulation exercise for the quasi-Hausman test (a test
which verifiesif the mode coefficients for the balanced and unbalanced panels are equal) and have found that
the power is better but non-satisfactory. This is again a consequence of the fact that, ignoring the random

effects because of their little importance, yi‘tLrif;1|xﬂ1,y}ff and y, Lr.[xi .y}, sothat

F (VXY == f (v Xyt =D,
and the balanced and unbalanced panels give the same results.
When instead, the authors simulated the following model for the missing data mechanism:
Pr(r, =) =Pr(r’, >0) =Pr(y, +z % +& +m;, >0), ©)
the power of the variable addition tests and of the quasi-Hausman tests increased. This is not surprising since

in this case, x is not strictly exogenous for the parameters of model (1) and v, VtJLriTH1

x:,,yi7 . This means that

variables that are linked to the future response path rfm affect the modd (1). The results of Verbeek and

Nijman (1992) support this claim; in fact, the power of the tests obtained by adding the variables
T T

D .rce]]r. isgood, whilethe power isvery small when thevariable r,,_; is added.

t=1 t=1

The same type of reasoning implies that the quasi-Hausman tests are more powerful when modd (3) is
used for simulation instead of model (2), and the results again support our conclusion.

Finally, Verbeek and Nijman (1992) also computed the power for the Lagrange multiplier test and
found that it is good in both simulations. In fact, the Lagrange multiplier test is the only one of the three tests
used that correctly takes account of the joint specification of the model of interest and sel ection mechanism.

It seems that the simulation results obtained by Verbeek and Nijman (1992) are in support of the
observation that tests trying to verify the ignorability of the selection mechanism without jointly specifying the
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model of interest and sel ection mechanism can be misleading. As these tests under-reject the null hypothesis of
ignorability, their usefulnessin the detection of the selection problem is questionable.

3. Conclusions

Rubin (1986) provesthat in order to make correct likelihood-based inference, we need two conditions:
the MAR condition and the variation-free condition for the parameters of the model of interest and the
selection mechanism. In this paper, we have defined the weak ignorability of the selection mechanism as the
set of conditions necessary and sufficient to make correct and efficient inference based on the likelihood
function. Using the terminology of model reduction theory, we have shown that weak ignorability is satisfied if
the model of interest and selection mechanism operate a statistical cut, and if the MAR condition is true. In
borrowing from model reduction theory, we have extended the definitions of weak ignorability to the pane
data case. Two definitions of weak ignorability may be given: onein terms of a joint model of interest, defined
for T consecutive waves, and ancther in terms of a sequential model, corresponding to a dynamic model of
interest and defined for a single time period. We have proved that weak ignorability for a joint model of
interest requires a MAR condition and an initial cut, whereas weak ignorability for a dynamic model requires a
sequential cut, a Granger non-causality condition and a sequential MAR condition. Moreover, we have shown
that, if the model of interest is conditional on a set of explanatory variables, then some additional conditions
are necessary. Subgtituting MAR with MCAR in the definition of weak ignorability, we have obtained the
strong ignorability definition, which is the condition ensuring a correct inference for any type of inference
methodol ogy.

The extension of weak and strong ignorability to the case of dynamic pand models has allowed us to
emphasize the failure of some tests proposed in the literature to verify the MAR and/or the MCAR conditions.
Indeed, we have proved that the null hypothesis of some tests is given by an assumption that is not hecessary
for MAR and which is necessary but not sufficient for MCAR.

Furthermore, the formal definition of weak and strong ignorahility has helped us to emphasize some
of the limitations of the MAR and MCAR definitions given by Robins and co-authors, and to disentangle some
of the misunderstandings that occurred between Holland and Granger concerning the concept of causality in

the causal inference.
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Appendix A: Definition of CAR following Heitjan and Rubin (1991)

Heitjan and Rubin (1991) consider a general coarsening mechanism f(rly; ¢), in which r is a variable
indicating the level of coarsening. For example, if thereis only a level of coarsening r, is a dummy variable
and we assume that y is coarsened if r=0 and perfectly observable if r=1. When r=0 we have a piece of
information about y that is not precise. For example, in the case of missing data, y is not observable; in
grouped data, y is known to belong to a sub-space of its domain; in right censored duration data, y belong to

(c,>) where cisthe censor value. In general coarsened data occur when we do not know the exact value of y,
but we know that y belongs to a sub-space of Y. Let y be the coarse variable, which defines the sub-space to
which y belong, then Yy =y whenr=1and ye B c Y if r=0. In the case of missing data B=Y ™ and it is often

equal tothe entire space Y .

