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Abstract 

We analyse the complex dynamic feedback effects between different life domains over the life course, 

providing a quantification of the direct (not mediated) and indirect (mediated) effects. To extend the 

analysis in scope and time beyond the limitations of existing data, we use a rich dynamic 

microsimulation model of individual life course trajectories parameterised and validated to the UK 

context. We interpret findings in terms of the implied attenuation or reinforcement mechanisms at 

play, and discuss implications for health and economic inequalities. 
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1 Introduction 

Individual life domains are highly interconnected, and events occurring in one domain generally affect 

other domains.1 This interconnectedness determines whether the impact of an event gets amplified 

or dampened when attention is broadened from the event in isolation to the life course as a whole. In 

turn, the interplay between attenuation and reinforcement mechanisms determines individual 

resilience and vulnerability, with important bearings on economic and health inequalities. While 

studies abound that take into account the role of mediators in the determination of outcomes, they 

often lack an integrated approach that considers all factors under analysis as both potential mediators 

and outcomes, in a dynamic context.  

Most studies perform mediation analysis on observed data. The increasing use of computational 

models (specifically: in the social sciences and public health) opens up new research possibilities that 

take advantage of the potential to experiment with interacting causal pathways. Protocols and 

procedures for manipulating causal pathways and analysing counterfactuals in computational models 

are however not yet established.  

In this paper, we propose a computational procedure to isolate direct and indirect (mediated) effects 

in a microsimulation framework. The paper explores the feedback loops between health, family and 

labour market outcomes, and the associated implications for income and health inequalities over 

alternative time horizons. To construct the relevant counterfactuals, we use a rich dynamic 

microsimulation model parameterised for the United Kingdom, which projects individual life course 

trajectories over the three inter-related domains of work, family and health. The model is linked to an 

underlying tax-benefit calculator, which provides a realistic description of the impact of taxes and 

benefits at both the individual and population level.  

The structure of the model accommodates dynamic interactions between all simulated variables. 

Given this underlying structure, we offer a model-based decomposition of the overall effect of specific 

events in terms of their direct effects – the un-mediated, self-reflective impacts of (changes of) one 

variable on the future evolution of the same variable – cross-effects (the impacts on the future 

evolution of other variables), and indirect effects (the mediated impacts on the same variable, coming 

from the impact on other variables). Our primary focus of interest is the comparison of the direct and 

indirect effects, which we use to construct a synthetic indicator of the complex interactions that shape 

individual trajectories. This in turn permits quantification of the importance of attenuation and 

reinforcement mechanisms over time.  

As an illustration of the methodology, we consider the impact of two different exogenous events: a 

partnership dissolution, and a sudden health deterioration. These scenarios have been selected as two 

polar cases in our empirical and modelling context, with partnership status having implications that 

extend to all individual life domains, while health effects being more limited to the health sphere. 

To the best of our knowledge, this paper is the first empirical study investigating the feedback loops 

between multiple life domains and their implications for income and health inequalities over the life 

cycle. The detailed calibration of the model to a real-world setting allows us to explore quantitatively 

multiple sources of inequalities, at an individual level and over multiple time horizons.  

 

1 Just think of the last time you came home after a frustrating day at work. 
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Our results indicate that partnership status has significant effects on other life domains, and highlight 

attenuation mechanisms that facilitate bouncing back to a partnered status following a union 

dissolution. On the other hand, health is found to have fewer connections to other life domains, with 

limited feedback that attenuate or exacerbate the effects of an adverse shock. 

The structure of the paper is as follows. Section 2 frames our work in the context of life course analysis. 

Section 3 describes the microsimulation approach. Section 4 introduces the counterfactual analysis 

that underpins our decomposition. Sections 5 presents our microsimulation model. Section 6 explains 

the two conceptual experiments. Sections 7 and 8 present the results for the two experiments in turn. 

Section 9 discusses implications for inequality and resilience. Section 10 summarises and concludes. 

2 The impact of shocks  

Figure 1 shows the possible links (direct acyclic graph, DAG) between variables of interest – for 

simplicity, the diagram includes only two variables at different observational times – for illustration, 

say socio-economic status (X1), and health (X2). Each variable possibly has an un-mediated impact on 

its future values and on the future values of the other variables, as well as mediated effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Dynamic determination of individual outcomes 
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The figure helps classifying the related literature. We focus in particular on studies that have looked at 

the impact of specific events – economic events, health events, family-related events – rather than 

specific individual characteristics. This is because events – also referred to as shocks – can sometimes 

lead to quasi-natural experiments, facilitating identification of the associated effects. Examples of 

shocks examined in the literature include job displacement (often following mass layoffs), acute 

hospital admissions (due to road accidents or strokes, for example), partnership dissolution and 

divorce. The literature is vast.  

For example, some studies of job displacement consider the implications for prospective labour market 

circumstances (e.g. Farber, 2017); the effects of X1(t) on X1(T) in Figure 1. Other studies explore the 

influence of job displacement on domains beyond the labour market, such as cardiovascular health 

(Black et al., 2015), mental health (Paul et al., 2018), and fertility (Huttunen and Kellokumpu, 2016); 

the effects of X1(t) on X2(T) in Figure 1. When exploring family composition (X1 variables measured at 

t), Preetz (2022) investigates the effects of partnership dissolution on life satisfaction and mental 

health, while Glaser et al. (2008) look at the impact on support in later life, and Barbuscia et al. (2022) 

focus on a number of health conditions, including self-rated health, depressive mood, and sleep 

disorder (X2 variables measured at T). Some studies consider the influence of modifiers (and potential 

mediators), e.g. how family structure has a bearing on job displacement and subsequent recovery 

(Attewell, 1999); X2(t) on X2(T), mediated by X1(t+).  

Public health studies focus more on cross-effects of health shocks on other domains (the effects of 

X2(t) on X1(T) in Figure 1). For instance, García-Gómez et al. (2013) consider the impact of acute 

hospital admissions on employment and income, while Lenhart (2019) analyses the impact of declines 

in self-reported health status and the onset of health conditions on subsequent labour market 

outcomes, and Bonekam and Wouterse (2023) study the impact of hospital admissions on wealth. 

Most of these studies are based on longitudinal panel surveys, with some using cohort data (e.g. 

Griffiths et al., 2021, or Wörn et al., 2023, consider the effects of job loss on mental and physical health 

during the Covid-19 pandemic) and others using administrative data (e.g. Fadlon and Nielsen, 2021, 

exploring family labour supply responses to severe health shocks). 

Our objective is to broaden the view presented by the extant literature, allowing the distinction 

between determinants and outcomes to blur, and all state variables to co-evolve. To facilitate that 

analysis, we turn to dynamic microsimulation. 

3 Microsimulation as data enrichment  

Empirical studies are constrained by the available data. Household panel surveys provide rich 

information on a number of individual characteristics, but their longitudinal dimension is limited (e.g. 

EU-SILC, the main survey for the European Union, has a rotational structure of only 4 years). Even long-

standing surveys such as the PSID, introduced in 1968, report complete life histories only for a highly 

selected (older, native, less mobile etc.) sub-sample of the US population. Cohort surveys share similar 

limitations to panel surveys, subject to further limitations imposed on the segment of the population 

for whom data are reported. While administrative data sometimes help to fill gaps of respondent 

surveys, public access to such resources is often restricted, and they generally describe a relatively 

limited set of characteristics, thus precluding the broad analysis that is required to disentangle complex 

feedback effects between alternative life domains.  
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Dynamic microsimulation (O’Donoghue, 2014; O’Donoghue and Dekkers, 2018) offers a way to 

integrate empirical evidence potentially derived from multiple sources into a coherent and consistent 

framework, allowing extrapolation of the implied dynamics beyond the temporal limits of the 

observational data. 

In microsimulation, the state of micro units (for example, individuals, households, firms) is modified 

starting from some initial configuration, on the basis of biological, institutional or behavioural rules. 

Examples of biological rules are ageing and death. Examples of institutional rules are tax and benefits 

systems. Examples of behavioural rules are any choices that the units can make, for instance – in the 

case of individuals – related to education, household composition, fertility, labour supply, lifestyle and 

health behaviour, retirement.  

