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Abstract 

Development of microsimulation models often requires reweighting some input dataset 

to reflect the characteristics of a different population of interest. In this paper we explore 

a machine learning approach whereas a variant of decision trees (Gradient Boosted 

Machine) is used to replicate the joint distribution of target variables observed in a large 

commercially available but slightly biased dataset, with an additional raking step to 

remove the bias and ensure consistency of relevant marginal distributions with official 

statistics. The method is applied to build a regional variant of UKMOD, an open-source 

static tax-benefit model for the UK belonging to the EUROMOD family, with an 

application to the Greater Essex region in the UK. 

 

1. Introduction 

This paper describes a novel approach to reweighting the input population of a 

microsimulation model. The specific application is a regional variant of UKMOD, an 

open-source tax-benefit model for the UK belonging to the EUROMOD family (Richiardi 

et al., 2021), but the approach is of more general interest.1 UKMOD is based on 

representative input data for the UK at a macro-regional level (the 12 government office 

 
1 For instance, the methodology is being applied by the research team to the construction of a regional 
input population for a dynamic microsimulation model.  
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regions). We aim at building a regional variant of UKMOD for the Greater Essex region, to 

explore the distributional impact of the national tax-benefit policies on the Essex 

population.2 The problem is similar to that of Panori et al. (2017), who developed a tax-

benefit model for Athens, and Boscolo et al. (2025), who developed a NUTS-3 version of 

the EUROMOD tax-benefit model for Italy. However, these studies could only exploit 

information from marginal distributions to calibrate the model to the sub-regional level – 

from the census in the case of Panori et al., and from both the census and tax data in the 

case of Boscolo et al. – as the data providers typically limit the number of disaggregating 

variables for which statistics are made available, on any variable of interest.  

As it is customary for aligning multivariate distributions (the original survey data, 

representative at the national or macro-regional level) to target marginal distributions 

(census and tax information at the sub-regional level), these studies used Iterative 

Proportional Fitting (IPF), also known as raking. For our exercise, in addition to census 

information and other aggregate information at the sub-regional level coming from the 

national statistical office, we can exploit a rich commercially available regional 

household dataset. Our target is therefore a joint distribution of individual and household 

characteristics for the Greater Essex region, rather than a set of marginal distributions. 

This additional information obviously improves the quality of the reweighting exercise, 

while at the same time suggesting to go beyond IPF. Following Zhao et al. (2017), we apply 

propensity score matching using a variant of decision trees, namely Gradient Boosted 

Machine. Marginal distributions from the target dataset are however different in 

significant ways from those coming from official statistics. We therefore apply a final 

step of raking to obtain an input population representative of the Greater Essex region, to 

the best available evidence.  

Our exercise involves reweighting the original input data rather than constructing a fully 

synthetic population. However, the machine learning methods employed here are also 

used for building synthetic populations, see for instance Zhou et al. (2022).  

 
2 The term ‘Greater Essex’ refers to the administrative region and includes the historical county of Essex 
plus the unitary authorities of Southend-on-Sea and Thurrock.  
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Reweighting approaches are also common in the literature on income inequality. 

DiNardo, Fortin and Lemieux (1996) introduced a method to reweight the sample 

distribution to create counterfactual scenarios under alternative covariate 

compositions. Later work, including Recentred Influence Function (RIF) regressions, 

builds on this approach by linking distributional statistics to covariates using parametric 

weights (Fortin, Lemieux and Firpo, 2010). Sologon, Doorley and O'Donoghue (2023) 

apply these techniques within a microsimulation-decomposition framework to study the 

drivers of income inequality across countries and over time. Their approach uses 

parametric models to simulate counterfactual income distributions, isolating the 

contribution of demographic, labour market, and policy-related factors. While their 

framework provides valuable insights into policy and structural effects, it relies on 

conventional reweighting techniques that may be sensitive to model specification. In 

contrast, the Gradient Boosted Machine is general in terms of the type of data it can 

handle (e.g. numerical, categorical), fully non-parametric and therefore flexible to adapt 

to whatever non-linear features of the data.  

The rest of the paper is structured as follows. Section 2 describes the data and key 

challenges. Section 3 outlines the methodological approach, including gradient boosted 

machines and propensity score estimation techniques. Section 4 provides an overview 

of the implementation pipeline. Section 5 details the data preparation process and 

model training procedures. Section 6 evaluates matching quality through overlap 

analysis, covariate balance diagnostics, and effective sample size calculations. Section 

7 presents macro-validation results comparing UKMOD-Essex outputs against 

administrative benchmarks for employment and self-employment income. Section 8 

provides some final discussion points. 

2. Data 

UKMOD input data are derived from the Family Resources Survey (FRS) and are 

representative of the UK population at the level of the former government office regions 

(GORs). In our application we use the 2022 dataset, comprising observations for 53,577 

individuals in 25,045 households for the whole of the UK, of which 5,158 individuals in 
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2,352 households for the East of England.3 More detailed geographical information is 

available in the secure version of the FRS, which could be used to build new input data 

for UKMOD, but sample sizes at the sub-regional level become too small. In contrast, 

Experian is a commercially available household-level dataset with a much larger 

effective sample size and broader local coverage, capturing nearly all households at the 

postcode level. The 2023 wave of the Experian data contains information on 1,861,043 

individuals in 738,993 households for the Greater Essex region, practically a 100% cover 

of the Essex population.4 Differently from the FRS, Experian is not based on a probability 

sample but rather compiled from administrative records, commercial sources, and 

modelled estimates; its variables may be categorised or imputed differently, and 

household definitions may not be fully consistent with the UKMOD input data. Even more 

importantly, relevant information that is requested by the tax-benefit model and is 

available in the FRS is not included in the Experian data. This makes it very difficult to 

construct input data for UKMOD from the Experian data.5 Our approach therefore 

consists in using the standard (FRS-based) input data for UKMOD and reweight it to 

mimic the target joint distribution of the common variables between FRS and Experian. 

This ensures the dataset remains comprehensive and internally consistent, retaining all 

the variables that are required by the tax-benefit model.  

In our application, we refer to UKMOD input data as ‘control’, and to Experian data for 

Greater Essex as ‘treatment’, The terminology originates from causal inference, a 

framework commonly used to compare outcomes between different groups. The treated 

group is to be understood as the reference or target population, and the control group is 

adjusted to resemble it. This framing allows for a straightforward application of 

established techniques such as propensity score estimation and inverse probability 

weighting. 

