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Preface

These notes were written to accompany my Survival Analysis module in the
masters-level University of Essex lecture course EC968, and my Essex University
Summer School course on Survival Analysis.1 (The �rst draft was completed
in January 2002, and has been revised several times since.) The course reading
list, and a sequence of lessons on how to do Survival Analysis (based around
the Stata software package), are downloadable from

http://www.iser.essex.ac.uk/teaching/degree/stephenj/ec968/index.php.

Please send me comments and suggestions on both these notes and the do-
it-yourself lessons:

Email: stephenj@essex.ac.uk

Post: Institute for Social and Economic Research, University of Essex, Wiven-
hoe Park, Colchester CO4 3SQ, United Kingdom.

Beware: the notes remain work in progress, and will evolve as and when time
allows.. Charts and graphs from the classroom presentations are not included
(you have to get something for being present in person!). The document was
produced using Scienti�c Workplace version 5.0 (formatted using the �Standard
LaTeX book�style).
My lectures were originally based on a set of overhead transparencies given

to me by John Micklewright (University of Southampton) that he had used in
a graduate microeconometrics lecture course at the European University In-
stitute. Over the years, I have also learnt much about survival analysis from
Mark Stewart (University of Warwick) and John Ermisch (University of Essex).
Robert Wright (University of Stirling) patiently answered questions when I �rst
started to use survival analysis. The Stata Reference Manuals written by the
StataCorp sta¤ have also been a big in�uence. They are superb, and useful as
a text not only as program manuals. I have also drawn inspiration from other
Stata users. In addition to the StataCorp sta¤, I would speci�cally like to cite

1 Information about Essex Summer School courses and how to apply is available from
http://www.essex.ac.uk/methods.
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the contributions of Jeroen Weesie (Utrecht University) and Nick Cox (Durham
University). The writing of Paul Allison (University of Pennsylvania) on sur-
vival analysis has also in�uenced me, providing an exemplary model of how to
explain complex issues in a clear non-technical manner.
I wish to thank Janice Webb for word-processing a preliminary draft of the

notes. I am grateful to those who have drawn various typographic errors to
my attention, and also made several other helpful comments and suggestions. I
would like to especially mention Paola De Agostini, José Diaz, Annette Jäckle,
Lucinda Platt, Thomas Siedler and the course participants at Essex and else-
where (including Frigiliana, Milan, and Wellington).
The responsibility for the content of these notes (and the web-based) Lessons

is mine alone.

If you wish to cite this document, please refer to:
Jenkins, Stephen P. (2004). Survival Analysis. Unpublished manuscript, In-

stitute for Social and Economic Research, University of Essex, Colchester, UK.
Downloadable from http://www.iser.essex.ac.uk/teaching/degree/stephenj/ec968/pdfs/ec968lnotesv6.pdf

c Stephen P. Jenkins, 2005.



Chapter 1

Introduction

1.1 What survival analysis is about

This course is about the modelling of time-to-event data, otherwise known as
transition data (or survival time data or duration data). We consider a partic-
ular life-course �domain�, which may be partitioned into a number of mutually-
exclusive states at each point in time. With the passage of time, individuals
move (or do not move) between these states. For some examples of life-course
domains and states, see Table 1.1.
For each given domain, the patterns for each individual are described by the

time spent within each state, and the dates of each transition made (if any).
Figure 1, from Tuma and Hannan (1984, Figure 3.1) shows a hypothetical mar-
ital history for an individual. There are three states (married, not married,
dead) di¤erentiated on the vertical axis, and the horizontal axis shows the pas-
sage of time t. The length of each horizontal line shows the time spent within
each state, i.e. spell lengths, or spell durations, or survival times. More gener-
ally, we could imagine having this sort of data for a large number of individuals
(or �rms or other analytical units), together with information that describes
the characteristics of these individuals (to be used as explanatory variables in
multivariate models).
This course is about the methods used to model transition data, and the

relationship between transition patterns and characteristics. Data patterns of
the sort shown in Figure 1 are quite complex however; in particular, there are
multi-state transitions (three states) and repeat spells within a given state (two
spells in the state �not-married�). Hence, to simplify matters, we shall focus on
models to describe survival times within a single state, and assume that we have
single spell data for each individual. Thus, for the most part, we consider exits
from a single state to a single destination.1

1Nonetheless we shall, later, allow for transitions to multiple destination states under
the heading �independent competing risk�models, and shall note the conditions under which
repeated spell data may be modelled using single-spell methods.

1
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Domain State
Marriage married

cohabiting
separated
divorced
single

Receipt of cash bene�t receiving bene�t x
receiving bene�t y
receiving x and y
receiving neither

Housing tenure owned-outright
owned with mortgage
renter �social housing
renter �private
other

Paid work employed
self-employed
unemployed
inactive
retired

Table 1.1: Examples of life-course domains and states

We also make a number of additional simplifying assumptions:

� the chances of making a transition from the current state do not depend
on transition history prior to entry to the current state (there is no state
dependence);

� entry into the state being modelled is exogenous � there are no �initial
conditions�problems. Otherwise the models of survival times in the current
state would also have to take account of the di¤erential chances of being
found in the current state in the �rst place;

� the model parameters describing the transition process are �xed, or can
be parameterized using explanatory variables �the process is stationary.

The models that have been specially developed or adapted to analyze survival
times are distinctive largely because they need to take into account some special
features of the data, both the �dependent�variable for analysis (survival time
itself), and also the explanatory variables used in our multivariate models. Let
us consider these features in turn.
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1.2 Survival time data: some notable features

Survival time data may be derived in a number of di¤erent ways, and the way
the data are generated has important implications for analysis. There are four
main types of sampling process providing survival time data:

1. Stock sample Data collection is based upon a random sample of the indi-
viduals that are currently in the state of interest, who are typically (but
not always) interviewed at some time later, and one also determines when
they entered the state (the spell start date). For example, when mod-
elling the length of spells of unemployment insurance (UI) receipt, one
might sample all the individuals who were in receipt of UI at a given date,
and also �nd out when they �rst received UI (and other characteristics).

2. In�ow sample Data collection is based on a random sample of all persons
entering the state of interest, and individuals are followed until some pre-
speci�ed date (which might be common to all individuals), or until the
spell ends. For example, when modelling the length of spells of receipt of
unemployment insurance (UI), one might sample all the individuals who
began a UI spell.

3. Out�ow sample Data collection is based on a random sample of those
leaving the state of interest, and one also determines when the spell began.
For example, to continue our UI example, the sample would consist of
individuals leaving UI recept.

4. Population sample Data collection is based on a general survey of the
population (i.e. where sampling is not related to the process of interest),
and respondents are asked about their current and/or previous spells of
the type of interest (starting and ending dates).