Microsimulations can be considered as synthetic databases containing detailed information about a 

population of interest. The ‘initial configuration’ of a microsimulation database is typically augmented 

by projecting new variables not described by the initial configuration, or extending the reported time 

horizon. An example of the former of these cases is when disposable household income is projected 

by combining market income described by the initial configuration with a description of the 

corresponding tax-benefit rules. Where data are projected through time, then dynamic 

microsimulations involve the simulation of panel data that can be subject to subsequent empirical 

analysis. 

Mathematically, dynamic microsimulation models are Markov chains, where at each time t an agent 

𝑖 ∈ {1, … , 𝑁} is fully described by some set of state variables 𝒙𝑖,𝑡 ∈ ℝ𝐾. When the model is cast in 

discrete time (i.e. sampled at regular intervals, for instance yearly) the evolution of her (vector of) state 

variables is specified by the difference equation: 

𝒙𝑖,𝑡+1 = 𝒇𝒊(𝒙𝑖,𝑡 , 𝒙−𝑖,𝑡, 𝜽, 𝑷𝑡 , 𝝃𝑖,𝑡) (1) 

where 𝜽 is a vector of behavioural parameters, 𝑷𝑡 are time-varying environmental parameters 

(potentially including past, present, and anticipated future policies), and 𝝃𝑖,𝑡 are stochastic 

disturbances. Individual outcomes can also depend on the state variables of other agents 𝒙−𝑖,𝑡, for 

instance their partners or children.  

Structural modelling, in this context, refers to the parameters 𝜽 governing behaviour – for instance 

those describing utility functions – being policy invariant. Expectations about the future are 

accommodated in the notation as they can be expressed as a function of the state variables 𝒙 and the 

policy parameters 𝑷. Realism in the policy description requires 𝑷 to be a consistent reflection of the 

“real-world” environment. Finally, the notation can be generalised from partial equilibrium approaches 

– where there are only specific types of agents in the economy (say, individuals but not firms) – to 

general equilibrium approaches – where there are more agent types {i,j,h,…} each defined by their 

own state variables 𝒙𝑖,𝑡, 𝒙𝑗,𝑡, 𝒙ℎ,𝑡 … possibly depending on the state variables of all other agents of any 

type (as in an agent-based setting).  

In this context, interaction between different life domains is simply defined as variables pertaining to 

one domain having a causal impact on the evolution of other domains. Consider for instance health 

(ℎ) and employment (𝑒), and suppose their respective laws of motion are specified as follows:2 

ℎ𝑖,𝑡+1 = ℎ(ℎ𝑖,𝑡 , 𝑒𝑖,𝑡 , … , 𝜽ℎ , 𝑷𝑡 , 𝝃𝑖,𝑡) (2) 

 

2 In terms of Figure 1, employment is X1 and health X2. The example easily generalises to more domains, and 
other variables. 
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𝑒𝑖,𝑡+1 = 𝑒(𝑒𝑖,𝑡 , ℎ𝑖,𝑡 , … , 𝜽𝑒 , 𝑷𝑡 , 𝝃𝑖,𝑡) (3) 

Health status at time t affects both health and employment outcomes at time t+1, and similarly for 

employment status at time t. The structure is similar to micro-level dynamic factor models (Altonji et 

al., 2022; Barigozzi and Pellegrino, 2023), with the added flexibility associated to the algorithmic nature 

of the simulation approach. 

Suppose we are interested in health outcomes at time T, and wish to evaluate the impact of a health 

event at time 0. In the model, there are two causal pathways: one goes directly from health at time t 

to health at time t+1, for all t = 0,…,T; the other pathway is mediated by employment outcomes.  

This modelling framework can be confronted with a reductionist approach, which would entail 

estimation of the following specifications, in isolation: 

ℎ𝑖,𝑡+1 = ℎ′(ℎ𝑖,𝑡, … , 𝜽′ℎ, 𝑷𝑡 , 𝜺𝑖,𝑡) (2’) 

𝑒𝑖,𝑡+1 = 𝑒′(𝑒𝑖,𝑡 , , … , 𝜽′𝑒 , 𝑷𝑡 , 𝜺𝑖,𝑡) (3’) 

If the time span is sufficiently long, indirect effects would be captured by the lagged dependent 

variable. For example, in eq. 2’ the coefficient on the lagged health variable in the reduced-form 

specification would pick up the effect on employment, and the subsequent effect of employment on 

future health. The reductionist approach would produce on average the same outcomes as the 

multidimensional approach, provided the estimators are well-behaved. However, in the reductionist 

specification the coefficient of the lagged health status would suffer from an omitted variable bias 

(employment), leading to a mis-representation of the true persistency effect of the health shock. This 

in itself could lead to incorrect policy implications.3 

Moreover, a reductionist approach is by construction blind to what happens in other life domains. For 

instance, by using equations 2’-3’, it would not be possible to predict the impact of an economic shock 

on health status, or the impact of increasing levels of education on future population health, with 

related implications for analysis of income inequality. 

4 Analytical strategy 

Dynamic microsimulation is generally used to project population aggregates, based on individual 

simulated outcomes. Here, we use it to construct differentiated individual counterfactuals that allow 

us to quantify how different causal pathways dynamically contribute to outcomes.  

Our analytical strategy entails running three sets of simulations. The first simulation provides the 

baseline (short name: ‘base’), with default parameterisation, and without any artificially imposed 

shock to initial conditions. This is stylised in Figure 2, panel (a), with reference to the evolution of a 

single variable of interest, say health (H). Baseline values are identified with an asterisk. Health at time 

t has a direct impact on health at time t+1, and a mediated effect through its effects on employment 

(E) and other variables (not shown in the figure).  

The second set of simulations entail shocking the initial conditions, for instance by decreasing the level 

of initial health. This is shown in panel (b), and referred to as ‘Shock, Feedback ON’ (short name: ‘ON’). 

The new values of the variables are indicated with a ‘prime’ sign.  

 

3 If, for example, a policy influenced health in a way that altered the coincident relationship with employment. 
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Finally, panel (c) depicts counterfactual simulations where the initial shock is only allowed to have a 

direct impact on the future values of the shocked variable itself (health in our example), while the 

evolution of all the other variables is taken from the baseline (‘Shock, Feedback OFF’, short name: 

‘OFF).4 This is indicated in panel (c), by the asterisks on “E*(t+1)” and other variables, “…*”, whereas 

the shocked value of H’(t) is depicted as feeding through to a “feedback off” shocked value H’’(t+1). 

 

Figure 2: Counterfactuals 

  
(a) Baseline (short: base) (b) Shock, Feedback ON (short: ON) 

 

 

(c) Shock, Feedback OFF (short: OFF)  
 

The ON vs. base comparison answers the question: "How would a shock in a given life domain broadly 

affect life trajectories?” The OFF vs. base comparison answers the question: "How would a shock in a 

given life domain affect life trajectories, if it did not spill over to other life domains?”.  

As already discussed, the overall effect of the shock involves a direct effect on the same domain where 

the shock occurred (health in the figure), a cross-effect on other domains (employment, etc.), and an 

indirect effect from the other domains back to the shocked domain.  

In this framework, the direct (un-mediated) effect can be measured by comparing the ‘Feedback OFF’ 

scenario with the baseline, with respect to the evolution of the shocked variable. The cross-effect can 

be measured by comparing the ‘Feedback ON’ scenario with the baseline, with respect to the evolution 

of the other variables of interest. The indirect (mediated) effect can be measured, following a diff-in-

diff approach, by contrasting differences between the ‘Feedback ON’ scenario and the baseline with 

differences between the ‘Feedback OFF’ scenario and the baseline. 

It is not a priori clear whether the impact of the shock on the future evolution of the shocked variable 

itself should be greater under the ON or OFF scenarios. The case where the difference with respect to 

the baseline is higher in the ‘Feedback ON’ than in the ‘Feedback OFF’ scenario, that is when the total 

 

4 This requires matching the simulated individuals in the ‘Feedback ON’ scenario with their counterparts in the 
baseline. 
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effect is higher than the direct effect, implies reinforcement mechanisms; the opposite indicates 

attenuation mechanisms. 