 
3 We also reweighted the 2023 UKMOD input dataset, with similar performance. Both datasets are 
publicly available, see Section 8. 
4 According to data from the Office for National Statistics (ONS), the population of Greater Essex in March 
2023 comprised 1,841,192 individuals in 771,189 households. 
5 Using the Experian data as input for UKMOD would also have consequences in terms of how the data 
can be shared with users of the model, as the data is not publicly available. 
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Propensity scores quantify the likelihood that a household belongs to the treated group, 

conditional on its observed characteristics. These scores guide the reweighting process. 

Observations that more closely resemble the target group receive larger weights, while 

those less similar contribute less to the final estimates. 

3. Methods 

We use a reweighting strategy involving two-steps: estimating the likelihood of each 

household appearing in the target dataset (propensity score estimation) and adjusting 

the data using Inverse Probability Weighting (IPW). A Gradient Boosted Machine (GBM) 

model is used to estimate propensity scores, the probability that a given household 

would appear in the treated dataset, conditional on observed characteristics. The GBM 

model incorporates a wide range of covariates, including age, tenure, household size, 

employment status, equivalised income, and the presence of children, along with 

interaction terms. 

Traditional models, such as logistic regression, assume linear, additive relationships 

between variables, an assumption that often overlooks important interactions or 

nonlinear patterns. Tree-based models such as Gradient Boosted Machines and 

Random Forests are well-suited to address this complexity. They capture higher-order 

interactions and nonlinearities directly from the data, producing more reliable 

propensity scores that reflect realistic patterns in household-level characteristics. In the 

following we briefly describe both methods, in order for the reader to gain an appreciation 

of the commonalities and differences, and the rationale behind our choice of GBMs. 

Gradient Boosted Machines and Random Forests 

Gradient Boosted Machines and Random Forests are nonparametric methods, meaning 

they do not assume a fixed functional form between covariates and treatment 

assignment, and are capable of capturing complex, nonlinear relationships and higher 

order interactions. Recent evidence shows that these models improve covariate balance 

and reduce bias compared to standard parametric approaches (Lee, Lessler and Stuart, 

2010). GBM in particular has become a widely used method for propensity score 
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estimation in health and social science applications due to its strong performance in 

reducing imbalance (Leite et al., 2024). 

Gradient Boosted models and Random Forests also provide a practical solution to the 

problem of missing data by incorporating surrogate splits, which enable the model to 

utilise incomplete cases without requiring imputation. This enables robust estimation 

without compromising the sample size. 

Random Forest builds many decision trees on bootstrapped samples of the data and 

averages their predictions to improve accuracy and reduce variance (Breiman, 2001). It 

is relatively robust to overfitting, handles missing data through surrogate splits, and 

typically requires minimal tuning. GBM by contrast, builds trees sequentially, each one 

improving on the residuals of the previous, which makes it more sensitive to nuances in 

the data but also more prone to overfitting if not properly tuned (Friedman, 2001; Cortes, 

Mohri and Storcheus, 2019). 

In this context, both models estimate the probability that an observation belongs to the 

treated group, which is then used to compute inverse probability weights. GBM is often 

preferred when the goal is to optimize prediction quality for weighting, because its 

sequential learning approach (boosting) is typically better at correcting systematic 

prediction errors than Random Forest's averaging approach (bagging). 

However, Random Forest remains a strong alternative when interpretability, stability, or 

runtime is a concern. The choice between them ultimately depends on the balance 

between flexibility, interpretability, and computational cost required for the task at hand. 

Table 1 summarises the differences between the two methods.  

Table 1: Comparison of Random Forest and Gradient Boosted Machines 

Feature Random Forest 
Gradient Boosted 
Machine (GBM) 

Summary Comparison 

Tree Building 
Approach 

Bagging  

(parallel tree 
building) 

Boosting 

 (sequential tree 
building) 

Random Forest builds all trees 
independently and in parallel, so there’s no 
learning from previous errors. 
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Feature Random Forest 
Gradient Boosted 
Machine (GBM) 

Summary Comparison 

GBM learns from previous errors in a step-
by-step manner, helping refine the match 
between UKMOD and Experian across 
iterations. 

Learning 
Strategy 

Independent trees 

Trees built 
sequentially, each 
learning from the 
last 

Random Forest can capture general 
patterns but is less effective at identifying 
complex multi-way interactions, 
particularly as the number of covariates 
increases.  

GBM Captures deeper, layered 
relationships, ideal for complex 
socioeconomic patterns 

Performance 
Monitoring 

Not available Built in 

Random Forest does not have built-in 
cross-validation or performance tracking 
during training. 

GBM provides detailed training 
diagnostics, including deviance plots and 
automatic stopping rules via cross-
validation. 

Scalability to 
Many 
Variables 

Struggled as 
covariates increase 

Handles many 
covariates well 

GBM maintained covariate balance and 
matching performance with over 10 
socioeconomic predictors. 

Handling 
Interactions 

Limited, often 
misses multi-way 
interactions 

Excels at finding 
subtle 2-way, 3-
way, 4-way 
interactions 

GBM picked up nuanced patterns like “FT 
employment + no young children + large 
HH” 

Final Matching 
Quality 

Adjusted covariate 
balance worse than 
unadjusted (in 
places) when using 
more than 6 
covariates 

Adjusted balance 
consistently better 
than unadjusted 

GBM consistently improved covariate 
balance across all variables, achieving 
lower Standardised Mean Differences 
(SMD) than Random Forest. 

 

Propensity Score Estimation and Reweighting 

Propensity score estimation relies on a small set of core assumptions that must hold for 

inverse probability weighting to produce valid and interpretable results. 
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Strong Ignorability. After conditioning on observed covariates, group assignment must 

be independent of potential outcomes. The propensity score model should include all 

key factors that influence both group assignment and outcomes. While this assumption 

is untestable, it can be supported through careful and comprehensive covariate 

selection. 

Overlap or Common Support. There must be sufficient overlap in the distribution of 

propensity scores between the treated and control groups. If one group lacks 

observations in certain parts of the score range, weights can become unstable or 

extreme. This reduces the effective sample size and undermines comparability. 

Diagnostic checks and trimming are used to address these issues and ensure a reliable 

reweighting process. 

Model Appropriateness. Nonparametric models such as GBM and Random Forest do 

not assume a fixed functional form, but they still depend on a well-specified set of 

covariates. The model must be flexible enough to capture nonlinear relationships and 

interactions, without introducing excess noise or instability. The objective is to generate 

accurate treatment probabilities that improve covariate balance, not necessarily to 

maximise predictive performance. 