Data may also be generated from combinations of these sample types. For
example, the researcher may build a sample of spells by considering all spells
that occurred between two dates, for example between 1 January and 1 June
of a given year. Some spells will already be in progress at the beginning of
the observation window (as in the stock sample case), whereas some will begin
during the window (as in the in�ow sample case).
The longitudinal data in these four types of sample may be collected from

three main types of survey or database:

1. Administrative records For example, information about UI spells may be
derived from the database used by the government to administer the ben-
e�t system. The administrative records may be the sole source of infor-
mation about the individuals, or may be combined with a social survey
that asks further questions of the persons of interest.

2. Cross-section sample survey, with retrospective questions In this case, re-
spondents to a survey are asked to provide information about their spells
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in the state of interest using retrospective recall methods. For example,
when considering how long marriages last, analysts may use questions ask-
ing respondents whether they are currently married, or ever have been,
and determining the dates of marriage and of divorce, separation, and
widowhood. Similar sorts of methods are commonly used to collect infor-
mation about personal histories of employment and jobs over the working
life.

3. Panel and cohort surveys, with prospective data collection In this case, the
longitudinal information is built from repeated interviews (or other sorts
of observation) on the sample of interest at a number of di¤erent points
in time. At each interview, respondents are typically asked about their
current status, and changes since the previous interview, and associated
dates.

Combinations of these survey instruments may be used. For example a panel
survey may also include retrospective question modules to ask about respon-
dents�experiences before the survey began. Administrative records containing
longitudinal data may be matched into a sample survey, and so on.
The main lesson of this brief introduction to data collection methods is

that, although each method provides spell data, the nature of the information
about the spells di¤ers, and this has important implications for how one should
analyze the data. The rest of this section highlight the nature of the di¤erences
in information about spells. The �rst aspect concerns whether survival times
are complete, censored or truncated. The second and related aspect concerns
whether the analyst observes the precise dates at which spells are observed (or
else survival times are only observed in intervals of time, i.e. grouped or banded)
or, equivalently �at least from the analytic point of view �whether survival
times are intrinsically discrete.

1.2.1 Censoring and truncation of survival time data

A survival time is censored if all that is known is that it began or ended within
some particular interval of time, and thus the total spell length (from entry time
until transition) is not known exactly. We may distinguish the following types
of censoring:

� Right censoring : at the time of observation, the relevant event (transition
out of the current state) had not yet occurred (the spell end date is un-
known), and so the total length of time between entry to and exit from
the state is unknown. Given entry at time 0 and observation at time t, we
only know that the completed spell is of length T > t.

� Left censoring : the case when the start date of the spell was not observed,
so again the exact length of the spell (whether completed or incomplete)
is not known. Note that this is the de�nition of left censoring most com-
monly used by social scientists. (Be aware that biostatisticians typically
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use a di¤erent de�nition: to them, left-censored data are those for which
it is known that exit from the state occurred at some time before the
observation date, but it is not known exactly when. See e.g. Klein and
Moeschberger, 1997.)

By contrast, truncated survival time data are those for which there is a
systematic exclusion of survival times from one�s sample, and the sample se-
lection e¤ect depends on survival time itself. We may distinguish two types of
truncation:

� Left truncation: the case when only those who have survived more than
some minimum amount of time are included in the observation sample
(�small� survival times � those below the threshold �are not observed).
Left truncation is also known by other names: delayed entry and stock
sampling with follow-up. The latter term is the most-commonly referred
to by economists, re�ecting the fact that data they use are often generated
in this way. If one samples from the stock of persons in the relevant state
at some time s, and interviews them some time later, then persons with
short spells are systematically excluded. (Of all those who began a spell
at time r < s, only those with relatively long spells survived long enough
to be found in the stock at time s and thence available to be sampled.)
Note that the spell start is assumed known in this case (cf. left censoring),
but the subject�s survival is only observed from some later date �hence
�delayed entry�.

� Right truncation: this is the case when only those persons who have expe-
rienced the exit event by some particular date are included in the sample,
and so relatively �long�survival times are systematically excluded. Right
truncation occurs, for example, when a sample is drawn from the persons
who exit from the state at a particular date (e.g. an out�ow sample from
the unemployment register).

The most commonly available survival time data sets contain a combination
of survival times in which either (i) both entry and exit dates are observed
(completed spell data), or (ii) entry dates are observed and exit dates are not
observed exactly (right censored incomplete spell data). The ubiquity of such
right censored data has meant that the term �censoring�is often used as a short-
hand description to refer to this case. We shall do so as well.
See Figure 2 for some examples of di¤erent types of spells. *** insert and

add comments ***
We assume that the process that gives rise to censoring of survival times is

independent of the survival time process. There is some latent failure time for
person i given by T �i and some latent censoring time C

�
i , and what we observe is

Ti = minfT �i ; C�i g. See the texts for more about the di¤erent types of censoring
mechanisms that have been distinguished in the literature. If right-censoring is
not independent �instead its determinants are correlated with the determinants
of the transition process � then we need to model the two processes jointly.
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An example is where censoring arises through non-random sample drop-out
(�attrition�).

1.2.2 Continuous versus discrete (or grouped) survival time
data

So far we have implicitly assumed that the transition event of interest may occur
at any particular instant in time; the stochastic process occurs in continuous
time. Time is a continuum and, in principle, the length of an observed spell
length can be measured using a non-negative real number (which may be frac-
tional). Often this is derived from observations on spell start dates and either
spell exit dates (complete spells) or last observation date (censored spells). Sur-
vival time data do not always come in this form, however, and for two reasons.
The �rst reason is that survival times have been grouped or banded into

discrete intervals of time (e.g. numbers of months or years). In this case, spell
lengths may be summarised using the set of positive integers (1, 2, 3, 4, and so
on), and the observations on the transition process are summarized discretely
rather than continuously. That is, although the underlying transition process
may occur in continuous time, the data are not observed (or not provided) in
that form. Biostatisticians typically refer to this situation as one of interval
censoring, a natural description given the de�nitions used in the previous sub-
section. The occurence of tied survival times may be an indicator of interval
censoring. Some continuous time models often (implicitly) assume that tran-
sitions can only occur at di¤erent times (at di¤erent instants along the time
continuum), and so if there is a number of individuals in one�s data set with
the same survival time, one might ask whether the ties are genuine, or simply
because survival times have been grouped at the observation or reporting stage.
The second reason for discrete time data is when the underlying transition

process is an intrinsically discrete one. Consider, for example, a machine tool
set up to carry out a speci�c cycle of tasks and this cycle takes a �xed amount
of time. When modelling how long it takes for the machine to break down, it
would be natural to model failure times in terms of the number of discrete cycles
that the machine tool was in operation. Similarly when modelling fertility, and
in particular the time from puberty to �rst birth, it might be more natural to
measure time in terms of numbers of menstrual cycles rather than number of
calendar months.
Since the same sorts of models can be applied to discrete time data regardless

of the reason they were generated (as we shall see below), we shall mostly refer
simply to discrete time models, and constrast these with continuous time models.
Thus the more important distinction is between discrete time data and con-

tinuous time data. Models for the latter are the most commonly available and
most commonly applied, perhaps re�ecting their origins in the bio-medical sci-
ences. However discrete time data are relatively common in the social sciences.
One of the themes of this lecture course is that one should use models that
re�ect the nature of the data available. For this reason, more attention is given
to discrete time models than is typically common. For the same reason, I give
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more explicit attention to how to estimate models using data sets containing
left-truncated spells than do most texts.