We can then construct a feedback indicator as follows: 

𝐹𝑥,𝑡
⬚ =

total effect

direct effect
=

(𝑂𝑁𝑥,𝑡-𝑏𝑎𝑠𝑒𝑥,𝑡)

(𝑂𝐹𝐹𝑥,𝑡-𝑏𝑎𝑠𝑒𝑥,𝑡)
 (4) 

where x is the variable being considered. Values of F > 1 reveal reinforcement mechanisms, while F < 

1 indicates attenuation mechanisms.  

This indicator is related to the ‘proportion mediated’ (PM) indicator in mediation analysis (Ditlevsen, 

2005; Ananth, 2019): 

𝑃𝑀𝑥,𝑡
⬚ =

indirect effect

total effect
=

total effect - direct effect

total effect
= 1 −

1

𝐹𝑥,𝑡
 

 

(5) 

or 𝐹𝑥,𝑡
⬚ =

1

1−𝑃𝑀𝑥,𝑡
. Our preference for the F indicator is due to its more straightforward interpretation 

in terms of the dominance of reinforcement vs attenuation mechanisms as discussed above.  

5 The model  

For this study, we use the SimPaths dynamic microsimulation model developed at the Centre for 

Microsimulation and Policy Analysis at the University of Essex (Bronka et al., 2023), estimated on UK 

data.5 SimPaths implements a hierarchical architecture where individuals are structured in benefit 

units (for fiscal purposes), and benefit units are structured in households.6 The model runs at a yearly 

frequency, consistent with the yearly frequency of the survey data on which the different processes 

are estimated. The model is composed of seven different modules: (i) Demography, (ii) Education, (iii) 

Health, (iv) Household composition, (v) Non-labour income, (vi) Labour supply, and (vii) Consumption. 

Each module is in turn composed of different processes or sub-modules; for example, the demographic 

module contains an ageing process and a process for leaving the parental home, and the labour supply 

module includes a wage setting process together with a process determining the number of hours of 

work supplied.  

Simulated modules and processes are organised as displayed in Figure 3.  

In each simulated year, agents are first subject to an ageing process (involving age and year specific 

probabilities of dying), followed by a population alignment process.  

Population alignment adjusts the simulated population to match population projections produced by 

the Office for National Statistics (ONS). Specifically, the ONS reports population estimates for the UK 

distinguished single year of age and gender for 12 geographic regions for each year between 2011 and 

2023 inclusive. The ONS also reports projections for the same disaggregated population subgroups for 

each year between 2024 and 2043.  

In each simulated year, the alignment process begins by evaluating the population short-fall/excess 

associated with each age, gender and region category, relative to ONS population 

 

5 The model is coded in Java using the JAS-mine simulation library (Richiardi and Richardson, 2017). 
6 A benefit unit is comprised of a single adult or adult couple and their dependent children. There can be 
households comprised of a single benefit unit, and benefit units comprised of a single individual. 
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estimates/projections. The model then simulates internal migration by moving benefit units with baby 

girls from regions with an excess of females aged 0 to those with a short-fall until all short-fall or excess 

regions are exhausted. Any net differences that remain between the simulated and ONS reported 

numbers of females aged 0 by region are resolved by removing benefit units to reflect (implicit) 

international emigration, or cloning benefit units to reflect international immigration. 

Having matched ONS estimates/projections for the number of females aged 0, the alignment process 

proceeds to consider males aged 0. The model allows for up to one birth each year, which ensures that 

no benefit unit includes both a female and male aged 0. This means that the same process as described 

for females aged 0 can be applied to align the simulated number of males aged 0, without risking 

distortion to the previously matched numbers for females. 

Subsequent gender and age categories are considered in turn, where benefit unit migration is limited 

to the set of units in which the youngest member corresponds to the gender/age category under 

consideration. Closure of this procedure is facilitated by the fact that the incidence of benefit units 

comprised of a single individual increases as the gender/age category under consideration proceeds 

to higher ages. 

Following alignment, the education module determines whether students should remain in education, 

or – for individuals who are no longer in education – re-enter education. Students are assumed not to 

work and therefore do not enter the labour supply module. Individuals who leave education have their 

level of education re-evaluated (for those who returned to education, their level of education can only 

go up) and can enter the labour market.  

The health module calculates an individual’s continuous health score, a measure of mental distress, 

and evaluates whether the individual is long-term sick or disabled (in which case, he / she is not at risk 

of work).7  

The household composition module projects cohabiting relationship formation and dissolution. This 

aspect of the model is the principal source of interactions between simulated agents. When a 

relationship forms, the partners are selected via a matching process that is designed to reflect 

correlations observed in survey data. Females in couples can give birth to a (single) child in each 

simulated year, as determined by a fertility process. Fertility is modelled at the individual level, and is 

aligned to fertility rates implied by official population projections.  

The labour supply module projects potential wages for each simulated adult in each year using a wage 

equation with parameters estimated using a Heckman-corrected regression on contemporary survey 

data. Given potential wages, hours of work supplied by all adult members of a benefit unit are 

evaluated by identifying the utility-maximising number of discrete hours of work, in a random utility 

model framework.8 This calculation involves identifying disposable income for each feasible labour 

alternative, which is imputed from a detailed description of the contemporary UK tax and benefit 

system, as described in van de Ven et al. (2022).9  

 

7 The status of long-term sick / disabled is reversible though. 

8 A’ la van Soest (1995). The structural labour supply module is replaced by a simpler probabilistic transition 
module for the Covid-19 years (2020 and 2021), during which it is considered that households were less able to 
choose their preferred level of hours worked.  
9 Imputations are based on data derived from UKMOD, a tax-benefit calculator for the UK; see Richiardi et al. 
(2021). 
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Finally, a simple consumption module transforms disposable income into consumption by applying an 

homogenous saving rate, calibrated to the data. The same saving rate is also used when calculating 

capital income.  

Simulations can be initialised in any year between 2011 and 2017 – they start in 2011 for this study – 

based on a representative cross-section of the UK population in the respective year, and can run until 

2060. The period of overlap with existing data is used for validation purposes. 

The model structure, as well as the estimated parameters based on the UK Household Longitudinal 

Survey (UKHLS) and Family Resources Survey (FRS) data and validation to historical time series for the 

period 2011-2020, are described in Bronka et al. (2023), and summarised in Appendix 1. 

 

Figure 3: Structure and order of processes modelled in SimPaths 
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6 The experiments 

We consider two experiments: a partnership dissolution, and a health shock, applied to the cohort of 

men aged 30 in the initial year of the simulation (2011). Simulations are run until 2050, when the 

simulated individuals reach the age of 69.10 In the first scenario, all partnerships involving men aged 

30 in the initial year of the simulation are dissolved. In the subsequent periods, these men might 

decide to re-partner, thus entering the market for partnership, where they might (or might not) find a 

suitable partner. The comparison group in the baseline is therefore composed of all partnered men 

aged 30 in 2011 – the same group of men, in a world in which the shock did not occur.  

In the second scenario, the self-rated health status of all men aged 30 in the initial year is reduced to 

1 (“poor”, on a five point self-reported scale varying from “poor” to “excellent”).11 The comparison 

group in the baseline comprises all men aged 30 in 2011 (irrespective of their partnership status) – 

again, the same group of men, in a world in which the shock did not occur. 

Table 1 reports the sample size for each experiment (number of individuals shocked in 2011). Coming 

from the UKHS survey data, the individuals selected for our experiments are representative of the 

respective segments of the UK population (see Appendix 2 for a comparison of the characteristics of 

the two samples with alternative survey data). 

 

Table 1: Sample sizes 

Experiment Shocked individuals 

(a) Partnership dissolution 8,401 

(b) Health shock 25,232 
Note: Each of the initially shocked individuals is simulated from 2011 to 2050. 