Once estimated, the propensity scores are used to derive inverse probability weights. To 

improve stability, these weights are stabilised and capped, preventing any single 

household from dominating the reweighted dataset. Additional trimming is applied to 

restrict the analysis to the region of common support, where treated and control 

observations overlap in their propensity scores. This reduces extrapolation and ensures 

comparability. Households with a low probability of being treated (i.e. low similarity to 

the benchmark population) receive down-weighted influence, while those more similar 

are up-weighted.6 Differences in coverage between datasets also mean that some 

 

6 Adjusting weights to ensure that their total matches the population size is a standard practice in survey 
sampling. This technique, known as calibration estimation, involves scaling weights so that their sum 
aligns with known population totals, thereby enhancing the accuracy and representativeness of survey 
estimates (Henry and Valliant ;2015). 
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control units may not have close counterparts in the treated group. The weighting 

procedure accommodates this by assigning smaller weights to less similar units, and 

where no meaningful similarity exists, based on common support thresholds, those 

observations are downweighted to zero. This ensures that only observations with 

sufficient overlap contribute to final estimates, while preserving the full structure of the 

original dataset. Adjusted weights are scaled such that their total sum matches the total 

number of households in the target population, so that aggregate estimates based on the 

reweighted dataset remain meaningful and interpretable at the population level. 

The reweighted dataset is then evaluated using several diagnostics. Standardised mean 

differences (SMD) is used to measure covariate balance before and after weighting, while 

effective sample size (ESS) is calculated to understand how much of the control sample 

meaningfully contributes to the weighted analysis. Finally, overlap is assessed to 

confirm that the reweighting process produced sufficient similarity between the treated 

and control groups across the full range of covariates.  

A key consideration in propensity score estimation is the relative size of the treated and 

control groups. Significant disparities in sample sizes can introduce estimation 

challenges, reduce model efficiency, and affect the accuracy of resulting weights. 

Empirical evidence from King and Zeng (2001) shows that when the treated data is 

disproportionately large with respect to the control group (as in our case), under-

sampling the treated group can improve estimation accuracy without sacrificing 

representativeness. Crump et al. (2009) similarly note that propensity score methods 

perform best when treated and control groups have sufficient overlap, and extreme 

imbalances can reduce this overlap, which in turn makes propensity score estimates 

less reliable. At the same time, retaining the full treated sample preserves its richness 

and descriptive power. Austin and Stuart (2015) caution against arbitrary sampling 

adjustments, emphasising that inverse probability weighting can be used to correct for 

imbalance while preserving full data integrity. In practice, the decision to under-sample 

or retain the full treated group involves trade-offs. Using a balanced subset may improve 

computational efficiency and statistical robustness, while a full treated sample ensures 

that rare subgroups are not excluded. In the application explored in this paper, where the 
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treated dataset contains over 700,000 households and the control group around 25,000, 

a balanced subsample is selected to match the employment-type distribution in 

UKMOD.  

Rather than employing formal stratification across multiple demographic and 

socioeconomic variables, this study adopts a targeted employment-type matching 

approach for several methodological reasons. First, with a control sample of 25,000 

UKMOD households, formal stratification across the full range of relevant covariates 

(age bands, tenure, household composition, employment status, and income) would 

create numerous thin cells with insufficient observations for reliable matching, 

particularly for rare household types. Second, the employment-focused sampling 

strategy directly addresses the primary policy-relevant heterogeneity between datasets 

while allowing the subsequent propensity score model to handle remaining covariate 

imbalances more flexibly through gradient boosting and interaction terms. This 

sequential approach, employment-based sampling followed by propensity score 

adjustment and population raking, achieves the distributional goals of stratification 

while maintaining methodological tractability and avoiding the over-stratification 

problems that would arise from attempting to balance all relevant dimensions 

simultaneously at the sampling stage. This approach preserves the representation of 

important subgroups while improving estimation performance in the propensity score 

model. 

To explore different reweighting outcomes, we tested several sample configurations, 

including under-sampling the treated group, keeping original sizes, and using equal 

sample sizes from each dataset. Results were evaluated using covariate balance and 

effective sample size metrics. While full-sample models (with around 740,000 treated 

and 25,000 control) offered high statistical power, they performed poorly on balance, 

with only 6 out of 12 covariates falling within accepted thresholds, particularly tenure-

related variables. Equal-size samples performed better across most characteristics, 

with all 12 covariates meeting standardised criteria. Although household size remained 

slightly imbalanced across all models, this configuration offered the best trade-off 
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between accuracy and robustness. Based on this finding, the equal-size approach was 

adopted for model estimation.  

Visual diagnostics from the full sample support this decision. As shown in Appendix 1, 

the full sample showed poor common support between treated and control groups. 

Propensity score distributions remained misaligned even after trimming, matching, and 

weighting (Figures A1 to A4). The treated group dominates the upper end of the 

distribution, and matching did not fully resolve the imbalance. While IPW and raking 

improved overlap, differences in the underlying covariate structure remained. In 

comparison, the equal-size configuration (shown in section 4 and 5) produced better 

overlap and improved covariate balance. The covariate balance plot for the full sample 

(Figure A5) shows that several variables remained outside accepted thresholds, even 

after post-raking adjustments. These results confirm that the balanced subsample 

provides better common support and model performance. 

After estimating propensity scores, weights are computed using IPW, and then 

stabilised, trimmed and calibrated through raking to match official marginal totals for 

age, employment and presence of children. After raking, all observations in the control 

dataset are retained, with final weights reflecting either their reweighted IPW-calibrated 

value or, where unmatched or trimmed, a default weight of 0. 

4. Implementation Pipeline Overview 

This section outlines the steps used to align the control dataset to the treated dataset 

using our machine learning-based reweighting approach. The process is designed to 

improve comparability between the two samples while retaining as much useful 

information as possible. 

Data Preparation 

Key variables are selected and standardised across datasets, including age, household 

size, number of children, tenure, and employment status. Disaggregated employment 

indicators and interaction terms (e.g. age × household size, retired × employed) are 

included to improve model flexibility. Equivalised income is residualised prior to 
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inclusion, to reduce its correlation with other covariates and preserve covariate balance 

during matching (see the next section).  