1.2.3 Types of explanatory variables

There are two main types. Contrast, �rst, explanatory variables that describe

� the characteristics of the observation unit itself (e.g. a person�s age, or a
�rm�s size), versus

� the characteristics of the socio-economic environment of the observation
unit (e.g. the unemployment rate of the area in which the person lives).

As far model speci�cation is concerned, this distinction makes no di¤erence.
It may make a signi�cant di¤erence in practice, however, as the �rst type of
variables are often directly available in the survey itself, whereas the second
type often have to be collected separately and then matched in.
The second contrast is between explanatory variables that are

� �xed over time, whether time refers to calendar time or survival time
within the current state, e.g. a person�s sex; and

� time-varying, and distinguish between those that vary with survival time
and those vary with calendar time.

The unemployment rate in the area in which a person lives may vary with
calendar time (the business cycle), and this can induce a relationship with sur-
vival time but does not depend intrinsically on survival time itself. By contrast,
social assistance bene�t rates in Britain used to vary with the length of time
that bene�t had been received: Supplementary Bene�t was paid at the short-
term rate for spells up to 12 months long, and paid at a (higher) long-term rate
for the 13th and subsequent months for spells lasting this long. (In addition
some calendar time variation in the bene�t generosity in real terms was induced
by in�ation, and by annual uprating of bene�t amounts at the beginning of each
�nancial year (April).)
Some books refer to time-dependent variables. These are either the same as

the time-varying variables described above or, sometimes, variables for which
changes over time can be written directly as a function of survival time. For
example, given some personal characteristic summarized using variable X, and
survival time t, such a time-dependent variable might be X log(t).
The distinction between �xed and time-varying covariates is relevant for

both analytical and practical reasons. Having all explanatory variables �xed
means that analytical methods and empirical estimation are more straightfor-
ward. With time-varying covariates, some model interpretations no longer hold.
And from a practical point of view, one has to re-organise one�s data set in order
to incorporate them and estimate models. More about this �episode splitting�
later on.
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1.3 Why are distinctive statistical methods used?

This section provides some motivation for the distinctive specialist methods
that have been developed for survival analysis by considering why some of the
methods that are commonly used elsewhere in economics and other quantitative
social science disciplines cannot be applied in this context (at least in their
standard form). More speci�cally, what is the problem with using either (1)
Ordinary Least Squares (OLS) regressions of survival times, or with using (2)
binary dependent variable regression models (e.g. logit, probit) with transition
event occurrence as the dependent variable? Let us consider these in turn.
OLS cannot handle three aspects of survival time data very well:

� censoring (and truncation)

� time-varying covariates

� �structural�modelling

1.3.1 Problems for OLS caused by right censoring

To illustrate the (right) censoring issue, let us suppose that the �true�model
is such that there is a single explanatory variable, Xi for each individual i =
1; : : : ; n, who has a true survival time of T �i . In addition, in the population, a
higher X is associated with a shorter survival time. In the sample, we observe
Ti where Ti = T �i for observations with completed spells, and Ti < T �i for right
censored observations.
Suppose too that the incidence of censoring is higher at longer survival times

relative to shorter survival times. (This does not necessarily con�ict with the
assumption of independence of the censoring and survival processes �it simply
re�ects the passage of time. The longer the observation period, the greater the
proportion of spells for which events are observed.)
**CHART TO INSERT**
Data �cloud�: combinations of �true�Xi, T �i
By OLS, we mean: regress Ti, or better still log Ti (noting that survival times

are all non-negative and distributions of survival times are typically skewed),
on Xi, �tting the linear relationship

log(Ti) = a+ bXi + ei (1.1)

The OLS parameter estimates are the solution to min
a;b

nP
i=1

(ei)
2. â is the

vertical intercept; bb is the slope of the least squares line.
Case (a) Exclude censored cases altogether

Sample data cloud less dense everywhere but disproportionately at higher t
**CHART TO INSERT**
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Case (b) Treat censored durations as if complete

**CHART TO INSERT**
Under-recording �especially at higher t
sample OLS line has wrong slope again

1.3.2 Time-varying covariates and OLS

How can one handle time-varying covariates, given that OLS has only a single
dependent variable and there are multiple values for the covariate in question?
If one were to choose one value of a time-varying covariate at some particular

time as �representative�, which one would one choose of the various possibilities?
For example:

� the value at the time just before transition? But completed survival times
vary across people, and what would one do about censored observations
(no transition observed)?

� the value of the variable when the spell started, as this is the only de�nition
that is consistently de�ned? But then much information is thrown away.

In sum, time-varying covariates require some special treatment in modelling.

1.3.3 �Structural�modelling and OLS

Our behavioural models of for example job search, marital search, etc., are
framed in terms of decisions about whether to do something (and observed
transitions re�ect that choice). I.e. models are not formulated in terms of
completed spell lengths. Perhaps, then, we should model transitions directly.

1.3.4 Why not use binary dependent variable models rather
than OLS?

Given the above problems, especially the censoring one, one might ask whether
one could use instead a binary dependent regression model (e.g. logit, probit)?
I.e. one could get round the censoring issue (and the structural modelling one),
by simply modelling whether or not someone made a transition or not. (Obser-
vations with a transition would have a �1�for the dependent variable; censored
observations would have a �0�.) However, this strategy is also potentially prob-
lematic:

� it takes no account of the di¤erences in time in which each person is at
risk of experiencing the event. One could get around this by considering
whether a transition occurred within some pre-speci�ed interval of time
(e.g. 12 months since the spell began), but . . .
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� one still loses a large amount of information, in particular about when
someone left if she or he did so.