 

To be noted, the focus on partnership dissolution requires a change with respect to the standard 

version of SimPaths described in Section 5, as population alignment to official demographic projections 

must be switched off. This is because population alignment in the model depends on household 

structure (see Bronka et al., 2023 for more details), which is obviously impacted by the partnership 

dissolution. Retaining population alignment would then imply that the simulated populations in the 

different scenarios are not the same, preventing us from matching individuals from the baseline in the 

‘Feedback OFF’ scenario. For coherence, population alignment is switched off also for the health shock 

experiment. 

What this implies is that the experiments are run on a closed and constant population. Without 

population alignment, the initial cohort of men remains representative of the UK male population aged 

30 in 2011 (see Appendix 2), and their partners remain representative of the partners of the UK males 

aged 30 in 2011. However, no immigration or emigration is allowed. 

 

10 Focussing on a specific cohort allows a better understanding of the simulated dynamics. Moreover, when 
shocking relationship status, the overall “market for partnership” is affected only marginally. 

11 In the sample, approximately 19% of men aged 30 in 2011 report excellent health, 53% very good, 21% 
good, 6% fair, 1% poor. The shock hits all of them and brings down their health status to ‘poor’. 
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7 Results: Partnership dissolution 

Figure 4 shows the evolution of the partnership rate in the baseline and feedback ON scenarios, for 

the affected individuals (partnered men aged 30 in 2011). The share of partnered men declines over 

time in the baseline, mostly due to a regression to the mean (the sample is positively selected to start 

with). In the counterfactual, it takes about 3 years for the partnership rate to increase and reach an 

equilibrium level of about 30%.12  

Figure 4. Partnership dissolution: Total effects 

 

Note: 90% confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details. Sample: Partnered men aged 30 in 2011. 

 

The difference between the baseline and the feedback ON scenario is a measure of the total effect of 

the shock. Becoming unpartnered at age 30 increases the probability of being single at age 65 by 

almost 60 percentage points. This may contrast with the observation that partnership breakdowns are 

a common occurrence at all ages, and in particular for young adults, and they do not seem to lead to 

such drastic long-term consequences, in real life. This is because most individuals re-partner quite 

quickly and would therefore not be classified as ‘single’ in a survey, despite having gone through a 

partnership dissolution. In other words, as  is well known, stock sampling leads to length-time bias, 

with a higher likelihood that the short duration spells will be omitted from the sample. Our experiment 

should therefore be interpreted as putting individuals in an un-partnered spell that is long enough to 

be recorded in a survey, that is in a long-term single status, with potentially larger long-term 

consequences. 

Cross-effects on other variables are explored in Figure 5. The partnership dissolution at 30 has a small 

negative effect on health (panel (a)) until approximately the age of 50. The effect on employment 

 

12 The partnership rate in the counterfactual scenario levels off at around 30%. For comparison, age-specific 
partnership rates in the baseline are much higher for prime-age men, remaining approximately constant at 
around 80% between 30 and 65 years of age. The difference is explained by the fact that most of the 
transitions from single to partnered happen before the age of 30.   
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(panel (b)) is more pronounced, with a decrease in the probability of being employed of around 5 

percentage points, again until the age of 50. After that, employment rates in the baseline drop. This is 

because estimated labour supply for men (and women) in couples is reduced after the age of 50, 

something that is also observed in the survey data. The drop in the baseline therefore reflects the 

higher percentage of partnered individuals.13 The same composition issue (a higher percentage of 

partnered men) explains why employment rates in the baseline fall below those of the counterfactuals 

at older ages.  

Panels (c) and (d) show the effects on income. Gross income (panel (c)) is higher in the baseline, 

reflecting higher employment rates and longer work hours – see Appendix 4 for more details. The same 

pattern is found for equivalised disposable income (panel (d)). The effects of the shock on equivalised 

disposable income however differ depending on household structure. Specifically, the simulations 

assume that children follow their mother when a relationship dissolves. In the period immediately 

after the separation, two effects are consequently at play: a mechanical change to the equivalisation 

factor, and the incidence of maintenance payments if the couple has children.  

The equivalisation factor assumed for analysis is the modified OECD scale. This scale assigns a value of 

1 to the first adult; 0.5 to the second and each subsequent person aged 14 and over; and 0.3 to each 

child aged under 14. A partnership dissolution will tend to reduce the equivalence scales of divorced 

men, which works to increase equivalised disposable income. 

In contrast, maintenance payments work to decrease the equivalised disposable incomes of men 

following relationship dissolution (where children are involved). The simulations project maintenance 

payments based on the rules in place from 2012 onwards (Child Maintenance Service, 2024). On 

average, maintenance payments reduce equivalised disposable income for men in the simulation, by 

12% (1st quartile: 9%; 3rd quartile: 15%).  

On balance, panel (d) of Figure 5 indicates that the influence of weaker employment and maintenance 

payments on average dominate reduced equivalence scales, resulting in lower measures of equivalised 

disposable income following the simulated shock to partnership status.  

 

Figure 5. Partnership dissolution: Cross-effects 

  
(a) Health (b) Employment 

 

13 All individuals in the baseline start as partnered, and all individuals in the scenario start as single. However, 
over time the initial partnerships might “naturally” (that is, as simulated by the behavioural equations rather 
than artificially imposed in the experiment) come to an end, while single individuals might re-partner. 
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(c) Gross income (d) Equivalised disposable income 

Note: 90% confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details. Sample: Partnered men aged 30 in 2011. 

 

To understand the role of mediated effects, we bring in the ‘Feedback OFF’ scenario. Figure 6 is the 

equivalent to Figure 4, with the ‘Feedback OFF’ scenario added.  

 

Figure 6. Partnership dissolution: Total and direct effects 

 

Note: Base vs. ON = total effect; Base vs. OFF = direct effect. 90% confidence intervals are shown as shaded areas. 

Confidence intervals are based on 40 simulation runs. In each run, coefficients are bootstrapped from their 

estimated variance-covariance matrix before the simulation starts - separately for each process - and kept 

constant for the entire duration of the simulation. See Appendix 3 for more details. Sample: Partnered men aged 

30 in 2011. 

 

Comparing the blue (‘baseline’) to the green (‘feedback OFF’) series displayed in Figure 6 indicates the 

influence of direct effects on projections. The figure indicates that the direct effect in isolation would 

see partnership increase from zero to 20%, compared to more than 30% when all the mediator effects 

are factored in (‘Feedback OFF’, red line).     
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Finally, Figure 7 reports evolution of the F index, computed as per eq. (4). The F index (blue line) 

measures the ratio between the total and the direct effect of the shock on the shocked variable itself. 

The index starts at 1, as in the initial period the direct effect is the only one at work. The index then 

swiftly declines, reaching a plateau slightly above 80%. This means that the complex dynamic 

interactions between life domains compensate for around 20% of the initial impact of the shock. The 

figure also displays the total size of the effect (red line), to help contextualising the increased relative 

importance of the mediated effects. 

 

Figure 7. Partnership dissolution: F index 

 

Note: The F index (eq. 4) measures the ratio of the total to the direct effect of the shock. Values above 1 indicate 

reinforcement mechanisms are at work, while values below 1 indicate attenuation mechanisms. 90% confidence 

intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. In each run, 

coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation starts - 

separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 for 

more details. Sample: Partnered men aged 30 in 2011. 

8 Results: Health shock 

We contrast the results on the effects of a partnership dissolution with a second experiment, where 

we reduce the self-rated health score of all men aged 30 in the initial year of the simulation to 1.14 

Figure 8 shows the evolution of health in the baseline and ‘Feedback ON’ scenario, our measure for 

the total effect of the shock. It takes approximately 10 years for the shock to be absorbed, on average, 

with big health gains obtained during the first 3-5 years after the shock. The main explanation for this 

simulated response is that the individuals receiving the shock are young. Despite some persistency in 

 

14 Qualitative measures of self-reported health are associated with well-known problems of comparability and 
interpretation. The measures are nevertheless included for analysis as they are analytically convenient and 
strongly related to other health-related characteristics reported by the UKHLS. For example, the measures of 
self-reported health relate closely to associated measures for disability reported below. Furthermore, the 
average number of Activities of Daily Living (ADLs) that individuals aged 65 and over report needing help with 
in the UKHLS increases from 0.294 for those reporting Excellent health, 0.323 (Very Good), 0.614 (Good), 1.580 
(Fair), to 3.835 for those reporting Poor health (averaged over waves “g”, “i” and “k” of the survey). 
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the process determining health (see Bronka et al., 2023 for details), their other determinants typically 

point to good health, hence increasing the chances of a recovery.15 

 

Figure 8. Health shock: Total effects 

 

Note: 90% confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details. Sample: Men aged 30 in 2011. 