Variable Selection and Feature Engineering for Balance 

Variables are selected based on their relevance to treatment assignment and 

consistency across datasets. The core variables used in the model are: 

• Age (categorised) 
• Tenure type 
• Household size 
• Presence of children 
• Number of children aged 0–4, 5–11, and 12–17 
• Labour market activity (Student or Unemployed, Retired, Part time or Housewife, 

Employed Full Time) 
• Equivalised income 

Each variable is constructed to be consistent across sources. Age is grouped into 

standard brackets, tenure is recoded into harmonised categories, and labour market 

activity is converted into binary indicators. Variables are retained in their categorical or 

count form to preserve structure and avoid over-simplification. 

To improve the model’s ability to capture structural differences, a set of interaction 

terms is included: 

• Age * Household size 

• Age * Retirement status 

• Household size * employment 

• Children * Household size 

• Has children * Housewife 

These interactions help the model account for non-additive effects and improve balance 

in overlapping but distinct subgroups. All variables and interactions are used in both the 

matching and weighting steps. 

Including equivalised income directly as a covariate disrupted covariate balance and 

reduces overlap between the treated and control groups as observed in earlier versions 
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of the model. This led to poor performance in key diagnostics, particularly for subgroups 

where income strongly correlated with other characteristics such as age and 

employment status. For example, the model overemphasised differences between 

retired households and working-age households simply due to income variation, even 

when other characteristics were similar. To address this, we switched to using 

residualised income. This involved regressing income on all other covariates in the 

model, such as age, household size, tenure, and employment status, and then including 

only the residuals from that regression in the propensity score model. This removed 

predictable, linear relationships between income and those variables, allowing income 

to contribute additional information without distorting the balance of the other 

covariates.  

Propensity Score Estimation Using GBM 

Using the prepared covariates, a Gradient Boosted Machine model is trained to estimate 

propensity scores. These represent the probability that a given household appears in the 

treated dataset, based on observed characteristics. The model incorporates interaction 

terms and is tuned to maximise predictive accuracy. After estimation, households with 

propensity scores falling outside the range shared by both groups are trimmed to ensure 

valid comparisons during reweighting. 

Matching, Inverse Probability Weighting and Raking  

Treated and control observations are matched using nearest-neighbour matching with a 

caliper restriction to ensure good matches. After matching, inverse probability weighting 

is used to assign weights to the control observations. These weights reflect how closely 

each control household resembles the treated sample and allow the reweighted control 

group to approximate the target distribution. To improve stability, the weights are 

stabilised and capped at the ninety-ninth percentile. Control households in the top one 

percent of the weight distribution are trimmed, and the remaining weights are 

renormalised. As a final step, the stabilised and trimmed weights are calibrated using 

raking to ensure alignment with official population totals. Raking adjusts the weights so 

that the distribution of key characteristics in the reweighted UKMOD data matches 
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known shares from the Greater Essex population. This includes age group, household 

employment status, the presence of children, and housing tenure. Raking improves 

representativeness and helps ensure that key household attributes are correctly 

reflected in the final weighted dataset. 

Diagnostics and Validation 

Covariate balance is assessed using Standardized Mean Differences (SMD) and 

Kolmogorov–Smirnov (KS) tests before and after weighting. Effective sample size (ESS) is 

used to assess how much of the control sample contributes meaningfully to the 

weighted analysis. Overlap is checked visually using density plots and propensity score 

distributions. 

Output and Export 

Final calibrated weights from the matched and reweighted sample are merged back into 

the original UKMOD dataset to enable consistent use in UKMOD simulations and further 

analysis. This ensures that the full household-level dataset remains intact, with updated 

weights applied to each observation based on their alignment with the treated sample. 

Observations that were trimmed or lacked common support are retained with a final 

weight of 0, allowing the complete dataset to be preserved while excluding non-aligned 

cases from influencing weighted estimates. 

5. Data Preparation and Variable Selection 

Covariate Comparison 

Before estimating propensity scores, it is important to examine how key household 

characteristics differ across the treated and control groups. The following plots compare 

the distributions of selected covariates using the full samples from each dataset. These 

comparisons highlight areas of overlap as well as imbalance.  

 

Figure 1: Household size distribution, treated vs. controls 
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The distribution of household size shows notable structural differences between the two 

datasets (Figure 1). Smaller households (1–2 people) are more prevalent in the control 

group, whereas larger households (4 or more people) are more frequent in the treated 

group.  

Figure 2: Household with children, treated vs. controls 

 

 

 

 

 

 

Across all child age categories, a higher share of control households report having 

children compared to treated households. This difference is especially pronounced for 

children aged 5–11, where the gap is widest (Figure 2). 

Figure 3: Household age distribution, treated vs. controls 
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Figure 3 compares the age distribution in the two datasets. Both samples are 

concentrated in the older age brackets, but the control group contains a slightly larger 

share of households where the reference person is aged 66+. The treated group shows a 

more even distribution across working-age brackets (26–65), and (36-45).  

Figure 4: Tenure distribution, treated vs. controls 

 

 

 

 

 

 

Most households in both samples are owners (Figure 4), making up over two-thirds of 

each sample. The treated group has a slightly higher proportion of mortgaged 

households, while the control group shows a marginally larger share in the rental 

category. Overall, tenure patterns are broadly similar.  
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Figure 5: Income distribution, treated vs. controls 

 

 

 

 

 

 

The income quintile distribution shows notable differences between the two datasets 

(Figure 5). The treated group (Experian) has a larger share of households in the lowest 

income quintile, while the control group (UKMOD) is more concentrated in the middle 

quintiles. These imbalances highlight the importance of including income in the 

reweighting process, while carefully handling its influence to preserve covariate balance. 

Building the Dataset  

Before estimating propensity scores and applying inverse probability weighting, the 

dataset is prepared to ensure consistent structure and formatting across all 

observations. This involves merging the treated and control groups into a single 

household-level dataset, with harmonised definitions for each covariate. Each row 

represents a household, and a binary treatment indicator identifies whether it belongs to 

the treated group (e.g., Experian, coded as 1) or the control group (e.g., UKMOD, coded 

as 0). Core covariates are cleaned, standardised, and aligned across sources.  

 

• Household structure: household size, presence of children, number of children 
by age band 

• Demographics: age group of household members, retirement status 
• Economic activity: employment status, student/unemployed, part-time or full-

time work, income 
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• Tenure: housing tenure (e.g., owned, mortgaged, rented) 

Once the merged dataset is ready, a GBM model is trained to estimate the probability 

that each household belongs to the treated sample, based on observed covariates. 