Cross-tabulations of (banded) survival times against some categorical/categorised
variable cannot be used for inference about the relationship between survival
time and that variable, for the same sorts of reasons. (Crosstabulations of a
dependent variable against each explanatory variable is often used with other
sorts of data to explore relationships.) In particular, the problems include:

� the dependent variable is mis-measured and censoring is not accounted
for;

� time-varying explanatory variables cannot be handled easily (current val-
ues may be misleading)

1.4 Outline of the book

The preceding sections have argued that, for survival analysis, we need methods
that directly account for the sequential nature of the data, and are able to
handle censoring and incorporate time-varying covariates. The solution is to
model survival times indirectly, via the so-called �hazard rate�, which is a concept
related to chances of making a transition out of the current state at each instant
(or time period) conditional on survival up to that point. The rest of this book
elaborates this strategy, considering both continuous and discrete time models.
The hazard rate is de�ned more formally in Chapter 2. I also draw attention

to the intimate connections between the hazard, survivor, failure, and density
functions. Chapter 3 discusses functional forms for the hazard rate. I set out
some of the most commonly-used speci�cations, and explain how models may
be classi�ed into two main types: proportional hazards or accelerated failure
time models. I also show, for a selection of models, what the hazard function
speci�cation implies about the distribution of survival times (including the me-
dian and mean spell lengths), and about the relationship between di¤erences
in survival times and di¤erences in characteristics (summarised by di¤erences
in values of explanatory variables). Survival analysis is not simply about es-
timating model parameters, but also interpreting them and drawing out their
implications to the fullest extent.
In the subsequent chapters, we move from concepts to estimation. The

aim is to indicate the principles behind the methods used, rather than provide
details (or proofs) about the statistical properties of estimators, or the numerical
analysis methods required to actually derive them.
Chapter 4 discusses Kaplan-Meier (product-limit) and Lifetable estimators

of the survivor and hazard functions. These are designed to �t functions for
the sample as a whole, or for separate subgroups; they are not multivariate
regression models. Multivariate regression models in which di¤erences in char-
acteristics are incorporated via di¤erences in covariate values are the subject
of Chapters 5�9. The problems with using OLS to model survival time data
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are shown to be resolved if one uses instead estimation based on the maximum
likelihood principle or the partial likelihood principle.
A continuing theme is that estimation has to take account of the sampling

scheme that generates the observed survival time data. The chapters indicate
how the likelihoods underlying estimation di¤er in each of the leading sam-
pling schemes: random samples of spells (with or without right censoring),
and left- and right-truncated spell data. We also examine how to incorporate
time-varying covariates using �episode-splitting�. Chapters 5 and 6 discuss con-
tinuous time and discrete time regression models respectively, estimated using
maximum likelihood. Chapter 7 introduces Cox�s semi-parametric proportional
hazard model for continuous time data, estimated using partial likelihood.
The remainder of the book discusses a selection of additional topics. Chap-

ter 8 addresses the subject of unobserved heterogeneity (otherwise known as
�frailty�). In the models considered in the earlier chapters, it is implicitly as-
sumed that all relevant di¤erences between individuals can be summarised by
the observed explanatory variables. But what if there are unobserved or un-
observable di¤erences? The chapter discusses the impact that unobserved het-
erogeneity may have on estimates of regression coe¢ cients and duration depen-
dence, and outlines the methods that have been proposed to take account of
the problem. Chapter 9 considers estimation of competing risks models. Earlier
chapters consider models for exit to a single destination state; this chapter shows
how one can model transitions to a number of mutually-exclusive destination
states. Chapter 10 [not yet written!] discusses repeated spell data (the rest of
the book assumes that the available data contain a single spell per subject).
A list of references and appendices complete the book.
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Chapter 2

Basic concepts: the hazard
rate and survivor function

In this chapter, we de�ne key concepts of survival analysis, namely the hazard
function and the survivor function, and show that there is a one-to-one relation-
ship between them. For now, we shall ignore di¤erences in hazard rates, and
so on, across individuals in order to focus on how they vary with survival time.
How to incorporate individual heterogeneity is discussed in the next chapter.

2.1 Continuous time

The length of a spell for a subject (person, �rm, etc.) is a realisation of a
continuous random variable T with a cumulative distribution function (cdf),
F (t), and probability density function (pdf), f(t). F (t) is also known in the
survival analysis literature as the failure function. The survivor function is
S(t) � 1� F (t); t is the elapsed time since entry to the state at time 0.
*Insert chart* of pdf, showing cdf as area under curve

Failure function (cdf)
Pr(T � t) = F (t) (2.1)

which implies, for the Survivor function:

Pr(T > t) = 1� F (t) � S(t): (2.2)

Observe that some authors use F (t) to refer to the survivor function. I use
S(t) throughout.

*Insert chart* of pdf in terms of cdf

13
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The pdf is the slope of the cdf (Failure) function:

f(t) = lim
�t!0

Pr(t � T � t+�t)

�t
=
@F (t)

@t
= �@S(t)

@t
(2.3)

where �t is a very small (�in�nitesimal�) interval of time. The f(t)�t is akin to
the unconditional probability of having a spell of length exactly t, i.e. leaving
state in tiny interval of time [t; t+�t].
The survivor function S(t) and the Failure function F (t) are each probabili-

ties, and therefore inherit the properties of probabilities. In particular, observe
that the survivor function lies between zero and one, and is a strictly decreasing
function of t. The survivor function is equal to one at the start of the spell
(t = 0) and is zero at in�nity.

0 � S(t) � 1 (2.4)

S(0) = 1 (2.5)

lim
t!1

S(t) = 0 (2.6)

@S

@t
< 0 (2.7)

@2S

@t2
? 0: (2.8)

The density function is non-negative

f(t) � 0 (2.9)

but may be greater than one in value (the density function does not summarize
probabilities).

2.1.1 The hazard rate

The hazard rate is a di¢ cult concept to grasp, some people �nd. Let us begin
with its de�nition, and then return to interpretation. The continuous time
hazard rate, �(t), is de�ned as:

�(t) =
f(t)

1� F (t) =
f(t)

S(t)
: (2.10)

Suppose that we let Pr(A) be the probability of leaving the state in the tiny
interval of time between t and t+�t, and Pr(B) be the probability of survival up
to time t, then the probability of leaving in the interval (t; t+�t], conditional on
survival up to time t, may be derived from the rules of conditional probability:

Pr(AjB) = Pr(A \B)=Pr(B) = Pr(BjA) Pr(A)=Pr(B) = Pr(A)=Pr(B);
(2.11)
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since Pr(BjA) = 1: But Pr(A)=Pr(B) = f(t)�t=S(t). This expression is closely
related to the expression that de�nes the hazard rate: compare it with (2:10):

�(t)�t =
f(t)�t

S(t)
: (2.12)

Thus �(t)�t; for tiny �t; is akin to the conditional probability of having a spell
length of exactly t, conditional on survival up to time t: It should be stressed,
however, that the hazard rate is not a probability, as it refers to the exact time
t and not the tiny interval thereafter. (Later we shall consider discrete time
survival time data. We shall see that the discrete time hazard is a (condi-
tional) probability.) The only restriction on the hazard rate, and implied by the
properties of f(t) and S(t), is that:

�(t) � 0:

That is, �(t) may be greater than one, in the same way that the probability
density f(t) may be greater than one.
The probability density function f(t) summarizes the concentration of spell

lengths (exit times) at each instant of time along the time axis. The hazard
function summarizes the same concentration at each point of time, but condi-
tions the expression on survival in the state up to that instant, and so can be
thought of as summarizing the instantaneous transition intensity.
To understand the conditioning underpinning the hazard rate further, con-

sider an unemployment example. Contrast (i) conditional probability �(12)�t;
for tiny �t;and (ii) unconditional probability f(12)�t: Expression (i) denotes
the probability of (re-)employment in the interval (12; 12 + �t) for a person
who has already been unemployed 12 months, whereas (ii) is the probability for
an entrant to unemployment of staying unemployed for 12 months and leaving
in interval (12; 12 + �t): Alternatively, take a longevity example. Contrast the
unconditional probability of dying at age 12 (for all persons of a given birth
cohort), and probability of dying at age 12, given survival up to that age.
Economists may recognise the expression for the hazard as being of the same

form as the �inverse Mills ratio�that used when accounting for sample selection
biases.

2.1.2 Key relationships between hazard and survivor func-
tions

I now show that there is a one-to-one relationship between a speci�cation for
the hazard rate and a speci�cation for the survivor function. I.e. whatever
functional form is chosen for �(t), one can derive S(t) and F (t) from it, and also
f(t) and H(t). Indeed, in principle, one can start from any one of these di¤erent
characterisations of the distribution, and derive the others from it. In practice,
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one typically starts from considerations of the shape of the hazard rate.

�(t) =
f(t)

1� F (t) (2.13)

=
�@[1� F (t)]=@t

1� F (t) (2.14)

=
@f� ln[1� F (t)]g

@t
(2.15)

=
@f� ln[S(t)]g

@t
(2.16)

using the fact that @ ln[g(x)]=@x = g0(x)=g(x) and S(t) = 1 � F (t). Now
integrate both sides: Z t

0

�(u)du = � ln[1� F (t)] jt0: (2.17)

But F (0) = 0 and ln(1) = 0; so

ln[1� F (t)] = ln[S(t)] = �
Z t

0

�(u)du, i.e. (2.18)

S(t) = exp

�
�
Z t

0

�(u)du

�
(2.19)

S(t) = exp[�H(t)] (2.20)

where the integrated hazard function, H(t), is

H(t) �
Z t

0

�(u)du (2.21)

= � ln[S(t)]: (2.22)

Observe that

H(t) � 0

@H(t)

@t
= �(t):

We have therefore demonstrated the one-to-one relationships between the
various concepts. In Chapter 3, we take a number of common speci�cations
for the hazard rate and derive the corresponding survivor functions, integrated
hazard functions, and density functions.

2.2 Discrete time

As discussed earlier, discrete survival time data may arise because either (i) the
time scale is intrinsically discrete, or (ii) survival occurs in continuous time but
spell lengths are observed only in intervals (�grouped�or �banded�data). Let us
consider the latter case �rst.
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2.2.1 Survival in continuous time but spell lengths are
interval-censored

*Insert chart (time scale) *
We suppose that the time axis may be partitioned into a number of contigu-

ous non-overlapping (�disjoint�) intervals where the interval boundaries are the
dates a0 = 0; a1; a2; a3; :::; ak:The intervals themselves are described by

[0 = a0; a1]; (a1; a2]; (a2; a3]; :::; (ak�1; ak =1]: (2.23)

This de�nition supposes that interval (aj�1; aj ] begins at the instant after the
date marking the beginning and end of the interval (aj�1). The time index-
ing the end of the interval (aj) is included in the interval.1 Observe that
a1; a2; a3; :::; are dates (points in time), and the intervals need not be of equal
length (though we will later suppose for convenience that they are).
The value of the survivor function at the time demarcating the start of the

jth interval is
Pr(T > aj�1) = 1� F (aj�1) = S(aj�1) (2.24)

where F (:) is the Failure function de�ned earlier. The value of the survivor
function at the end of the jth interval is

Pr(T > aj) = 1� F (aj) = F (aj) = S(aj): (2.25)

The probability of exit within the jth interval is

Pr(aj�1 < T � aj) = F (aj)� F (aj�1) = S(aj�1)� S(aj): (2.26)

The interval hazard rate, h(aj), also known as the discrete hazard rate, is the
probability of exit in the interval (aj�1; aj ], and de�ned as:

h(aj) = Pr(aj�1 < T � aj jT > aj�1) (2.27)

=
Pr(aj�1 < T � aj)

Pr(T > aj�1)
(2.28)

=
S(aj�1)� S(aj)

S(aj�1)
(2.29)

= 1� S(aj)

S(aj�1)
(2.30)

Note that the interval time hazard is a (conditional) probability, and so

0 � h(aj) � 1: (2.31)

1One could, alternatively, de�ne the intervals as [aj�1; aj), for j = 1; :::; k. The choice
is largely irrelevant in development of the theory, though it can matter in practice, because
di¤erent software packages use di¤erent conventions and this can lead to di¤erent results. (The
di¤erences arise when one splits spells into a sequence of sub-episodes � �episode splitting�.)
I have used the de�nition that is consistent with Stata�s de�nition of intervals. The TDA
package uses the other convention.
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In this respect, the discrete hazard rate di¤ers from the continuous time hazard
rate, for which �(u) � 0 and may be greater than one.
Although the de�nition used so far refers to intervals that may, in principle,

be of di¤erent lengths, in practice it is typically assumed that intervals are of
equal unit length, for example a �week�or a �month�). In this case, the time
intervals can be indexed using the positive integers. Interval (aj�1; aj ] may be
relabelled (aj � 1; aj ], for aj = 1; 2; 3; 4; :::, and we may refer to this as the jth
interval, and to the interval hazard rate as h(j) rather than h(aj).

We shall assume that intervals are of unit length from now on, unless other-
wise stated.