 

The health shock has a large impact on the probability of being disabled (Figure 9, panel (a)). 

Disability is simulated as a severe health condition but not an absorbing state; individuals can move 

into and out of disability, with probabilities estimated on survey data. These probabilities depend, 

amongst other things, on age, gender, education and socio-economic position (see Table A2 in 

Appendix 1). This explains why, as health gradually recovers, the probability of being disabled also 

returns to the simulated baseline.16  

The model assumes that disabled people are not available to work.17 Given that prime age men are 

typically observed to work despite poor health, it is the simulated increase in the disability rate that 

explains the small negative effects on employment projected for the health (panel (b) in the figure). 

 

15 For contrast, we also experimented with a simulated health shock to the cohort of men aged 50 in the initial 
year of the simulation. Given that the average health score for men aged 50 is lower than for men aged 30, the 
simulated shock is on average smaller. Despite this, and coherently with the intuition, we observe that it takes 
more for the shock to be absorbed, and for average health to return to the (declining) trajectory that is 
observed in the baseline. Appendix 5 describes the results of this exercise in more detail. 

16 The figure points to a counterintuitive lack of a clear age gradient in disability rates, in the baseline. This is 
because the disability variable is based on the ‘long-term sick or disabled’ response to the question related to 
current economic activity (‘jbstat’) in the UKHLS data. At older ages an increasingly proportion of the sample 
reports ‘retired’ as their economic status, even if they previously indicated ‘long-term sick or disabled’. 

17 ‘long-term sick or disabled’ in the ‘jbstat’ classification is an alternative state to employment.  
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The effects on employment carry over to effects on gross and net incomes (panels (c) and (d)). 

Interestingly, the health shock is not projected to influence partnership (panel (e)). 

 

Figure 9. Health shock: Cross-effects 

  
(a) Disability  (b) Employment  

 

 

 
(c) Gross income (d) Equivalised disposable income 

 

 

(e) Partnership   
Note: 90% confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details. Sample: Men aged 30 in 2011. 

 

Given the limited spillovers to other domains, it is no surprise that the mediated effect is also limited, 

as implied by Figure 11: the total effect substantially coincides with the direct effect.   

 

 

Figure 11. Health shock: Total and direct effects 
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Note: Base vs. ON = total effect; Base vs. OFF = direct effect. 90% confidence intervals are shown as shaded areas. 

Confidence intervals are based on 40 simulation runs. In each run, coefficients are bootstrapped from their 

estimated variance-covariance matrix before the simulation starts - separately for each process - and kept 

constant for the entire duration of the simulation. See Appendix 3 for more details. Sample: Men aged 30 in 

2011. 

 

This can also be seen in Figure 12, which reports the evolution of the F index up to 2018: the index is 

mostly projected to be close to 1. 

 

Figure 12. Health shock: F index 

 

Note: The F index (eq. 4) measures the ratio of the total to the direct effect of the shock. Values above 1 indicate 

reinforcement mechanisms are at work, while values below 1 indicate attenuation mechanisms. 90% confidence 

intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. In each run, 

coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation starts - 

separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 for 

more details. Sample: Men aged 30 in 2011. 
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9 Distributional Implications  

Understanding how direct and indirect effects play out over multiple time horizons sheds new light on 

how inequalities unfold over the life course, and individual resilience to adverse events. For instance, 

we can analyse the cross-effects of a partnership dissolution on income distinguished by the initial 

socio-economic position.18 Figure 13 is a replica of Figure 5d, by quintiles of equivalised disposable 

income in 2011. In each quintile, income is normalised to 100 in the initial year of the simulation to 

facilitate comparisons of associated distributional effects. 

 

Figure 13: Partnership dissolution: Cross-effects on equivalised disposable income, by income quintile 

in the initial year of the simulation 

  
(a) 1st quintile (poorer) (b) 2nd quintile 

  
(c) 3rd quintile (d) 4th quintile 

 

 

(e) 5th quintile (richer)  
Note: Panels refers to different quintiles of equivalised disposable income in 2011, normalised to 100. 90% 

confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. In each 

run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation starts 

 

18 Given its more limited effect on variables other than health, we omit here a discussion of the distributional 
effects of the health shock. 



20 

 

- separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 for 

more details. Sample: Partnered men aged 30 in 2011. 

 

There are three interesting things to notice in Figure 13. First, incomes tend to grow more, in 

percentage terms, for lower quintiles. Second, simulations show a cross-over, for quintiles 1-3, 

between the baseline and the scenario later in life, with average equivalised disposable income 

starting lower in the shocked scenario, but surpassing that of the baseline after around 15 years. Third, 

the impact of the partnership dissolution is more negative for higher earners. 

To explain these dynamics, we begin discussion at the moment when partnerships are dissolved, in 

2011. As Table 2 reports, the proportion of shocked men whose partner was working, and their 

partner’s earnings, increase with disposable income. This is partly by construction, as disposable 

income is computed at the benefit unit level, thus including earnings from both partners (as well as 

benefits that accrue to both the individual partners and the household). On the other hand, the 

average number of children – with the exception of the first quintile – decreases with income. 

 

Table 2: Distributional characteristics of the partnership shock sample, 2011 

Equivalised 
disposable 

income 

Partners' 
employment 

rate 

Partners' gross employment income 
(£/month, 2015 prices) (std. dev. in 

parenthesis) 

Number  
of Children 

1st Quintile 0.251 635.79 (362.56) 1.14 

2nd Quintile 0.626 836.65 (477.02) 1.62 

3rd Quintile 0.843 1175.16 (615.43) 1.32 

4th Quintile 0.902 1645.88 (838.22) 0.90 

5th Quintile 0.954 2429.90 (1383.04) 0.45 

 

This explains why the shock to partnership affects men in the upper quintiles more, as we have 

explained when presenting Figure 5d: lost partner earnings combined with smaller reductions in 

equivalence scales of men toward the top of the distribution dominate the relatively lower 

maintenance payments that they must typically pay, in relation to their income.19 

Over time moreover, we observe a lower probability of re-partnering as we move up along the income 

distribution (Figure 15). Given that being partnered is associated, on average, with higher equivalised 

disposable income, a lower probability of being re-partnered implies a more negative impact on 

income.20  

 

Figure 15: Partnership dissolution: Direct effects on partnership rates, by income quintile in the initial 

year of the simulation 

 

19 Richer individuals are charged a smaller fraction of their gross weekly income as maintenance payment. 
Moreover, they get fewer benefits, and have fewer children. 

20 The effect vanishes at very old ages as surviving individuals are more likely to be widowed, if previously 
partnered. 



21 

 

  
(a) 1st quintile (poorer) (b) 2nd quintile 

  
(c) 3rd quintile (d) 4th quintile 

 

 

(e) 5th quintile (richer)  

 

Furthermore, there is a negative relationship in the simulated baseline between income quintile and 

the probability that a partner is employed (if one exists, Figure 16). As noted previously, income 

quintiles are computed based on equivalised disposable income in 2011 and are thus lower by 

construction, ceteris paribus, if the partner is not working. 

 

Figure 16: Partnership dissolution: Cross effects on partnership rates of employment, by income 

quintile in the initial year of the simulation 

  
(a) 1st quintile (poorer) (b) 2nd quintile 
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(c) 3rd quintile (d) 4th quintile 

 

 

(e) 5th quintile (richer)  
Note: Panels refers to the fraction of partners who are in employment, for different quintiles of equivalised 

disposable income in 2011. 90% confidence intervals are shown as shaded areas. Confidence intervals are based 

on 40 simulation runs. In each run, coefficients are bootstrapped from their estimated variance-covariance 

matrix before the simulation starts - separately for each process - and kept constant for the entire duration of 

the simulation. See Appendix 3 for more details. Sample: Partnered men aged 30 in 2011. 