After training, each household is assigned a propensity score, which is used to compute 

inverse probability weights. The distribution of scores is then reviewed to ensure there is 

sufficient overlap between treated and control observations, which is essential for stable 

and interpretable weighting. 

6. Propensity Score Estimation Using GBM 
Training A GBM Model for Propensity Score Estimation 

Once the dataset is pre-processed and structured, gradient boosting is used to estimate 

the propensity scores that underpin the inverse probability weighting process. A GBM 

classifier is trained using covariates that capture demographic structure, tenure, 

household composition, labour market status, and income. Interaction terms are also 

included to account for non-additive relationships, such as how employment status 

might interact with household size or retirement. 

The model outputs a probability for each household representing the likelihood of being 

in the treated group, based on its observed characteristics. These probabilities form the 

basis for weighting control units to resemble the treated sample. Cross-validation is 

used to determine the optimal number of trees, and shrinkage and tree depth are tuned 

to maximise generalisation while controlling overfitting. GBM offers flexibility in capturing 

complex nonlinear patterns without imposing rigid parametric assumptions. 

Visualising Decision Trees  

Interpretation of decision trees is often more intuitive in Random Forests, where each 

tree directly outputs class probabilities and predicted labels at each node. These models 

are widely used in applied research and offer clear, interpretable structures: nodes 

represent splits on features (e.g., Has_Children = 1), and leaf nodes contain predicted 

outcomes and class proportions. A leaf node is simply the endpoint of a path through the 
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tree, a segment of the dataset where no further splits are made. In Random Forests, this 

leaf outputs the final prediction for households that fall into that segment. 

Although our focus is on Gradient Boosted Machines (GBM), which build predictions 

sequentially rather than independently, we draw on Random Forests to help explain how 

GBM trees work. The differences between them are instructive, and understanding 

Random Forests first helps clarify GBM outputs. 

While tree-based models such as GBM and Random Forest are primarily used here as 

flexible estimators of treatment assignment, inspecting individual trees provides 

valuable insights into the model behaviour and feature importance. Each decision tree 

maps out a sequence of binary splits based on household characteristics, offering a 

transparent view of how the model segments the data to distinguish between treated and 

control units. 

Understanding Tree Components and Values 

Decision trees from GBM and Random Forest models display information differently, 

reflecting their distinct approaches to prediction: 

GBM Tree Components (Figure 6): Each node contains: 

• Split Condition: The binary rule dividing households  

• Cover: The number of households reaching this node during training 

• Gain: How much this split improves predictive accuracy (higher values indicate 

more informative splits) 

• Value: Numeric output at leaf nodes representing incremental adjustments 

Random Forest Tree Components (Figure 7): Each node displays three lines of 

information: 

• Top line: The predicted class at that node (0 = control/UKMOD, 1 = 

treated/Experian) 

• Middle line: The class probability - proportion of treated households among all 

reaching this node (e.g., 0.29 = 29% treated) 
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• Bottom line: Node size - percentage of total training sample reaching this node 

(100% at root) 

Root Node: Each decision tree starts with a root node containing the full dataset. In 

Random Forest, this shows 100% sample coverage with the overall class distribution. 

GBM root nodes are guided by residuals from previous trees, while Random Forests 

select splits based on purity measures. The split condition identifies the most 

discriminating feature, such as household size or employment status. 

Internal Nodes: As trees grow, internal nodes partition data using conditions like 

"Has_Children = 1" or household size thresholds. In Random Forest trees, the class 

probability at each node shows the shifting balance between treated and control 

households as you move down branches. The node size indicates what proportion of the 

original sample reaches each decision point. 

Leaf Nodes and Value Interpretation 

The leaf nodes represent endpoints where final predictions are made, with 

fundamentally different interpretations: 

GBM: Leaf nodes output small incremental adjustments (e.g., -0.030, 0.019) that 

contribute toward the final log-odds of treatment assignment. These values are summed 

across hundreds of trees and transformed through a logistic function to produce the final 

probability. Positive values increase treatment likelihood; negative values decrease it. 

Random Forest: Leaf nodes show the final predicted class (control or treated) along with 

the exact probability estimate. A leaf showing 0.8 means 80% of households reaching 

this endpoint are treated. These probabilities are averaged across all trees in the forest 

to produce the final propensity score. The bottom number indicates what fraction of the 

total sample ends up in this particular leaf. 

Comparing the Approaches 

Figure 6 shows a GBM tree where Cover values track household flow and Gain measures 

split informativeness, while leaf values represent small incremental contributions that 
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accumulate across the ensemble. Figure 7 displays a Random Forest tree where node 

probabilities directly reflect the class distribution of households reaching each point, 

with color-coded predictions (orange = control, green = treated) and explicit sample 

proportions. 

The fundamental distinction lies in how predictions are made:   

• GBM builds knowledge incrementally through sequential trees correcting 

previous errors.  

• Random Forest aggregates predictions across many independent trees, each 

trained on a random subset of the data. 

Because Random Forest nodes report direct class probabilities, they often appear more 

intuitive. In contrast, GBM trees operate through accumulated small contributions, 

which can be harder to interpret at the node level but often yield more accurate results 

overall. In this study, GBM was chosen for its superior balance performance, but insights 

from Random Forests help illustrate how tree-based methods divide and classify 

households during propensity score estimation. 
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Figure 6: A single tree in the GBM 

 

 

 

 

 

 

 

 

 

Figure 7: A single tree in the Random Forest 
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7. Matching, Weighting and Diagnostics 

After implementing the matching, inverse probability weighting and raking steps 

described in section 4, it is essential to assess whether the reweighting process has 

improved comparability between the treated and control groups. The goal is to ensure 

that any observed differences reflect meaningful variation rather than underlying sample 

composition. Without proper diagnostics, residual bias may persist, even after careful 

modelling. 

This section introduces three key diagnostics used to evaluate matching and reweighting 

quality: 

• Overlap in propensity score distributions 
• Covariate balance before and after weighting 
• Weight Distribution before and After weighting 
• Effective sample size (ESS) 

Together, these tools provide a robust framework for judging whether the weighted 

control group offers a credible comparison to the treated sample. 