The probability of survival until the end of interval j is the product of prob-
abilities of not experiencing event in each of the intervals up to and including
the current one. For example, S3 = (probability of survival through interval 1)
� (probability of survival through interval 2, given survival through interval 1)
� (probability of survival through interval 3, given survival through interval 2).
Hence, more generally, we have:

S(j) � Sj = (1� h1)(1� h2):::::(1� hj�1)(1� hj) (2.32)

=

jY
k=1

(1� hk) (2.33)

S(j) refers to a discrete time survivor function, written in terms of interval
hazard rates. We shall reserve the notation S(aj) or, more generally S(t), to
refer to the continuous time survivor function, indexed by a date �an instant
of time �rather than an interval of time. (Of course the two functions imply
exactly the same value since, by construction, the end of the jth interval is date
aj .) In the special case in which the hazard rate is constant over time (in which
case survival times follow a Geometric distribution), i.e. hj = h, all j, then

S(j) = (1� h)j (2.34)

log[ S(j)] = j log(1� h): (2.35)

The discrete time failure function, F (j), is

F (j) � Fj = 1� S(j) (2.36)

= 1�
jY

k=1

(1� hk): (2.37)

The discrete time density function for the interval-censored case, f(j), is the
probability of exit within the jth interval:
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f(j) = Pr(aj�1 < T � aj) (2.38)

= S(j � 1)� S(j)

=
S(j)

1� hj
� S(j)

=

�
1

1� hj
� 1
�
S(j)

=
hj

1� hj

jY
k=1

(1� hk): (2.39)

Thus the discrete density is the probability of surviving up to the end of interval
j � 1; multiplied by the probability of exiting in the jth interval. Expression
(2.39) is used extensively in later chapters when deriving expressions for sample
likelihoods. Observe that

0 � f(j) � 1: (2.40)

2.2.2 The discrete time hazard when time is intrinsically
discrete

In the case in which survival times are instrinsically discrete, survival time T is
now a discrete random variable with probabilities

f(j) � fj = Pr(T = j) (2.41)

where j 2 f1; 2; 3; : : :g; the set of positive integers. Note that j now indexes �cy-
cles�rather than intervals of equal length. But we can apply the same notation;
we index survival times using the set of positive integers in both cases. The
discrete time survivor function for cycle j, showing the probability of survival
for j cycles, is given by:

S(j) = Pr(T � j) =
1X
k=j

fk: (2.42)

The discrete time hazard at j; h(j); is the conditional probability of the event
at j (with conditioning on survival until completion of the cycle immediately
before the cycle at which the event occurs) is:

h(j) = Pr(T = jjT � j) (2.43)

=
f(j)

S(j � 1) (2.44)

It is more illuminating to write the discrete time survivor function analogously
to the expression for the equal-length interval case discussed above (for survival



20CHAPTER 2. BASIC CONCEPTS: THE HAZARDRATE AND SURVIVOR FUNCTION

to the end of interval j), i.e.:

Sj = S(j) = (1� h1)(1� h2):::::(1� hj�1)(1� hj) (2.45)

=

jY
k=1

(1� hk): (2.46)

The discrete time failure function is:

Fj = F (j) = 1� S(j) (2.47)

= 1�
jY

k=1

(1� hk): (2.48)

Observe that the discrete time density function can also be written as in the
interval-censored case, i.e.:

f(j) = hjSj�1 =
hj

1� hj
Sj : (2.49)

2.2.3 The link between the continuous time and discrete
time cases

In the discrete time case, we have from (2.45) that:

logS(j) =

jX
k=1

log(1� hk): (2.50)

For �small�hk; a �rst-order Taylor series approximation may be used to show
that

log(1� hk) � �hk (2.51)

which implies, in turn, that

logS(j) � �
jX

k=1

hk: (2.52)

Now contrast this expression with that for the continuous time case, and note the
parallels between the summation over discrete hazard rates and the integration
over continuous time hazard rates:

logS(t) = �H(t) = �
Z t

0

�(u)du: (2.53)

As hk becomes smaller and smaller, the closer that discrete time hazard hj is to
the continuous time hazard �(t) and, correspondingly, the discrete time survivor
function tends to the continuous time one.
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2.3 Choosing a speci�cation for the hazard rate

The empirical analyst with survival time data to hand has choices to make before
analyzing them. First, should the survival times be treated as observations on
a continuous random variable, observations on a continuous random variable
which is grouped (interval censoring), or observations on an intrinsically discrete
random variable? Second, conditional on that choice, what is the shape of the
all-important relationship between the hazard rate and survival time? Let us
consider these questions in turn.

2.3.1 Continuous or discrete survival time data?

The answer to this question may often be obvious, and clear from consideration
of both the underlying behavioural process generating survival times, and the
process by which the data were recorded. Intrinsically discrete survival times
are rare in the social sciences. The vast majority of the behavioural processes
that social scientists study occur in continuous time, but it is common for the
data summarizing spell lengths to be recorded in grouped form. Indeed virtually
all data are grouped (even with survival times recorded in units as small as days
or hours).

A key issue, then, is the length of the intervals used for grouping relative to
the typical spell length: the smaller the ratio of the former to the latter, the
more appropriate it is to use a continuous time speci�cation.

If one has information about the day, month, and year in which a spell
began, and also the day, month, and year, at which subjects were last observed
�so survival times are measured in days �and the typical spell length is several
months or years, then it is reasonable to treat survival times as observations on
a continuous random variable (not grouped). But if spells length are typically
only a few days long, then recording them in units of days implies substantial
grouping. It would then make sense to use a speci�cation that accounted for the
interval censoring. A related issue concerns �tied�survival times �more than
one individual in the data set with the same recorded survival time. A relatively
high prevalence of ties may indicate that the banding of survival times should
be taken into account when choosing the speci�cation. For some analysis of
the e¤ects of grouping, see Bergström and Edin (1992), Petersen (1991), and
Petersen and Koput (1992).

Historically, many of the methods developed for analysis of survival time
data assumed that the data set contained observations on a continuous random
variable (and arose in applications where this assumption was reasonable). Ap-
plication of these methods to social science data, often interval-censored, was
not necessarily appropriate. Today, this is much less of a problem. Methods for
handling interval-censored data (or intrinsically discrete data) are increasingly
available, and one of the aims of this book is to promulgate them.
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2.3.2 The relationship between the hazard and survival
time

The only restriction imposed so far on the continuous time hazard rate is �(t) �
0, and on the discrete time hazard rate is 0 � h(j) � 1. Nothing has been
assumed about the pattern of duration dependence �how the hazard varies with
survival times. The following desiderata suggest themselves:

� A shape that is empirically relevant (or suggested by theoretical models).
This is likely to di¤er between applications �the functional form describ-
ing human mortality is likely to di¤er from that for transitions out of
unemployment transitions, for failure of machine tools, and so on.

� A shape that has convenient mathematical properties e.g. closed form
expressions for � (t) ; and S (t) and tractable expressions for summary sta-
tistics of survival time distributions such as the mean and median survival
time.