 

The fact that lower quintiles have a higher probability of re-partnering and a higher increase in the 

probability that the partner is working, with respect to the baseline, explains why their equivalised 

disposable income grows more. With a smaller initial loss and a higher rate of growth, equivalised 

disposable income in the lower quintiles surpasses that of the baseline.   

 

The effects reported above for men are comparable to those of their female partners (Figure 17).21 The 

negative impact of the partnership dissolution is however larger for women, reflecting the gender pay 

gap. 22 

 

Figure 17: Partnership dissolution: Cross-effects on equivalised disposable income, by income quintile 

in the initial year of the simulation, for the female partners. 

 

21 The female partners affected by the experiment are obviously not constrained to be aged 30.  

22 Even more than for men, at very old ages only few women are partnered, so, the impact of the initial shock 
becomes negligible. 
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(f) 1st quintile (poorer) (g) 2nd quintile 

  
(h) 3rd quintile (i) 4th quintile 

 

 

(j) 5th quintile (richer)  
Note: Panels refers to different quintiles of equivalised disposable income in 2011, normalised to 100. 90% 

confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. In each 

run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation starts 

- separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 for 

more details. Sample: Female partners of men aged 30 in 2011. 

 

In addition to studying resilience to a specific shock, this analytical framework could also be used to 

determine an overall score of resilience for the population of interest, by considering the effects of 

multiple shocks weighted by the likelihood of their occurrence (as estimated in the data). To be noted, 

the result that a partnership dissolution lowers on average equivalised disposable income takes into 

account that adjustments are made on different life domains. However, the proportion of the total 

effect that is mediated is higher for individuals with lower level of education, suggesting that 

attenuation mechanisms – including the safety net provided by the welfare state – are stronger for this 

group (Figure 18).  

 

Figure 18: Partnership dissolution: F index, by level of education 
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Note: The F index (eq. 4) measures the ratio of the total to the direct effect of the shock. Values above 1 indicate 

reinforcement mechanisms are at work, while values below 1 indicate attenuation mechanisms. Lines refers to 

different level of education. 90% confidence intervals are shown as shaded areas. Confidence intervals are based 

on 40 simulation runs. In each run, coefficients are bootstrapped from their estimated variance-covariance 

matrix before the simulation starts - separately for each process - and kept constant for the entire duration of 

the simulation. See Appendix 3 for more details. Sample: Partnered men aged 30 in 2011. 

10 Conclusions 

In this paper we have illustrated a new approach to the study of the complex interactions between life 

domains, which allows researchers to move beyond the limitations of existing data sources. The 

approach relies on a structural model projecting life trajectories over time, with a consideration of the 

heterogeneity of individual characteristics and experiences. This allows to investigate the overall 

impact of specific life events on any of the outcomes included in the model, as well as the construction 

of specific counterfactuals to disable individual causal pathways. Exploiting this feature, we have 

derived a framework for characterising feedback between life domains in terms of their attenuating or 

reinforcing mechanisms. An illustrative application to young adult men in the UK shows that 

partnership status is closely linked to most other life domains, with attenuating mechanisms that 

absorb around 20% of the total effect of a shock. On the other hand, health has fewer connections to 

other life domains, and shocks to health on average do not get attenuated or reinforced by the web of 

complex interactions governing life trajectories. 
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Appendix 1. Model structure and validation 

A deailed description of the model – including regression results and validation statistics – is available  

in Bronka et al. (2023). Here we provide an overview of the various processes comprising the model, 

organised in modules as per Figure 3. We also provide a map of all relationships between state 

variables in the model (Table A2), and some key validation statistics (Figures A1-A15). 

The list of all processes that form a simulation cycle is reported in Table A1. 

 

Table A1: List of modules and estimated processes 

Module Process 

Ageing Age increases. 

Probability of leaving the parental home for those who have left education. (Students 

stay in the parental home). 

Education Probability of remaining in education for those who have always been in education 

without interruptions. 

Probability of returning to education for those who had left school. 

Level of education for those leaving education. 

Health Self-rated health status for those in continuous education. 

Self-rated health status for those not in continuous education (out of education or 

returned having left education in the past). 

Probability of becoming long-term sick or disabled for those not in continuous 

education. 

(Mental Health (1)) Level of psychological distress on GHQ-12 Likert scale and binary 

case-based indicator of psychological distress. 

(Mental Health (2)) Effect of exposure to employment-state transitions, household 

income change,  and poverty for individuals aged 25 – 64 on  psychological distress. 

Family composition Probability of entering a partnership for those in continuous education. 

Probability of entering a partnership for those not in continuous education. 

Probability of partnership break-up. 

Probability of giving birth to a child. 

Social care Probability of needing care for individuals over an age threshold. 

Probability of receiving care for individuals under an age threshold with a disability or 

long-standing illness or over the age threshold, distinguished by formal, partner, son, 

daughter, and other providers. 

Hours of care for those in receipt of care, and financial cost for those receiving formal 

care. 

Probability of providing informal social care.  

Hours of informal social care, among those providing care. 

Investment income Probability of retiring for single individuals. 

Probability of retiring for partnered individuals. 

Probability of receiving capital income for those in continuous education. 

Probability of receiving capital income for those not in continuous education. 

Amount of capital income for those in continuous education. 

Amount of capital income for those not in continuous education. 

Amount of pension income for those who are retired and were not retired in the 

previous year. 

Labour income Heckman corrected wage equation; females not employed last period. 
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Heckman corrected wage equation; males not employed last period. 

Heckman corrected wage equation; females employed last period. 

Heckman corrected wage equation; males employed last period. 

Hours worked, single males. 

Hours worked, single females. 

Hours worked, single male adult children. 

Hours worked, single female adult children. 

Hours worked, males with dependent partner. 

Hours worked, females with dependent partner. 

Hours worked, couples. 

Disposable income Benefit recipiency indicator. 

 Amount of disposable income. 

Consumption & 

saving 

Consumption. 

Home ownership. 

Savings and assets. 

Statistical display Evaluate summary statistics for simulated population. 

 

Following a standard approach in dynamic microsimulation modelling, each of the processes included 

in the model and described by eq. (1) is estimated separately in the data. Table A2 summarises all the 

interdependencies in the model.  
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Table A2: Relationship between variables in the model 

 

(c) denotes covariate reported in same period as projected characteristic. (l) denotes covariate lagged one period 
relative to projected characteristic. (l2) denotes covariate lagged two periods relative to projected characteristic. 

 

All models are probability transition models, with the exception of the labour supply module, 

employing a structural random utility model (RUM). Bronka et al. (2023) provides more details on 

specifications and estimates.  

The model is validated cross-sectionally over the period 2011-2019. Validation measures include the 

share of students by age, educational attainments, health score by age and gender, psychological 

distress by age and gender (score and caseness), partnership status, number of children, activity status, 

employment rate by age and gender, hourly wages (averages and distribution), hours worked, gross 

income by age and sources, net income by age, equivalised disposable income, poverty rate, and 

various inequality measures. We also validate pairwise correlations between all the variables in the 

model.  

Selected validation graphs are reported below – the reader is referred again to Bronka et al. (2023) for 

the full set of indicators, as well as a discussion of the performances of the model. 