Overlap Analysis: Propensity Score Distribution 

Figure 8: Propensity Score Distribution Before matching 
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Figure 8 shows the estimated propensity score distributions for the control group 

(UKMOD, in blue) and the treated group (Experian, in pink) before any adjustments are 

applied. For IPW to work well, there needs to be sufficient overlap between these 

distributions, meaning control households must span a similar range of characteristics 

as those in the treated group. In this case, both curves align reasonably well through the 

central range, but the control group is more sharply peaked, while the treated group is 

more dispersed, particularly in the upper tail. These edge cases can reduce the 

effectiveness of reweighting and may require trimming or calibration in later steps to 

improve overlap and ensure stable weights. 

Figure 9: Propensity Score Distribution After Matching and Weighting 

 

 

 

 

 

 

 

After matching and applying inverse probability weighting, the distribution of propensity 

scores between the treated and control groups shows markedly improved alignment as 

shown in figure 9. The shaded areas now overlap more closely, especially across the 

central range of scores, indicating that the reweighted control group better mirrors the 

treated population. This improvement in overlap suggests that the weighting 

adjustments have effectively addressed initial disparities, reducing bias and increasing 

the validity of downstream comparisons. While some differences remain at the 

extremes, the overall fit confirms that the sample is now suitably aligned for further 

analysis. 
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Post-IPW Calibration Using Raking 

While inverse probability weighting substantially improves alignment between the 

control and treated groups by adjusting for observed covariates, it does not guarantee 

that weighted totals match known population margins. In practice, even after IPW, 

residual imbalances can remain, particularly for characteristics that are only weakly 

predicted by the propensity model or that interact in complex ways not fully captured by 

it. To address this, we apply the additional calibration step raking, or iterative 

proportional fitting. 

Raking adjusts the IPW-derived weights so that the weighted UKMOD sample exactly 

reproduces known marginal distributions of key characteristics observed in the target 

population. We use official population estimates to do this. This ensures that the final 

reweighted sample not only resembles the target dataset in structure but also aligns with 

benchmarks for the Greater Essex population. The raking step targets several core 

dimensions like: 

• Age group distributions (e.g., 18–25, 26–45, 46–65, 66+) 

• Employment status (e.g., employed full-time, part-time, retired, unemployed) 

• Household composition indicators such as the presence of children 

Raking improves the representativeness and interpretability of the weighted UKMOD 

sample by constraining the final weights to meet these margins, see figure 10.  

Figure 10: Propensity Score Distribution After Raking 
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Covariate Balance Diagnostics 

The next step assesses whether covariates are balanced between the treated and 

weighted control groups. Standardised Mean Differences (SMDs) are used to evaluate 

the difference in means across groups for each covariate, scaled by their pooled 

standard deviation. Post-weighting SMDs below 0.1 are typically considered acceptable. 

Covariate balance checks as shown in figure 11 confirm the weighting process has 

neutralised confounding relationships between treatment assignment and covariates. In 

cases where multiple covariates remain imbalanced after weighting, the model may 

need to be re-estimated with additional interaction terms or alternate specifications. 

Figure 11: Covariate Balance  

 

 

 

 

 

 

 

Sample Retention and Effective Sample Size (ESS) 

An important diagnostic is how much of the original sample is retained and how much of 

it meaningfully contributes after reweighting. Unlike matching methods, IPW retains all 

control observations, allowing the full dataset to be used in analysis. However, if very 

large weights are assigned to only a small subset of control units, the resulting estimates 

can become unstable and less reliable. 

The Effective Sample Size (ESS) quantifies the amount of usable information remaining 

after weighting. A low ESS suggests that only a few high-weight observations are driving 

the results, even if many observations remain in the dataset. This undermines both 
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precision and generalisability. In contrast, a high ESS indicates that the reweighted 

sample distributes influence more evenly, preserving the richness of the original data 

while improving comparability. 

In this case, the ESS remained high after applying IPW, indicating that most matched 

UKMOD households retained meaningful influence in the final weighted sample.  

Final Output Data 

The final output is a reweighted version of the UKMOD dataset, designed to mirror the 

demographic structure of Greater Essex as observed in the Experian data and official 

statistics. Each household in UKMOD is assigned a propensity score, which reflects the 

likelihood of resembling an Experian household based on characteristics such as age, 

tenure, household size, employment status, and presence of children. These scores are 

estimated using a gradient boosted model that includes interaction terms and a 

residualised version of equivalised income, to improve covariate balance and maintain 

overlap. 

The propensity scores are then used to calculate inverse probability weights, which 

adjust the influence of each household in the control dataset. Households that more 

closely resemble the target population receive higher weights, while less similar 

observations are down weighted. The weights are stabilised and trimmed to prevent 

extreme values from distorting results and then further adjusted through a raking step.  

The result is a synthetic microdata set that preserves the structure and richness of 

UKMOD while offering improved representativeness for the Greater Essex population. 

8. Macro-Validation of UKMOD-Essex 

UKMOD outputs for Greater Essex are validated by comparing income estimates to 

external official benchmarks. The current focus is on two market income components: 

employment and self-employment income. These are benchmarked against 

administrative and survey sources, including the Survey of Personal Incomes (SPI) and 

the Annual Survey of Hours and Earnings (ASHE). 
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The figures reflect reweighted UKMOD estimates, calibrated to match Greater Essex’s 

population totals and income structure. Comparisons are made both in aggregate and 

across the distribution, covering recipient counts, average incomes, and percentiles. 

Each component uses the most recent available external data, typically for 2022 or 

2022/23. Where relevant, the UKMOD estimates are filtered or broken down to match 

how populations are defined in external sources, such as SPI’s focus on tax filers. 

Employment Income 

Earnings are a key exogenous input to UKMOD, so it’s important to benchmark against 

the Survey of Personal Incomes. SPI is based on administrative records from HMRC and 

only includes individuals with income above the personal allowance threshold, meaning 

it captures the taxable population. In SPI Table 3.14 (2022–23), the average taxable 

employment income in Greater Essex is reported as £41,900. Multiplying this by the 

number of people in Essex with taxable employment income (578,000) gives a total of 

around £24.2 billion. It’s worth noting that the SPI average is conditional; it only reflects 

those with taxable income from employment, excluding anyone with zero income or 

whose main income comes from pensions or self-employment. 

An alternative employment income estimate was produced using ASHE data (2024), 

where the average gross annual pay for employee jobs in Greater Essex was £41,915. 

ASHE - the Annual Survey of Hours and Earnings. This is a business survey based on 

employer payroll records and provides earnings data for employees in the UK. This figure 

includes individuals earning below the personal allowance and those in part-time or low-

wage employment. It was applied to the total count of employee jobs in the region 

(637,000). However, ASHE measures jobs rather than individuals, meaning those with 

multiple jobs may be double counted. The data also exclude the self-employed and 

individuals not paid during the reference period. 