2.3.3 What guidance from economics?

As an illustration of the �rst point, consider the extent to which economic theory
might provides suggestions for what the shape of the hazard rate is like. Con-
sider a two-state labour market, where the two states are (1) employment, and
(2) unemployment. Hence the only way to leave unemployment is by becoming
employed. To leave unemployment requires that an unemployed person both
receives a job o¤er, and that that o¤er is acceptable. (The job o¤er probability
is conventionally considered to be under the choice of �rms, and the acceptance
probability dependent on the choice of workers.) For a given worker, we may
write the unemployment exit hazard rate �(t) as the product of the job o¤er
hazard �(t) and the job acceptance hazard A(t):

�(t) = �(t)A(t): (2.54)

A simple structural model

In a simple job search framework, the unemployed person searches across the
distribution of wage o¤ers, and the optional policy is to adopt a reservation
wage r, and accept a job o¤er with associated wage w only if w � r. Hence,

�(t) = �(t) [1�W (t)] (2.55)

where W (t) is the cdf of the wage o¤er distribution facing the worker. How the
re-employment hazard varies with duration thus depends on:

1. How the reservation wage varies with duration of unemployment. (In an
in�nite horizon world one would expect r to be constant; in a �nite horizon
world, one would expect r to decline with the duration of unemployment.)
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2. How the job o¤er hazard � varies with duration of unemployment. (It is
unclear what to expect.)

In sum, the simple search model provides some quite strong restrictions on
the hazard rate (if in�uences via � are negligible).

Reduced form approach

An alternative interpretation is that the simple search model (or even more
sophisticated variants) place too many restrictions on the hazard function, i.e.
the restrictions may be consequence of the simplifying assumptions used to make
the model tractable, rather than intrinsic. Hence one may want to use a reduced
form approach, and write the hazard rate more generally as

�(t) = � (X (t; s) ; t) ; (2.56)

where X is a vector of personal characteristics that may vary with unemploy-
ment duration (t) or with calendar time (s). That is we allow, in a more ad hoc
way, for the fact that:

1. unemployment bene�ts may vary with duration t; and maybe also calendar
time s (because of policy changes, for example); and

2. local labour market conditions may vary with calendar time (s); and

3. � may also vary directly with survival time, t.

Examples of this include

� Employers screening unemployed applicants on the basis of how long each
applicant has been unemployed, for example rejecting the longer-term un-
employed) : @�=@t < 0:

� The reservation wage falling with unemployment duration: @A=@t > 0 (a
resource e¤ect);

� Discouragement (or a �welfare culture�or �bene�t dependence�e¤ect) may
set in as the unemployment spell lengthens, leading to decline in search
intensity: @�=@t < 0.

� Time limits on eligibility to Unemployment Insurance (UI) may lead to a
bene�t exhaustion e¤ect, with the re-employment hazard (�) rising as the
time limit approaches.

Observe the variety of potential in�uences. Moreover, some of the in�uences
mentioned would imply that the hazard rises with unemployment duration,
whereas others imply that the hazard declines with duration. The actual shape
of the hazard will re�ect a mixture of these e¤ects. This suggests that it is
important not to pre-impose particular shape on the hazard function. What
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one needs to do is strike a balance between what a theoretical (albeit simpli�ed)
model might suggest, and �exibility in speci�cation and ease of estimation. This
will improve model �t, though of course problems of interpretation may remain.
(Without the structural model, one cannot identify which in�uence has which
e¤ect so easily.)
Although the examples above referred to modelling of unemployment du-

ration, much the same issues for model selection are likely to arise in other
contexts.



Chapter 3

Functional forms for the
hazard rate

3.1 Introduction and overview: a taxonomy

The last chapter suggested that there is no single shape for the hazard rate that
is appropriate in all contexts. In this chapter we review the functional forms for
the hazard rate that have been most commonly used in the literature. What this
means in terms of survival, density and integrated hazard functions is examined
in the following chapter.
We begin with an overview and taxonomy, and then consider continuous

time and discrete time speci�cations separately. See Table 3.1. The entries in
the table in the emphasized font are the ones that we shall focus on. One further
distinction between the speci�cations, discussed later in the chapter, refers to
their interpretation �whether the models can be described as

� proportional hazards models (PH), or

� accelerated failure time models (AFT).

Think of the PH and AFT classi�cations as describing whole families of
survival time distributions, where each member of a family shares a common
set of features and properties.

Note that although we speci�ed hazard functions simply as a function of
survival time in the last chapter, now we add an additional dimension to the
speci�cation �allowing the hazard rate to vary between individuals, depending
on their characteristics.

25
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Continuous time Continuous time Discrete time
parametric semi-parametric
Exponential Piece-wise constant Exponential Logistic
Weibull �Cox�model Complementary log-log
Log-logistic
Lognormal
Gompertz
Generalized Gamma

Table 3.1: Functional forms for the hazard rate: examples

3.2 Continuous time speci�cations

In the previous chapter, we referred to the continuous time hazard rate, �(t)
and ignored any potential di¤erences in hazard rates between individuals. Now
we remedy that. We suppose that the characteristics of a given individual may
be summarized by a vector of variables X and, correspondingly, now refer to
the hazard function � (t;X) and survivor function S (t;X), integrated hazard
function H (t;X), and so on.
The way is which heterogeneity is incorporated is as follows. We de�ne a

linear combination of the characteristics:

�0X � �0 + �1X1 + �2X2 + �3X3 + : : :+ �KXK : (3.1)

There are K variables observed for each person, and the �s are parameters,
later to be estimated. Observe that the linear index �0X, when evaluated, is
simply a single number for each individual. For the moment, suppose that the
values of the Xs do not vary with survival or calendar time, i.e. there are no
time-varying covariates.

3.2.1 Weibull model and Exponential model

The Weibull model is speci�ed as:

� (t;X) = �t��1 exp
�
�0X

�
(3.2)

= �t��1� (3.3)

where � � exp
�
�0X

�
, � > 0, and exp(.) is the exponential function. The

hazard rate either rises monotonically with time (� > 1), falls monotonically
with time (� < 1), or is constant. The last case, � = 1, is the special case of the
Weibull model known as the Exponential model. For a given value of �, larger
values of � imply a larger hazard rate at each survival time. The � is the shape
parameter.
Beware: di¤erent normalisations and notations are used by di¤erent au-

thors. For example, you may see the Weibull hazard written as � (t;X) =
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(1=�)t(1=�)�1� where � � 1=�. (The reason for this will become clearer in
the next section.) Cox and Oakes (1984) characterise the Weibull model as
� (t;X) = {�(�t){�1 = {�{t{�1:
*Insert charts* showing how hazard varies with (i) variations in � with �xed

�; (ii) variations in � with �xed �:

3.2.2 Gompertz model

The Gompertz model has a hazard function given by:

� (t;X) = � exp(t) (3.4)

and so the log of the hazard is a linear function of survival time:

log � (t;X) = �0X + t: (3.5)

If the shape parameter  > 0, then the hazard is monotonically increasing; if
 = 0, it is constant; and if  < 0, the hazard declines monotonically. *Insert
charts* showing how hazard varies with (i) variations in  with �xed �; (ii)
variations in � with �xed :