 

Figure A1: Educational attainment 
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age c c c c c c c c c c c c c c c c c c c
education l l c c c c,l c c c c c c c c c c c c c c c
maternal education c c l c
paternal education c c c
partnership status l c,l l l c,l c l c l l c c c c c c c
number of children l l l l l l c l l l c
age of children l l l c
health status l l c,l c,l c l l l c c c c c c c
mental health l
disability status l l l l c c
need social care l
receive social care l
type of care received l c
amount of care received
provide social care l c
amount of care provided
activity status l l c,l l l c l l l l l c
hours worked c c,l
disposable income (£) l c,l l l l l c
employment income (£) l
benefit income (£) c
capital income (£) l l l,l2
pension income (£) l l l, l2 l,l2
potential wage (£) l l l l
home owner c l
region c c c c c c c c c c c c c c c c c c c c
year c c c c c c c c c c c c

Dependent variable
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Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

 

Figure A2: General health score, men 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 
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starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

Figure A3: General health score, women 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

Figure A4: Psychological distress, men 
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Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

 

Figure A5: Psychological distress, women 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 
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starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

 

Figure A6: Partnership status 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

FigureA7: Number of children 
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Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

Figure A8: Activity status 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

Figure A9: Employment rates, men 
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Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

 

Figure A10: Employment rates, women 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 
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starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

Figure A11: Real wages, trend 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  

 

Figure A12: Real wages, distribution 
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FigureA13: Gross income, distribution  

 

FigureA14: Income sources, share 



38 

 

 

Figure A15: Inequality 

 

Note: 95% confidence intervals are shown as shaded areas. Confidence intervals are based on 20 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details.  
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Appendix 2. Descriptive statistics 

In this Appendix we compare the characteristics of our samples (men aged 30 observed as partnered 

in 2011 for the shock to partnership, and all men aged 30 for the health shock) with external statistics. 

The initial population for the simulation is drawn from UKHLS. For comparison, we use data coming 

from the Family Resources Survey (FRS) – more specifically the FRS-based input data for UKMOD 

(Richiardi et al., 2021; van de Ven and Popova, 2024). 

 

Table A3: Characteristics of the partnership shock sample23 

 

 

 

 

 

 

 

 

 

 

 

Note: Standard deviations (for continuous variables) in parenthesis. 

 

Table A4: Characteristics of the health shock sample 

Variable Simulated 
Data 2011 

UKMOD Data 
2011 

Simulated 
Data 2019 

UKMOD Data 
2019 

Observations 25232 657 24622 841 

Age 30 (0) 30 (0) 38 (0) 38 (0) 

Share partnered 0.663  0.613  0.730  0.786  

High education 0.378  0.379  0.389  0.380  

Medium education 0.543 0.583  0.532 0.577  

Low education 0.079 0.037  0.078  0.043  

Sex 1  1  1  1  

Share disabled 0.016  0.032  0.019  0.037  

Weekly hours of work 35.85 (14.07) 36.21 (15.76) 37.02(12.59) 36.01 (15.20) 

 

23 Note that due to the cross-sectional nature of the FRS and UKMOD data, a comparison of how the 
partnership shock sample has evolved between 2011 and 2019 is not possible, as in the simulation individuals 
are selected conditional on having a partner in 2011. Statistics are reported using cross-sectional weights, 
except for the number of observations which is reported unweighted. 

Variable Simulated Data 2011 UKMOD Data 2011 

Observations 8401 431 

Age 30 (0) 30 (0) 

Share partnered 1  1  

High education 0.395  0.411  

Medium education 0.534  0.558  

Low education 0.071  0.031  

Sex 1  1  

Share disabled 0.006 0.010  

Weekly hours of work 37.80 (11.79) 39.18 (13.42) 

Share employed 0.943  0.936  

Share students 0.018  0.010  

Share not employed 0.039  0.054  

Gross income (2015 £) 2417.08 (1632.04) 2361.79 (1895.48) 
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Share employed 0.903 0.885  0.931 0.899  

Share students 0.020 0.021  0.005 0.002  

Share not employed 0.077  0.092  0.064  0.099  

Gross income (2015 £) 2224.65 
(1637.80) 

2162.51 
(1861.34) 

3023.66 
(2168.92) 

2715.37 
(2572.45) 

Note: Standard deviations (for continuous variables) in parenthesis.  
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Appendix 3. Uncertainty in microsimulation models: Tunnels vs. 

Funnels  

Uncertainty regarding a model’s projections can arise from a variety of reasons (Bilcke et al., 2011; 

Creedy et al., 2007). In particular, sources of uncertainty are generally distinguished in (i) input data, 

for instance due to sampling errors in the initial population; (ii) model structure, that is the validity of 

the general modelling approach used (also called “methodological uncertainty”); (iii) model 

specification, which concerns the choice of the covariates and the functional forms used, and in 

particular the crucial assumption that any regularity observed in the data will not break up in the 

future; (iv) model parameters, pointing to the imprecision of the estimates and/or externally provided 

parameters; (v) Montecarlo variation of the model output, which originates from the fact that the 

simulated aggregate quantities are also imprecise estimates of the theoretical aggregate quantities 

that the model implicitly defines; and finally (vi) coding errors, pointing to “bugs” in the code used for 

estimation / simulation of the model. All the above sources are common to all empirically based, 

stochastic models used for projections.  

Generally speaking, source (i) should be limited, due to the use of appropriate input data and sampling 

weights. Source (ii) is often left unexplored, by making the common assumption that the model is well 

specified. Insights on the importance of this source of uncertainty are then generally left to meta-

analyses of different modelling approaches. Source (iii) is commonly dealt with by performing 

sensitivity and robustness analysis on model specification. Quantification of this source of uncertainty 

remains however elusive, and researchers often limit themselves to reporting measures of goodness 

of fit, to corroborate their choices. Montecarlo variation of the model outcome (source v) can be 

brought down to negligible by appropriately scaling up simulated population size, and/or performing 

multiple simulation runs and averaging results.24 Source (vi) – errors in programming – is generally 

ignored. Bugs are however hammered out over time, especially for sustained modelling efforts which 

lead to a solid research infrastructure used across a range of different projects. , as is the case for 

SimPaths. 

 

24 Increasing population size is statistically equivalent to running the simulation multiple times if the model is 
ergodic. On the other hand, if the model is non-ergodic (e.g. there are multiple equilibria) this is generally not 
the case. However, dynamic microsimulation models are mostly concerned with a time-limited evolution of 
the system under analysis (e.g. 50 iterations at a yearly frequency), starting from initial conditions that are 
generally taken from the data. In such a situation, the long-term properties of the stochastic dynamic system 
are of lesser importance (and more difficult to check), especially considering that some inputs of the model 
(e.g. population projections) keep changing the implicit underlying long-term statistical equilibrium of the 
system (see Grazzini and Richiardi, 2013 for a discussion). However, it is generally the case that the estimated 
processes rely on the ergodic assumption - as this is common in econometrics - and the resulting model is 
therefore ergodic. After increasing the simulated population size until enough statistical power for the 
statistics of interest is obtained, there remains little to be gained by running the simulation multiple times. 
Recurring to multiple simulations runs with smaller simulated population sizes is however a good strategy 
when running large simulations requires too much time, possibly exceeding memory. Note that the above 
discussion assumes fixed parameters – source (iv) considers the case when the parameters themselves are 
uncertain.   
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The remaining source of uncertainty that is amenable to statistical analysis is parameters uncertainty 

stemming from sampling errors in estimation (source iv). This is generally left unexplored in 

microsimulation studies, although this is recognised and criticised (see for instance Mitton et al., 2000; 

Goedemé et al, 2013).  

There are two approaches that can be used to deal with this uncertainty (Creedy et al., 2007). The first 

is what we might label “brute force”, and prescribes bootstrapping the coefficients of the estimated 

equations from their estimated distribution (e.g. multivariate normal in case of multinomial probit 

regressions) with mean equal to the point estimate, and variance-covariance matrix equal to the 

estimated variance-covariance. Bootstrapping needs to be performed only once, at the beginning of 

the simulation: the entire simulation is then performed with the bootstrapped values of the 

coefficients. The second approach provides an approximation by assuming from the onset a normal 

distribution for the resulting confidence intervals, requiring fewer draws from the parameter 

distribution.25 

A value added of the JAS-mine simulation platform is that it allows for a simple implementation of the 

“brute-force” approach, by exploiting the bootstrapping feature of its Regression library within a multi-

run implementation: the simulation is run many times, each using a different set of coefficients. The 

result is a distribution of model outcomes around the central projections obtained with the point 

estimates of the coefficients. Confidence intervals can then be computed based on the estimated 

distribution of model outcomes.  