Both sources are limited by definitional constraints and population coverage 

differences. SPI omits non-taxpayers and has stronger coverage of high earners; ASHE 

offers more inclusive employment coverage but excludes non-employees. The UKMOD 

estimate sits slightly above the external range, suggesting higher average income or 
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coverage effects after reweighting. This is expected given the use of grossed-up Family 

Resources Survey data scaled to reflect regional population and income distribution 

targets from Experian and administrative benchmarks. 

Distributional Comparison (Percentiles and Cumulative Earnings) 

Table 2 compares monthly employment income percentiles across UKMOD and ASHE 

for Greater Essex. The two distributions are well aligned at the median: UKMOD gives a 

P50 of £2,392, while ASHE reports £2,535. That match is encouraging, given how different 

the two sources are. UKMOD income is self-reported in the FRS and includes everyone 

with non-zero earnings, while ASHE is job-based and reflects PAYE records for 

employees in April. 

At the lower end (P10 to P30), UKMOD is consistently a bit higher. For example, P10 is 

£867 in UKMOD versus £839 in ASHE. This probably reflects two things. First, UKMOD 

includes more part-time and low-hour workers, people who may not be captured in ASHE 

if they weren’t paid that month or are on irregular contracts. Second, there’s smoothing 

in UKMOD because some incomes are imputed based on characteristics, which means 

extremely low reported values, including zeroes, are less common. 

At the upper end from P70 to P90, UKMOD continues to track ASHE well. Some values 

are higher, but not by much. For instance, P70 is £3,324 in UKMOD compared to £3,313 

in ASHE. At P90, however, UKMOD shows a noticeably higher value (£5,759) than ASHE 

(£4,667), suggesting more top-coding or tail adjustment in the ASHE sample. Beyond 

P80, the ASHE data are more limited, especially for male and female breakdowns, so 

comparisons become harder. 

Figure 12 shows this in cumulative terms. The UKMOD curve is slightly to the right of 

ASHE across the middle of the distribution, meaning that at any given earnings level, 

slightly fewer people fall below that amount in UKMOD. This fits with what we see in the 

percentiles: UKMOD is shifted slightly higher but follows the same shape. 
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Overall, the comparison suggests that the reweighted UKMOD sample gives a credible 

distribution of earnings for Greater Essex. It slightly overestimates income at the bottom, 

but it tracks well at the median and upper end. 

Distributional Comparison (Monthly Employment Income) 

The table below compares monthly employment income percentiles between UKMOD 

and ASHE for Greater Essex. Percentiles are based on gross income and are grouped by 

sex. 

Table 2: Monthly Employment Income Comparison 

Percentile 
ASHE 

 (All) 

UKMOD 

 (All) 

ASHE 

 (Male) 

UKMOD 

 (Male) 

ASHE  

(Female) 

UKMOD 

 (Female) 

P10 £839 £867 £1,431 £1,205 £689 £750 

P20 £1,309 £1,378 £2,059 £1,746 £1,028 £1,075 

P30 £1,777 £1,755 £2,337 £2,063 £1,399 £1,447 

P40 £2,155 £2,076 £2,683 £2,383 £1,702 £1,746 

P50 (Median) £2,535 £2,392 £2,964 £2,773 £2,038 £2,045 

P60 £2,880 £2,817 £3,422 £3,254 £2,359 £2,375 

P70 £3,313 £3,324 £3,905 £3,805 £2,712 £2,812 

P75 £3,692 £3,900 £4,135 £4,450 £3,079 £3,400 

P80 £3,996 £4,017 £4,500 £4,680 £3,484 £3,393 

P90 £4,667 £5,759 £5,167 £6,725 £4,042 £4,320 

Note: ASHE figures are gross monthly pay estimates derived from annual values. UKMOD 
estimates are gross monthly earnings from simulated microdata, reweighted for Greater Essex. 

 

 

 



 31 

Figure 12: Monthly Earnings Percentile Profile 

 

 

 

 

 

 

 

Self-Employment Income 

The external benchmark for self-employment income is derived from SPI Table 3.13 and 

SPI Table 3.14, based on a total of 117,000 individuals in Greater Essex with taxable self-

employment income. The average income for this group is £27,365, giving a total of 

approximately £3.2 billion. These values are calculated directly from the SPI headcount 

(in thousands) and the corresponding mean income across the 14 Greater Essex 

districts. 

As noted in SPI documentation, these estimates include only individuals whose self-

employment income was taxable in 2022–23. That means the figure excludes anyone 

whose income was fully offset by losses or capital allowances or whose profit was below 

the reporting threshold. The reported income reflects net taxable profits after 

deductions. The SPI average is calculated conditionally: it includes only those with non-

zero taxable self-employment income. 

The unfiltered UKMOD estimate, based on all individuals with non-zero self-employment 

income, yields a total of £3.50 billion across 124,325 recipients, with an average income 

of £28,147 as shown in figure 12. This reflects gross reported income before deductions 

and includes individuals whose income may fall below the tax threshold or would not be 

considered taxable under SPI definitions. 
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To align more closely with SPI, a filtered UKMOD estimate was produced by restricting 

the population to individuals with annual self-employment income above £12,570, 

matching the personal allowance threshold. Under this condition, UKMOD identifies 

66,990 recipients with total income of £3.20 billion and an average income of £47,790. 

While the number of recipients is lower than the SPI total, the total income matches 

exactly, lending strong support to the calibration and reweighting process. The higher 

average income in the filtered sample reflects the use of gross pre-deduction amounts 

and the exclusion of lower earners. Taken together, the unfiltered and filtered UKMOD 

estimates provide a credible range for self-employment income and affirm the validity of 

the reweighted dataset for this component. 

Figure 13: Self-Employment Income 
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9. Discussion 
In this paper we have presented a new approach to reweighting input data for 

microsimulation models, with an application to a regional variant for greater Essex of the 

UK-wide UKMOD tax-benefit model. This regional variant differs from the UK counterpart 

only with respect to the input data, but the tax-benefit model remains the same. Both the 

model and the data are freely available for download.7 An online version also exists that 

allows users to design bespoke tax-benefit scenarios, run them online and compare 

results with baseline simulations, without the need to download the software, the model, 

and the input data.8 

Our approach to creating new input data for Essex, based on a Gradient Boosted 

Machine to estimate propensity scores, leverages on the availability of large household-

level data for the region, which provide a target joint distribution for some relevant 

variables. This allowed us to move beyond targeting marginal distributions coming from 

official statistics or other sources, as in most of the current literature on spatial 

microsimulation, although we also performed a final raking stage to address some 

quality issues of the target micro data. Our validation of the outcomes of the resulting 

regional microsimulation model shows a good fit with external statistics.  