More generally, r may be a continuous variable, with a sample space given by R, that determines the
coarsening mechanism, so that y can be expressed as a function of y and the variable r, 37:\7(y,r) . The

distribution function of r given y, f(rly; @), is the process that determines the level of precision in measuring y.
In the case of missing data the coarsening mechanism is a selection process or missing data mechanism, in the
grouped data it is a grouping mechanism, in the causal inferenceit is an assignment process, and so on.

The definition of coarsening at random (CAR) given by Heitjan and Rubin (1991), that generalizes
the missing at random (MAR) given by Rubin (1976), is the following one: y is coarsened at random if, for

each fixed value Y, f(rly; @) takes the same value for al ye 37:\7(y,r) .
The MAR definition (1) given in Section 2 is equal to the MAR given in Heitjan and Rubin (1991). In
fact when y is observed, y isnot an interval but a point, so the requirement that f(r|y; ¢) takes the same value

for all ye 37:\7(y,r) is always satisfied. Therefore the Heitjan and Rubin (1991) MAR definition reduces to

require that f(rly; ¢) takes the same valuefor all y™e Y™, that is the definition of MAR in Section 2.
The CAR condition together to the variation free condition ensure that the censored likelihood, L,
and the likelihood with informative missing data, L,, are equal. Indeed the two likelihood functions are

respectively given by the following expressions:
1-r
L= f(y:0)dy= (1 (y°;0))r{ [f (ym;e)dme , (1)
v ym

and

L =Hf(y,r;9,¢) f(yly,rhrdyz-[f(y;e)jf(y|y,r)f(r | y;¢)drdy =
y ; )
:1 f(y;0)T(Y1y:¢)dy,
y

where the integration is respect to the underlying dominating measure, a Lebesgue measure or a counting

measure, and f(y|y,r) isthe conditional degenerate distribution of ¥ givenyandr
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- 1if y=Y(y,r
f(Flyn=(t T Y=rn.
0if y=Y(y,r)
Under CAR f(rly;¢) takes the same vaue for any ye )7=\7(y,r) So)

jf(37|y,r)f(r|y;¢)dr=f(37|y;¢) is a congtant, say «, for any yey and we can rewrite (2)

as{aj f (y;H)dyJ, that is proportional to the likelihood (1). The proportionality between (1) and (2) under
y

CAR ensures that inference on € based on the censored likelihood or on the likelihood with informative
missing data is equal.

Sometimes r is unknown. An example is given by the case of a survey in which some units give a
rounded response and some other give the exact value, but we cannot distinguish between the two types of

units. When r is unknown, the definition of coarsened at randomis: y is coarsened at random if, for each fixed
value y, f(’yly;q)):jf(yly,r)f(r ly;4)dr takesthe samevaluefor al ye §=Y(y.r) .

For a formal proof of the equivalence between inference based on likelihood (1) and (2) see Heitjan
and Rubin (1991), for detailed examples see Heitjan (1993).

Appendix B: The case of a deterministically censored variable

In this section we present a very simple example of a censored variable to show that MAR condition
does not require that the selection mechanism is constant for any y but only for any ye Y™.

Let y be a continuous variable with support Y = (—e,+) and let us assume that we observe y only

when its value is lower than or equal to a constant ¢, then Y™ =(c,)cY andy is MAR because for any

value greater than c the probability to observey isequal to 0.
In this specific example the likelihood (1) in appendix A becomes

J f(y:@)dy=(f(y°;e)){ jf(ym;e)dme =(t(y0)) @-F(eo)™".
y ym

The selection mechanism f(rly; @) is deterministic, in fact

_ |1 if y<c with probabiltiy 1
10 if y>c with probabiltiy1’

1
When y is missing f(y|y™g)=> f(Y"|y",r)f(r|y™¢)=1 for any y"eY™, when y is
r=0

1
observable f(y|y%¢)=> f(y°|y°,r)f(r|y®¢) isasoequal to 1. This alows us to write the informative
r=0

likelihood (1) as

[0 T lyiody =(f(y*:0)) - F(co),
y

which isequal to the likelihood with informative missing data (2).
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This equality proves that the weak ignorability of selection mechanism does not require that the

sel ection mechanism be constant for any ye Y, but only for any ye Y™.