Typically, these confidence intervals do not increase significantly over time, except for a relatively brief 

initial period. This is also the case for most of the outcomes reported in this paper. There are a number 

of reasons that explain this counterintuitive feature. As discussed in the text (see eqs. 1-3) most 

processes in a microsimulation model share an autoregressive form of the type  

𝑦𝑖,𝑡+1 = 𝜆𝑦𝑖,𝑡 + 𝛽𝑥𝑖,𝑡 + 𝑢𝑖,𝑡 (A2.1) 

where y is the outcome of interest and u is noise. Our bootstrapping procedure entails running multiple 

simulations, each with a different set of coefficients  and, crucially, . However, the coefficients are 

generally estimated with low enough errors, implying that outcomes of different simulation runs 

diverge only slowly over time. Moreover, the persistency parameter  is generally below 1, implying 

that the dynamic stochastic process y converges to an equilibrium – the quickest the lowest the value 

of . The equilibrium itself is different across simulation runs, given that  is different, but the 

differences remain bounded. Finally, even in an hypothetical case where  was above 1, divergence of 

aggregate outcomes at the population level would be limited. This is because at an individual level 

each process is replicated, with characteristics x that typically either remain constant (e.g. sex, 

education) or change only slowly with time (e.g. age, income), only for a limited number of periods, 

after which the individual is either not at risk anymore (e.g. for the education, fertility, employment) 

or is removed from the population. New individuals might enter the simulation, but starting from 

similar initial conditions. This implies that, at a population level, different simulations with different 

values of the coefficients converge to different equilibria irrespective of the value of , rather than 

keep diverging over time.26  

 

25 Note that bootstrapping requires multiple simulation runs with different sets of coefficients, differently from 
the multiple simulations runs with constant coefficients considered for source (v). 

26 This effect dampens the impact of uncertainty over  even when  is below 1. 
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This can be contrasted with the typical ‘funnel’ charts produced by uncertainty over the growth rate 

of a variable (e.g. GDP), where in different scenarios the outcome grows at different exponential rates 

and therefore quickly diverges. Here, the persistency parameter is above 1. Moreover, there are no 

population effects where outcomes are continuously reset and averaged. In dynamic microsimulation, 

with limited persistency, small confidence intervals, and continuous changes in the simulated units, 

uncertainty takes the form of ‘tunnels’ rather than ‘funnels’.  
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Appendix 4. Effects of partnership on employment outcomes 

We mentioned in the text that the negative impact of a partnership dissolution on gross income 

(Figure 5) is due to decreased employment and hours worked. Comparing partnered and 

unpartnered men in the baseline supports this claim (Table A5). 94% of partnered men are 

employed, against 82% of unpartnered men. When working, partnered men work slightly longer 

hours (40.1 hours per week against 38.6) and earn higher hourly wages (£14.5 against £12.6).  

 

Table A5: Partnered vs. Unpartnered men aged 30 in 2011: Descriptive statistics 

Variable Obs. Mean Std. Dev. Min/Max 

Partnered men 
Employed 8,401 0.94  0 / 1 
Weekly hours worked (if employed) 7,918 40.1 7.4 6 / 48 
Hourly earnings (2015 £) 7,918 14.5 8.4 1.5 / 110.9 
Single men 
Employed 4,199 0.82  0 / 1 
Weekly hours worked (if employed) 3,444 38.6 10.0 6 / 48 
Hourly earnings (2015 £) 3,444 12.6 7.7 1.5 / 150 

 

These differences however, reflect in part a selection into partnership, in the baseline.  

Indeed, our earning equation does not control for partnership status, so moving into a single status 

does not per se affect wages, in the simulations. However, partnership status matters for labour 

supply. Our random utility model (RUM) of labour supply is estimated separately for singles and 

couples – selected coefficients are reported in Tables A6 and A7. 

 

Table A6: Labour supply estimates (utility function) – Single men  

REGRESSOR COEFFICIENT 

IncomeDiv100 -0.026 

IncomeSqDiv10000 0.000 

MaleLeisure 0.181 

MaleLeisureSq -0.001 

MaleLeisure_IncomeDiv100 0.000 

FixedCost_Male -1.922 
Note: The specification also controls for other characteristics – see Bronka et al. (2023) for more details. 
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Table A7: Labour supply estimates (utility function) – Couples  

REGRESSOR COEFFICIENT 

IncomeDiv100 -0.05109015 

IncomeSqDiv10000 2.45749E-06 

MaleLeisure 0.643 

FemaleLeisure 2.200 

MaleLeisureSq -0.003 

FemaleLeisureSq -0.007 

MaleLeisure_FemaleLeisure 0.000 

MaleLeisure_IncomeDiv100 0.000 

FemaleLeisure_IncomeDiv100 0.000 

MaleLeisure_MaleAgeDiv100 0.064 

MaleLeisure_MaleAgeSqDiv10000 0.078 

FemaleLeisure_FemaleAgeDiv100 -0.047 

FemaleLeisure_FemaleAgeSqDiv10000 0.095 

FixedCost_Male -1.581 

FixedCost_Female -3.734 
Note: The specification also controls for other characteristics – see Bronka et al. (2023) for more details. 

 

Based on those coefficients, we compute marginal utilities of income and leisure, for some standard 

characteristics (Figure A16).27 

 

Figure A16: Marginal utilities of income and leisure. 

  
 

The marginal utilities of (male) leisure are decreasing with leisure – that is, increasing with hours 

worked) – both for couples and singles. On the other hand, the marginal utility of (male) income is 

increasing for couples (reflecting the utility that the partner receives from additional male income), 

and decreasing for singles. Hence, ceteris paribus men in couples supply more labour.  

 

27 Men aged 30 working 40 hours per week, with a spouse (if partnered) working 30 hours per week; total 
income of the household (when partnered): £50,000 per year. Patterns are robust to changes in those 
reference characteristics. Note that RUMs are unitary models of labour supply and assume that household 
maximise the joint utility of the partners. 



47 

 

  



48 

 

Appendix 5. Effects of a health shock in later life 

As discussed in the text, the rapid absorption of the health shock presented in Figure 8 is broadly 

explained by the young age of shocked individuals (30 in the initial year). To confirm the robustness 

of our results, we conduct additional experiments in which we shock men of older ages. In this 

Appendix we report the results of an experiment for men aged 50 in the initial year in the simulation. 

Coherently with our experimental setup for men aged 30, the health shock is implemented as a 

reduction of the self-rated health score to 1 in the initial year. Older men start from a lower average 

health score, so the initial shock is of lower relative intensity.  

Figure A17 contrasts the evolution of the simulated self-rated health score for men aged 50 with that 

of men aged 30. As in Figure 8, we report the average health score in the baseline and in the 

‘Feedback ON’ scenario (the difference between the two scenarios being our measure for the total 

effect of the shock) for the two groups of men.  

 

Figure A17. Health shock, comparison of total effects for men aged 30 and 50 in 2011   

  
(a) Men, aged 30 in 2011 (b) Men, aged 50 in 2011 

Note: 90% confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. 

In each run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation 

starts - separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 

for more details. 

 

The shock for the older cohort takes a bit longer to be absorbed, and it still visible when the affected 

individuals reach the age of 60. The natural deterioration in health in the baseline however implies 

that at older ages differences become less and less appreciable.  A comparison of the recovery 

trajectories from the initial shock is reported in Figure A18, where we normalised the health score in 

the ‘Feedback ON’ scenario with respect to the health score in the baseline (as already noted, the size 

of the shock is bigger for men aged 30). 

 

Figure A18. Recovery from the health shock, cohorts of men aged 30 and 50 in 2011 compared   

 

 



49 

 

 

Note: The graph shows the average health score in the ‘Feedback ON’ scenario, normalised to the average health 

score in the baseline, representing the fraction of the original shock that has been absorbed in each period. 90% 

confidence intervals are shown as shaded areas. Confidence intervals are based on 40 simulation runs. In each 

run, coefficients are bootstrapped from their estimated variance-covariance matrix before the simulation starts 

- separately for each process - and kept constant for the entire duration of the simulation. See Appendix 3 for 

more details. 

 


