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Abstract

The techniques of simple random sampling are seldom appropriate in the em-
pirical analysis of income distributions. Various types of weighting schemes are
usually required either from the point of view of welfare-economic considerations
(the mapping of household/family distributions into individual distributions) or
from the point of view of sample design. The different types of weights have dif-
ferent implications for the sampling distribution of estimators of welfare indices.
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1 Introduction

The analysis of economic welfare sometimes proceeds as though individual income
receivers were identical in every respect other than income. There is of course
a substantial literature on the problems of comparing income levels between in-
come receivers with different needs’ levels, and on the meaning to be given to
“income” and “income receiver” in any particular application. However, some
of the statistical issues that arise naturally in connection with data on an essen-
tially heterogeneous population have been relatively neglected in the standard
approach to the problem of computing welfare indices. The aim of this paper is
to show how, for various models of population heterogenity, these issues may be
treated within a unified framework, and why the properties of the estimators will
differ between models.

A common approach to welfare measurement in practice is to take a vector
of incomes x = (21,9, ...,x,) and plug it into a welfare index: such an index
is essentially an ethical aggregation function such as an explicit social-welfare
function (SWF), an inequality measure or a poverty measure.! More sophisticated
analysis also takes account of the sampling distribution of the welfare statistic
expressed as a function of x, and uses information about the sample to estimate
the standard error as well as point estimates of welfare statistics. However, in
many economic applications even this more sophisticated approach is inadequate
because is predicated on the assumption that one is sampling from a univariate
distribution of incomes. Because of the welfare-theoretic views which one is trying
to incorporate, or because of the way in which data on income distribution are
typically collected, one very often has to deal with weighted data. In these
circumstances the appropriate empirical model is of sampling from a bivariate
distribution, where one takes account of the structure of weights in the sample,
and of the possible interaction of these weights with income. The purpose of this
paper is to examine the problems that arise from treating welfare measurement as
a problem of computing estimates based on samples from a bivariate distribution
of incomes and associated sampling weights. Although the issues raised are not
always explicitly addressed, the problem of weighted estimation is in practice
quite common when dealing with data on income distributions, and has to be
undertaken for a variety of reasons. The required weights come from a number of
sources which should be distinguished from each other when estimating welfare
statistics empirically:-

e Welfare-consistent weighting typically arises from the fact that standard
welfare economics is founded upon an individualistic approach whereas mi-
crodata sources on income are often based on households or families. Given
some assumption about the distribution of income within the household

IFor examples of explicit SWFs of the sort discussed below see, for example Jenkins (1997),
for inequality indices see Cowell (2000), and for poverty indices see Ravallion (1994).



(typically equal sharing), weighting converts the observed household distri-
bution into the personal distribution required to compute a welfare index.

e Sample-design weights are commonly used in situations where estimation
has to be from a non-random sample. A standard example is the procedure
of stratified sampling where sub-samples of given size and differing char-
acteristics are merged in order to ensure a sufficiently large subsample of
respondents with a given type of attributes.

e In some types of estimation problem the size of the sub-samples may be de-
termined endogenously, on the basis of some observed attribute that char-
acterises members of different groups. An important example of this is
“grossing-up” to deal with problems such as differential non-response. This
is a technique that is often employed in applied statistics and econometrics,
but one where the statistical properties are sometimes inadequately consid-
ered. In this case the sample is weighted so that the proportions of obser-
vations in the sample with a given attribute correspond to the proportion
of the population that is known to possess this attribute: the subsamples
are determined by the numbers falling into the specified attribute class.

In practice one may have to deal with all of these features simultaneously
within the same model of applied welfare. Previous papers have addressed spe-
cific aspects of the weighting problem for particular types of welfare index.? In
this paper we adopt a general approach: we examine the role of each of these
three different types of weights in the estimation problem and investigate the
quantitative importance of mis-specification of the type of weights in making em-
pirical welfare comparisons. We shall show that although the formulae for the
point estimates of welfare measures are essentially the same across the different
types of weighted-data problems, there are important differences in the associated
sampling distributions. This can lead to a situation where, for a given welfare
index, the differences in the standard errors corresponding to the different types
of weights can be quite large.