But is our proposed approach, with its positive results, of more general interest or should 

it be considered a display of technical prowess in a lucky case where regional 

information was already available? Three things should be considered in this respect. 

First, the (commercially) available micro-data for Greater Essex were limited to a handful 

of variables and were by no means sufficient in themselves to be used as inputs for a tax-

benefit model. Second, while we had an almost one-to-one sample of the Essex 

population, information was in some cases departing from official sources, most likely 

because of imputation issues in the micro-data. These two things together imply that our 

case is favourable, but not exceptionally so. Our third point is that our setting is also not 

likely to be exceptionally rare. We live in an era of data, and new sources – from network 

companies such as utilities or social media, from monitoring agencies, etc. – are 

 
7 See https://www.microsimulation.ac.uk/ukmod/access/ for more information. 
8 See https://www.microsimulation.ac.uk/ukmod/ukmod-explore/. 
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becoming increasingly available. We have therefore the hope that our work will be useful 

for other applications.  

Limitations and Technical Considerations 
Several limitations of the proposed approach warrant careful reflection. First, while the 

use of gradient boosted machines (GBM) improves covariate balance over traditional 

reweighting methods, it comes at a significant computational cost. Training and tuning 

GBM models particularly with cross-validation and interaction terms involves 

substantial time and processing power, which may constrain uptake in settings without 

dedicated computational resources. 

Second, despite being less reliant on strict parametric assumptions, machine learning 

models introduce other forms of complexity. Model selection, prevention of overfitting, 

and interpretability all pose challenges, particularly in high-dimensional or imbalanced 

datasets. Our use of residualised income, interaction terms, and post-hoc diagnostics 

helped mitigate these risks, but the approach still requires considerable technical 

oversight. 

Critically, the performance of the method hinges on the quality and representativeness 

of the target data. The success of our matching and weighting pipeline reflects the 

relatively complete coverage and internal consistency of the Experian dataset used for 

calibration. In scenarios where only sparse, biased, or inconsistently defined 

commercial data are available, similar results may be difficult to achieve. Moreover, the 

need for post-weighting raking to align with official marginal distributions indicates that 

even sophisticated models struggle to account for all dimensions of population 

heterogeneity. 

Finally, our findings highlight the importance of sample design. Naively matching the full 

Experian sample (740,000 households) against a much smaller control pool (25,000 

UKMOD households) led to poor overlap and unstable weights. This underscores a 

critical insight for applied users: increasing sample size alone does not guarantee better 

results especially when the distributions are structurally mismatched. In such cases, 

stratified or balanced subsampling can materially improve performance and should be 

considered. 
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Broader Applicability and Future Directions 
Although this project was grounded in the Greater Essex context, the methodology is 

broadly applicable to regional microsimulation development across the UK and beyond. 

The growing availability of commercial and administrative microdata opens new 

possibilities for fine-grained policy analysis, provided that appropriate matching and 

reweighting techniques are applied. 

To support broader use, future work should test this approach across diverse local 

contexts, including areas with more limited data infrastructure. Exploring alternative 

machine learning methods such as neural networks, extreme gradient boosting, or 

hybrid ensemble models could further enhance robustness, particularly for extreme 

class imbalance or nonlinear relationships.  

 

Policy and Practical Implications 
From a policy perspective, locally calibrated microsimulation tools like UKMOD-Essex 

provide much-needed granularity for understanding the effects of tax and benefit 

policies at the regional level. By grounding analysis in real, locally reflective data, 

policymakers can assess how proposed reforms would play out in their specific 

jurisdiction capturing differences in employment patterns, household structure, housing 

costs, and more. 

Equally important is the model’s accessibility. The open-source nature of UKMOD-

Essex, the availability of the micro-data, and the integration of the model into an online 

platform allow both analysists with computational skills  and non-specialists from local 

government staff to civil society groups to run policy scenarios of interest. This usability 

is key to promoting wider engagement with evidence-based policy tools, encouraging 

more democratic and inclusive decision-making. 

Ultimately, this work demonstrates the feasibility and value of blending traditional 

microsimulation techniques with modern machine learning and commercial data to 

meet the evolving needs of policymaking. Continued methodological innovation, 
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combined with clear communication and stakeholder collaboration, will be essential to 

maximise their contribution to evidence-based policymaking. 
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Appendix 1- Full Sample 

Figures A1 – A5 

Figure A1: Propensity Score Distribution After Common Support Trimming 

 

 

 

 

 

 

Figure A1 shows that common support trimming with the full sample produces poor 

distributional overlap between the datasets. Despite removing extreme propensity 

scores, the fundamental imbalance persists with UKMOD households concentrated in 

lower ranges and Experian households dominating higher ranges, revealing inadequate 

common support for reliable matching procedures. 

Figure A2: Propensity Score Distribution After Matching  

 

 

 

 

 

 

Figure A2 shows that matching with the full sample achieves minimal improvement in 

distributional overlap. The matching procedure struggles to find adequate comparable 

units due to the extreme sample size disparity, leaving the distributions largely 

unchanged with persistent separation between UKMOD and Experian households. 
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Figure A3: Propensity Score Distribution After IPW Weighting 

 

 

 

 

 

 

Figure A3 shows that IPW weighting following matching provides marginal distributional 

improvement but fails to achieve adequate balance. While the weighting procedure 

attempts to adjust for remaining imbalances, the fundamental separation persists, with 

both distributions maintaining distinct peaks and limited overlap throughout the 

propensity score range. 

Figure A4: Propensity Score Distribution After Raking  

 

 

 

 

 

 

Figure A4 shows that final raking adjustments with the full sample provide only modest 

distributional improvements. While raking to population margins creates slightly better 

overlap compared to IPW alone, the underlying structural imbalance remains evident, 

with the distributions still exhibiting distinct peaks. 
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Figure A5: Covariate Balance 

 

 

 

 

 

 

 

 

Figure A5 above shows that covariate balance with the full sample remains poor despite 

sequential adjustments. Multiple variables exceed the 0.1 threshold for standardized 

mean differences, with several covariates showing substantial imbalances even after 

post-raking corrections. 