Appendix C: The sequential CAR condition in Gill and Robins (1997)
and our sequential MAR condition

A variable X is said to be coarsened if we cannot observe its exact value, but we know the subset of the
sample space to which it belongs. In other words we observe a coarse variable y, instead of X, which defines
the subset to which X belongs.

Following Gill and Robins (1997) we assume that “...  is a coarsening of an underlying random
variable X. We suppose that X takes values in a finite space E. Its power set (the set of all subset of E) is
denoted by €. So  takes valuesin €\{ ¢} and Xey with probability one.”

Definition of a k-sequential coarsening: (Gill and Robins 1997) “We say that the random sets  y,,..., . ¥

with each y,. and xe&\{ ¢} form a k-sequential coarsening of a random variable X if for m=0,..., k+1,

X S Xma With probability 1 where y, ={X} and y,,, = 1 .

Definition of a k-sequential CAR: (Gill and Robins 1997) “A k-sequential coarsening is a k-sequential CAR

if, for m=1,..., k, the conditional distribution of y, given y, , doesnot depend on the particular realization
of y., except through the fact that is compatible with y.. In the discrete case, this means

Py, = A= B) isthe same for all Biin the support of z, , such that BcA.”

When the coarsening is due to the attrition problem, we prove that the k-sequential CAR definition of Gill and
Robins (1997) is equivalent to the sequential MAR definition given in this work.

Let us consider arandom sample of N units, for each unit i we observe repeatedly in time avariabley,

which takes valuesin the sample space Y, and we denote this multivariate variable y, , where T is the number

of repeated observations. If y;, is missing, then the successive variables, v, .,,...,Y; 1, ae aso unknown (this

is the case of the attrition problem). Each missing variable, y, takes value in Y, so that the corresponding

coarse variable, y , which defines the sub-space to which y belongs, is equal to the entire sample space Y. Let
X =[Yi 1, Yir]= Y1 then the coarsened multivariate variable associated to a unit i, for which the last k
variables are not observed, isdenoted by ¥ =[V, 1, Vi rocsrs Yrkazoeer Yol =[Yizoeos Yitoons Yoeos Y]

If wedefine y,,.... %, x inthefollowing way:
Xo=lYinsYirwn Yir ez Yro Vel

2 =Y Yir e Yiraczro Yra Yr 1 =iz Yironr Yir sz Yoo Y1
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X =X =iz Yir o Ve Y1 = Wigen Yir o Yoo Y1
then y,., < x,, forany m=0,....kand y can be viewed asthe result of a k-sequential coarsening.

To prove that y is a k-sequential CAR, we have to show that Pr(;(m = A{;{M = B) =c, wherecisa
constant, for all B in the support of ¥, such that BCA (see the above definition of k-sequential CAR).

If the first (T-1) elements of ¥, are not equal to the corresponding observed elements of y,, then
Pr(y, = Ao = B)=0; so that verifying

Pr(x, = Az, = B)=c
is equivalent to verify that
Pr(’;?T = Y|yi'1,...,yivT_1, Vi, Nyt :1):c VyreY,
that is, using the fact that (y;, =Y)=(r,, =0),
Pltir = Vira Yir P =)= Prli =Gy =1),

wherer isthe dummy indicator of response.

By analogy Pr(;(m = A{;(m_l = B) =c for all B in the support of y,. , such that BcA istrueif and only

Prlr = OfYisr Vs Voo 1 =10, =0)=
Prlr =0y Va1 =117, =0)
where t=T-m+ 1. Since Prlf,, = Oy, Y ae VoI5 =1, £0)=0 in the case of attrition, we can rewrite
the last equality as
Prlr,, =01 Yien Vi B3 ~1)=pr(r, S N e -1,

that is the sequential MAR condition given in Section 2.6, r; Ly, t|rI YT

If we consider a more general response pattern, possibly non-monotone, then the definition of k-sequential
CAR given in Gill and Robins (1997) does not correspond to our definition of sequential MAR.
Indeed, the k-sequential CAR condition for non-monotone response patterns is equivalent to the

following condition,
(r _qyll’ylt’ |t11! |1;+1)_ (r _qyll’ |t11! |1;+1).
while our sequential MAR definition is

(r —O|y,1,y,t,,1)_ (r —O|y,1,,1).
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