2 The Approach

The essential feature of the problem that we shall discuss is that each person is
potentially distinguished not only by his “income” x (used as the indicator of in-
dividual economic status in the welfare measure) but also by some other attribute

2See, for example Cowell (1989) on decomposable inequality measures with household (ran-
dom) weights and Howes and Lanjouw (1998) on poverty indices with weights to allow for
stratification and clustering. The poverty case is relatively straightforward because the re-
quired index can be expressed simply in terms of means. The inequality case is considerably
more complicated because the indices involve (functions of) other moments besides means.



a that may affect the way in which we choose to aggregate the information about
the income distribution. To implement this in our model we make the following
assumptions:

Axiom 1 Each member of the population be characterised by a pair (a,x) where
ac ACRand x € X CR.

Axiom 2 The joint distribution of attributes and income in the population are
given by a function F : A x X > [0,1] belonging to the class § of bivariate
distribution functions with finite means and variances.

Axiom 3 The welfare indez is subgroup-decomposable on § (-, p).

Note that the specification of the set of attributes A in Axiom 1 encompasses
a variety of cases that are relevant to the applied economics of income distribu-
tion — for example it could be a doubleton (males and females), a subset of #
(a monetary measure of needs) — and that this specification can be relaxed with-
out damaging the essential argument which follows. Axiom 2 encompasses both
continuous and discrete distributions. Axiom 3 means that, for the subfamily of
distributions with a given mean, there is an implied SWF that can be written as
an additively separable functional of the income distribution; the welfare index
of interest can be written as some function of this SWF that may depend on the
mean (Ebert 1987, Blackorby and Donaldson 1978, Blackorby, Donaldson, and
Auersperg 1981, Shorrocks 1984). This has a number of practical advantages
when dealing with data from a heterogeneous population.?

To implement the decomposable welfare index we introduce two important
concepts. The weight function w : A — R, assigns the “importance” of each
income-receiving unit in the distribution. Given the class of functions p =
{¢: X — R| ¢ is increasing and concave} the evaluation function ¢ € p assigns
an importance in terms of welfare to any given income value. The weight function
will be determined by the nature of the particular problem of welfare analysis
under consideration and the assumptions to be made about the information con-
veyed by personal attributes. The issue of specifying the set A can be subsumed
in the specification of the weight function: in principle, we can think of the het-
erogeneous population as being distributed either by (attribute, income)-pairs,
or by (weight, income)-pairs. Welfare can be represented as a weighted sum of
the evaluations of individual incomes.

For any ¢,r € {0,1,2} and ¢ € g define the following weighted moments
about zero

oo = [ wla)'o(a)dF(a.) 1)
Wgr = /w(a)qachF(a,x) (2)

3See Coulter et al. (1992).



The moments p9, 11 have a special significance for welfare measurement: the
first can be interpreted as the “effective population size”,* and the second as
“effective total income”; mean income is given by p11/u19. The welfare measure
can be taken as a functional defined on the space of distribution functions, W :
§ — R. Because we assume that the welfare measure is fully decomposable, and
because the desired welfare index may also be a function of mean income, and the
implicit population size, a typical welfare index for a distribution F' is implicitly

defined by a function : R, x X? +— R thus:

W(F) = ¢(p) (3)

where p 1= (10, f111, 1) is a vector of weighted moments. Indeed the expression
(1) can be taken as an elementary welfare index in its own right, given appropriate
properties of ¢: other welfare indices — such as measures of inequality and poverty
— can be represented in a form such as (3).

Assume that the attribute a is observable, and that a sample of n < oo
observations {(a;,x;) : i =1,2,...,n} has been drawn from F’; denote the sample
distribution by F™ .5 Our immediate task is to specify estimators of welfare
measures, and the sampling variance of the estimates. The estimates of the
moments about zero (1), (2), and of welfare (3) from the sample F(™ are given
by

n

mgs = Y w(a;) () (4)

Mgy 1= Z w(a;) ], (5)
W =W (F™) = ¢(m) (6)

where m := (myg, m11,m1p). The sample statistic W will provide a consistent
estimator of W (F) if the sample is randomly drawn.® Using the definitions:

¢(z) = z¢(x) (7)

¢ () = ¢(x)? (8)
we may also state the following asymptotic result on the sampling distribution
of the estimate of the welfare index:

4If income-receivers are households and if the weight on each observation corresponds to
the number of persons in each household, then p¢ is exactly the number of persons in the
population.

SFormally F(™) := 157" A, .,) where Ay is a point mass at y.

6This does not require that the sample design be simple random sampling. If the observations
are iid according to F then, by the Glivenko-Cantelli theorem, the empirical distribution F()

tends to F as n — oo, and so the index W(F (")) becomes W (F) (Victoria-Feser 1999).



Theorem 1

Vn[(m) —(p)] ~ N (0,nV) (9)
where ]
V=4, Sy, (10)
H20 — M%o
3= H21 — H10 fiar — 13, , (11)

H2¢ = HigHi0 Hag = Mgkl fhyo — #if)
Y = 0Y/0p and ), is its transpose.

Proof. Given the definition of m and that F™ is randomly drawn we know that
as n — oo

Vnm — p] ~ N(0,%) (12)

where X is the covariance matrix with typical element ¥;; = n cov(my;, my;),
i,7 =0,1,¢ . Hence, applying the 6-method we have (9), (10) — (Rao 1973, pp
387-388). W

V is the variance of the welfare statistic W under the assumed sampling
scheme. T'wo remarks are appropriate here. First, the result can be extended to
cardinalisations of the welfare measure that are transformations of (3) and (6): in
effect one modifies the partial derivatives 1, by the slope of the transformation.”

Second, the fact that ¥ is a function of the moments involving ¢ and ¢ (derived
from 1) means that the value of V' in (10) depends on the way in which the
individual weights are correlated with income and with the income-evaluation
¢. A similar point arises if we consider the corresponding sample estimate of V'
which depends on the modified form of (11) where the p-terms are replaced by
their m counterparts from (4), (5). This correlation of w with = depends upon a
number of fundamental issues including sample design and inherent population
heterogeneities which one tries to take account of in welfare measurement.

"A simple example can be found if one puts ¢(x) = log(z) in (4) to yield two commonly
used and ordinally equivalent inequality measures. The mean logarithmic deviation index of

inequality is
log <&) _ g
K10 H10

Applying the transformation T'(-) := 1 — 1/exp(-) to this index gives the Atkinson (1970)
inequality index with inequality aversion parameter 0:

1~ exp (m) Fao
H10 /) H11

Clearly the first derivative of T is 1 — 7. We find that z/JL for the first inequality index is
(—pig ity ot — pig ) and so Yy, for the second inequality index is just 1 — 7' times this,
e, exp (pigtito) (AL s ORI Mgl Bt — K11)-



In sections 3 to 6 we consider three important cases that differ in the nature
of the weights. Although all three cases yield the same point estimates of the
welfare index we will find that they have different sample variances.

3 Welfare-consistent Weighting

In this case the weight w is determined by an individual observation in the sample:
typically w corresponds to the number of persons in the household who are to be
counted as income receivers (Cowell 1989). Although the household or the family
may be the formal income-receiving unit, it is the implicit distribution amongst
persons which is important in welfare measurement: so, for example, a family of
three which receives an income that is equivalent to $20 000 per person should
be counted as three separate incomes of $20 000 each (Cowell 1984, Danziger
and Taussig 1979). We can handle this by allowing the weighting function to be
proportional and interpreting the attribute a in a particular fashion. So for all
(aj, ;) € F (") we may write a; = w; where q; is the household size of observation
i. Consider the special case of (3) that uses normalised weights for population
and sample:

o(a) = 2@
w(a) = o (13)
w(a;) = “;ETO) (14)

and take the family of welfare measures W* given by

W*(F) :== /w(a)qﬁ(a:)dF(a,x) . (15)

for any ¢ € . The corresponding sample estimate will be

n

wr (F(n)) ‘w = Zw(ai)¢($i) : (16)

i=1

The weight on each observation in equation (16) is determined by the particu-
lar value of the a-component of the observation: hence the expression “welfare-
consistent weighting” for this type of problem. In some applications the welfare
index is defined with reference to incomes that have been standardised relative
to the mean, so that the term z in (15) is replaced by pui9/p11. However, this
leads to a few extra complications in the variance formulae which follow, without
yielding any great additional insight: we give the full formula — for the mean-
standardised case — for the specific example reported in section 7 below.
Now consider the sampling distribution of the estimator in (16).



Theorem 2 Under the assumption of welfare-consistent weighting W* (F (")) 18
asymptotically distributed N(W*(F),Vy) where

x () 11y
Vi :=var W* (FW)| - = =—Fvar(a)
n 1o
2 pg
———5- 129 — Pgtiro]
n pi
11 ,
L PP 17
L [MQ 5 um} (17)

Proof. Given that F'™ is an unbiased sample, it is clear that

EW* (F™)|. =W*(F) (18)
Moreover, noting that
e
8¢ Hig
— = 0 19
| 0 (19)
K10

var(a) = pao — piy

and applying (9) — (11), Theorem 1 implies (17). B

Notice the three separate components to (17) including the variance of the
attribute (weight), the covariance of the weight with the evaluation of income
¢(z), and the variance of the evaluation of income. Evidently if the data were
unweighted the first two of these terms would vanish. It is also evident that the
direction of the influence of these two terms on the resulting terms depends on the
way in which incomes have been imputed to households with different a-values:
if = is taken to be total household income, then presumably there will be a strong
positive correlation between w and ¢(x) (Cf the second term in equation 17),
whereas if x is income per capita this correlation could be negative. Thus the
variance of the estimated welfare index in the case of welfare-consistent weighted
data may be larger or smaller than the corresponding variance in the unweighted
case. For an estimator of (17) from F(™ we use the sample-moment vector m
thus:

~ 1 mip Mig 1
Vi = —2 Imgg — m3y| — 2—=2 [mag — migm —}——[m:—mQ}
Y on—1|mi [20 1o m3, [mas 161M10) m3, L 2¢ 16

(20)

4 Design Weights: The Problem

For the second and third sub-cases we shall suppose that the population may
be treated as though each household consisted of a single income receiver, and

7



that the observations have been drawn — with or without replacement — from a
heterogeneous population in a way that does not correspond to simple random
sampling. Instead we assume that the population may be partitioned into inter-
nally homogeneous subgroups. The manner in which this partition is done, and
the information available about the partition is of central importance.

Let K be a non-empty index set, and suppose that the space of attributes A is
partitioned into a finite collection of subsets {Ay : k € K}, where (J,, Ax = A
and, for any distinct k& € K, Ay N Ay = (. Again assume that a person’s
attribute a is observable, and write the probability of any person’s having an
attribute a € Ay thus:

mi=Pr{ae Ay} = dF(a,x) , (21)
u(’; = B (x)dF(a,x) , (22)
% = . (z)*dF(a,x) . (23)

Because the attributes are observable it is possible to design a sampling frame
conditioned on the attribute values in the population. The number of observa-
tions with attributes that fall in class k is ny; assume that sampling is random
within each class k so that for any population member j with income-attribute
pair (a;, z;):

1
Pr{(a;z;) € F™|a; € Ay} = — (24)
N
Furthermore we shall write the probability that a sample observation ¢ has
an attribute that falls in any one of the K attribute classes Ay thus:

pr :=Pr{a; € Ay} (25)

— the same for all i. By definition we have

>0, pe >0, > m=1, ) p=1 (26)

keK keK

Note that each observation belongs to exactly one attribute class, and that m
refers to population probabilities while p; refers to sample probabilities. Since
sampling is random within each class the sample moments

m(’; = Z o(z;) (27)

k= 3 o)’ (28)



will be unbiased estimates of their population counterparts (22), (23). Writing
the distribution of x within attribute class k as Fj it is evident that we may
express the sample distribution of = (for any observation in the sample) as

F(z) = peFi() (29)

which will not be the same as the distribution of x in the population, since in
general the probabilities 7 and p; are different. What of the sample probabili-
ties themselves? The specification of these, and the specification of appropriate
estimators for them, will depend upon the method by which the membership —
and hence the size — of the attribute classes is to be determined.

The main variants of this — cases two and three mentioned above — are dis-
cussed separately in sections 5 and 6.

5 Design Weights: Exogenous Attribute Classes

In this case the size of each attribute class within the sample (in other words
the set of sample observations that lies in the subset Aj) has been exogenously
fixed a priori, so that the numbers nj, are non-stochastic.® This is akin to simple
stratified sampling, and should be distinguished from the case of grossing-up
weights discussed below. Using (21) and (25) we may define the stratification
weight s; for each observation ¢ with reference to the attribute class within which
i falls:

§; 1= ULt a; € Ay (30)
Pk

for all 7, k. Information about the 7, may be available independently or these
probabilities may themselves have to be estimated, a point to which we shall
return; for the moment we shall assume that they are known. Because the sub-
sample sizes are independently fixed:

N
P =" (31)
These weights are non-stochastic and so, given that the sample has been randomly
drawn within each of the Ay, the weights s; will automatically sum to n. Contrast
this with the case of welfare-consistent weighting where the sum-of-weights is
stochastic.
Now consider the problem of estimating the welfare measure W*(F) in this
case. We require the statistic

n

W (F)|, =) sid(w:) . (32)

i=1

8See for example Beach and Kaliski (1986).



In view of (30), (32) implies

w* ( Z Z . (33)

]CGK al €A

Formula (32) for the point estimate of the welfare measure in this case is similar
to that for the welfare-consistent weighted case (16): one replaces the w(a;)
terms by s;s. However the sampling distribution of this statistic is different in an
important respect. Theorem 1 is not applicable, as it stands, because sampling
is no longer random here. Instead we have:

Theorem 3 Under exogenous-attribute class weighting W* (F (")) 15 asymptoti-
cally distributed N(W*(F),Vy) where

[Z Mf [114) ] nglz%[ﬂkﬂif- (34)

kGK

Proof. See Appendix.
Notice that the expected value of the estimate may be written in terms of the
conditional moments (22) as

E W (FO)], = o = 3 rant] (35

keK

and that an estimator for V; can be found by replacing n by n — 1, and the
population conditional moments by the sample counterparts, given in (27), (28),
thus:

A Tt (| — 3 [mmt]? (36)
Ton—1 rer PF ¢ i ek 'k e

We shall consider further the components of this expression for the variance in
more detail after we have introduced the case in section 6.

6 Endogenous Attribute Classes

In this case membership of the attribute classes Aj is not determined by the
sample design, but rather by inspection of observations in the sample. So, al-
though the sample size n is exogenously fixed, the numbers n; (which sum to
n) are themselves stochastic, and the probability of inclusion in the sample py, is
no longer automatically equal to the sample proportions n/n, as in the case of
exogenous attribute classes, above.

Using (21) and (25) we may then define the grossing-up weight g; for each
observation ¢ with reference to the population probabilities (m) and the sample

10



probabilities (py) for the attribute class within which ¢ happens to fall, for all
1, k:
Pk
However, the sample probabilities px will be unknown in this case, because
we do not have an exogenously determined sampling frame, as we did in the case
considered in section 5. However the numbers n; — which are random variables
— may be used to estimate them. We shall assume that the design of the sample
is such that: n
Vk € K : plim (?k) =py - (38)

Thus, when we aggregate over the grossing-up weights:

- T
Z gi ‘= nk_k (39)
i=1

kex Pk
~n (40)
with equality for large samples.

Now let us consider estimation of the welfare measure W*(F') in this case.
We require the statistic

F(n Zgz xz (41)

which is again of the same form as (16) and (32) — the corresponding equation
in the case of individual weights. In view of (37), (41) also implies (33).

Theorem 4 Under endogenous-attribute class weighting W* (F (")) 15 asymptot-
ically distributed N(W*(F),V,) where

[Z ,u, [116)] ] : (42)
" lkex P
Proof. See Appendix.
Using definitions (4), (27), (28) and also the estimator
gi = LT a; € Ay (43)

ng

an appropriate estimator of (42) is

N 1
Vo = — Zgz ¢(x;)? m1¢]2] (44)
1
= —— |mys — [l (45)
o 1 n o 2
LkEK
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7 Comparison of Variance Formulae

We now have three different formulae for the variance of the estimate of the
welfare index in the three cases of the weights. Let us see how they compare.

First, notice that the variance expression for the grossing-up case (42) contains
fewer terms than the corresponding formula for the welfare-consistent weighted
case — equation (17) — since the variance-of-attributes and the attributes-income-
evaluation covariance components are not relevant to the “grossing-up” case. We
have:

1 it 21 _ 2
Vi = Vs = —— [H20 — Hip| — — =3 [H2p — Hagho] - 47
n Nilo [ 10] n #?0 (120 oH10] (47)

Now consider the relationship between the sampling variance of the welfare
statistic in the case of endogenous attribute classes with the exogenous case dis-
cussed in section 6 above. Comparing expression (42) with (34) we find, in

general:
Tk

Wy = — 48
. Pk ( )
n—1 2
Vo= Va=—5> px [wenf] - (49)
| k€K

In the case of both stratification and grossing-up weights one needs informa-
tion about the population proportions 7. It may be that the m; can be obtained
independently: for example, if the partition {Ay : k € K} corresponds to house-
hold size then we may have to hand census data on the relative proportions of
different-sized households in the population (which would yield the 7;) and which
can be compared with the proportions of different-sized households that appear
in the sample.” However, it is sometimes the case that the 7 have to be esti-
mated, along with the p;. In such circumstances then clearly there will be an
additional component to the terms in (34) and (42).

7.1 Example

The implications of this can be seen in an example using the simple welfare index
f1g. Suppose the data are in the form of Table 1, where the first v observations
have an attribute value 1, and the remaining n — v have attribute value 2, and
consider two alternative stories underlying this situation.

e A: the two groups of observations refer respectively to 1-person and to 2-
person families, and the xs refer to income per person; we are interested in
income distribution amongst persons, and for this reason we want to take
into account this information about family size.

9See, for example Atkinson, Gomulka, and Sutherland (1988).
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weight income

1 I

1 T

1 T3 v

1 T,

2 Tyt1

2 Tyy2

2 Tyis n—v
2 T

Table 1: Hypothetical distribution of (a, z)

e B: the structure of the sample is such that those with a = 1 are more likely
to be included in the sample than those with a = 2; type-1 observations
are likely to be over-represented in the sample by a factor of two when we
check the relative proportions of type-1 and type-2 cases in the population.

In each story the weight is equal to the numerical value of the attribute a.
The weights and the within-group moments are identical in each of the two cases;
and so the point estimate of the welfare measure is identical in the two cases — see
equations (16) and (41). However, when we estimate the variance of the welfare
statistic we will find that cases A and B differ by an amount given by (47), where
pio = 2— N\, piog — 43 = A — A% and X := v/n. If we further assume that the
distribution of income is the same in each of the two groups we find

1 5 pog — iy
Vo -V, = —=p2, =1 50
n'1? lf110 ( )
= ——puf —. 51

The result generalises if instead of the population consisting only of families of
size 1 and size 2 we consider a population consisting only of families of size 1 and
size H. Then (51) becomes

1 A— A2
Vi — Vo= ——p2,[H — 1] :
el =1 [H — [H — 1]\]"

(52)

Figure 1 shows, for three values of H, the bias in (52) expressed as a proportion
of n~'y3,, where p14 is the true value of the welfare index. To interpret Figure
1 note the following:

13



0.3

0.25

0.2

0.15 ~

proportionate bias

0.1 1

0.05 ~

0 01 02 03 04 05 06 07 08 09 1

Figure 1: Composition of sample (A) and the bias on estimated s.e. as a propor-
tion of nui,

e The absolute implied bias depends on the heterogeneity of the population
by size. In our example the maximum bias clearly increases with H.

e The bias is asymmetric in A: it is particularly large if the proportion of
single-person households is in the range (0.7-0.9)

e If the sample variance of my, is about two to three times + 2 » (areasonable
assumption for many practical cases) then a bias of 0.15 in Figure 1 would
imply an error of about 5—7% percent on the sample variance.

8 Conclusions

The types of weights that we have to use can significantly affect the distribution
of an estimated welfare index. We have to distinguish between the situation
of random sampling with welfare-consistent weighted data, and that of simple
data in a non-random sample. The latter case requires explicit evaluation of
the numbers pg, the probability of inclusion in different subsamples, which will
depend on the sampling procedure adopted: it matters considerably whether the
sample proportions are fixed, or are probabilistic.

Our paper is in the nature of cautionary tale, drawing attention to potential
problems. There are of course further issues that we have not addressed within
this framework. For example, in practice, one would also need to allow for the

14



interaction of clustering and weighting and the use of weights to handle simul-
taneously the issues of welfare consistency, sample design, and grossing-up. We
defer these topics to future research.
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A Proofs

A.1 Theorem 3

If the sample has been randomly drawn within each of the A; then again we find

EW* (F™M)| =W*(F). (53)

Cf. equation (18). Evaluating the required variance we have

var W* (F(") = — Z Z Pr{a; € A} | € (sio(xi)? | ai € Ay)
=1 keK
+ ) [Pr{a; € A} E (si5;0(x:)p(x;) | ai,a; € Ay)
J=1
i

+ Y Pr{a; € A E (sis;0(xi)d(x;) | ai € Ag,a; € Ap)]

teK\{k}
— [ew* (F™)]7 (54)

which, taking into account the definitions of the conditional moments (4), (5)
and of the stratification weights (30), reduces to:

R S 1 ] )

kEK keK

) — 1
=" > el — [EW* (FO)) (55)

keK (e K\{k}

from which (34) follows immediately. B

A.2 Theorem 4
If the sample has been randomly drawn within each of the Ay then once again
EW* (F™)| = W*(F). (56)

Cf. equation (18). Turning to the sampling variance of the estimate, we have by
definition:

var W* (F(”)) ‘g =& (% ZZ%%’W%W(%’)) - [5W* (F(n))]Q (57)

i=1 j=1
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the right-hand side of which, in view of the structure of the sample, may be

written

— Z Pr{a; € Ac} € (g70(x:)? | a; € Ay)

kEK

+ZZ£ si0(x:)) € (s;0(x)) — [EW* (FON]* .

i=1 j=1
J#i

Using definitions (22), (23) and (37), we find that (58) yields

* n Q0 ]' * n 2
var W F( Zpk {_/lj ,u,—g[é'W (F( ))]

kGK

which immediately gives (42) B
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