3.2.3 Log-logistic Model

To specify the next model, we use the parameterisation  � exp(���0X), where

��0X � ��0 + �
�
1X1 + �

�
2X2 + �

�
3X3 + : : :+ �

�
KXK : (3.6)

The reason for using a parameterization based on  and ��, rather than on �
and �, as for the Weibull model, will become apparent later, when we compare
proportional hazard and accelerated failure time models.
The Log-logistic model hazard rate is:

� (t;X) =
 

1
 t(

1
�1)


h
1 + ( t)

1


i (3.7)

where shape parameter  > 0. An alternative representation is:

� (t;X) =
' 't'�1

1 + ( t)
' (3.8)

where ' � 1=: Klein and Moeschberger (1997) characterise the log-logistic
model hazard function as � (t;X) = '�t'�1=(1 + �t'), which is equivalent to
the expression above with � =  '.
*Insert chart* of hazard rate against time.
Observe that the hazard rate is monotonically decreasing with survival time

for  � 1 (i.e. ' � 1). If  < 1 (i.e. ' > 1), then the hazard �rst rises with
time and then falls monotonically.
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3.2.4 Lognormal model

This model has hazard rate

� (t;X) =

1
t�
p
2�
exp

�
� 1
2

n
ln(t)��

�

o2�
1� �

�
ln(t)��

�

� (3.9)

where �(:) is the standard Normal cumulative distribution function and char-
acteristics are incorporated with the parameterisation � = ��0X. The hazard
rate is similar to that for the Log-logistic model for the case  < 1 (i.e. �rst
rising and then declining).

3.2.5 Generalised Gamma model

This model has a rather complicated speci�cation involving two shape para-
meters. Let us label them { and �, as in the Stata manual: they are the
shape and scale parameters respectively. The hazard function is quite �exible
in shape, even including the possibility of a U shaped or so-called �bath-tub�
shaped hazard (commonly cited as a plausible description for the hazard of hu-
man mortality looking at the lifetime as a whole). The Generalised Gamma
incorporates several of the other models as special cases. If { = 1, we have the
Weibull model; if { = 1; � = 1, we have the Exponential model. With { = 0,
the Lognormal model results. And if { = �, then one has the standard Gamma
distribution. These relationships mean that the generalised Gamma is useful
for testing model speci�cation: by estimating this general model, one can use a
Wald (or likelihood ratio) test to investigate whether one of the nested models
provides a satisfactory �t to the data.
*Insert chart* of hazard rate against time.
Note that a number of other parametric models have been proposed. For

example, there is the generalized F distribution (see Kalb�eisch and Prentice
1980).

3.2.6 Proportional Hazards (PH) models

Let us now return to the general case of hazard rate � (t;X), i.e. the hazard rate
at survival time t for a person with �xed covariates summarised by the vector
X.

The PH speci�cation

Proportional hazards models are also known as �multiplicative hazard�models,
or �log relative hazard�models for reasons that will become apparent shortly.
The models are characterised by their satisfying a separability assumption:

� (t;X) = �0 (t) exp(�
0X) = �0 (t)� (3.10)
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where

� �0 (t) : the �baseline hazard�function, which depends on t (but not X). It
summarizes the pattern of �duration dependence�, assumed to be common
to all persons;

� � = exp(�0X) : a person-speci�c non-negative function of covariates X
(which does not depend on t, by construction), which scales the baseline
hazard function common to all persons. In principle, any non-negative
function might be used to summarise the e¤ects of di¤erences in personal
characteristics, but since exp(:) is the function that is virtually always
used, we will use it.

Note that I have used one particular convention for the de�nition of the
baseline hazard function. An alternative characterization writes the propor-
tional hazard model as

� (t;X) = ��0 (t)�
� (3.11)

where

��0 (t) = �0 (t) exp(�0) and �
� = exp(�1X1+�2X2+�3X3+: : :+�KXK): (3.12)

The rationale for this alternative representation is that the intercept term (�0)
is common to all individuals, and is therefore not included in the term summa-
rizing individual heterogeneity. By contrast, the �rst representation treats the
intercept as a regression parameter like the other elements of �. In most cases,
it does not matter which characterization is used.

Interpretation

The PH property implies that absolute di¤erences in X imply proportionate
di¤erences in the hazard at each t. For some t = t; and for two persons i and j
with vectors of characteristics Xi and Xj ,

�
�
t;Xi

�
�
�
t;Xj

� = exp ��0Xi � �0Xj

�
= exp

�
�0(Xi �Xj)

�
: (3.13)

We can also write (3.13) in �log relative hazard�form:

log

"
�
�
t;Xi

�
�
�
t;Xj

�# = �0 (Xi �Xj) : (3.14)

Observe that the right-hand side of these expressions does not depend on sur-
vival time (by assumption the covariates are not time dependent), i.e. the
proportional di¤erence result in hazards is constant.
If persons i and j are identical on all but the kth characteristic, i.e. Xim =

Xjm for all m 2 f1; :::;Knkg, then
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�
�
t;Xi

�
�
�
t;Xj

� = exp[�k(Xik �Xjk)]: (3.15)

If, in addition, Xik � Xjk = 1, i.e. there is a one unit change in Xk, ceteris
paribus, then

�
�
t;Xi

�
�
�
t;Xj

� = exp(�k): (3.16)

The right hand side of this expression is known as the hazard ratio. It also shows
the proportionate change in the hazard given a change in a dummy variable
covariate from zero to one or, more precisely a change from Xik = 0 to Xjk = 1,
with all other covariates held �xed.
There is a nice interpretation of the regression coe¢ cients in PH models.

The coe¢ cient on the kth covariate X, �k, has the property

�k = @ log �(t;X)=@Xk (3.17)

which tells us that in a PH model, each regression coe¢ cient summarises the
proportional e¤ect on the hazard of absolute changes in the corresponding co-
variate. This e¤ect does not vary with survival time.
Alternatively, we can relate �k to the elasticity of the hazard with respect

to Xk: Recall that an elasticity summarizes the proportional response in one
variable to a proportionate change in another variable, and so is given by
Xk@ log �(t;X)=@Xk = �kXk. If Xk � log(Zk), so that the covariate is mea-
sured in logs, then it follows that �k is the elasticity of the hazard with respect
to Zk.
If Stata is used to estimate a PH model, you can choose to report estimates

of either b�k or exp(b�k), for each k:
In addition, observe that, for two persons with the sameX = X; but di¤erent

survival times:

�
�
t;X

�
�
�
u;X

� = �0 (t)

�0 (u)
(3.18)

so the ratio of hazards does not depend on X in this case.

Some further implications of the PH assumption

If � (t;X) = �0 (t)� and � does not vary with survival time, i.e. the PH speci-
�cation applies, then

S (t;X) = exp

�
�
Z t

0

� (u) du

�
(3.19)

= exp

�
��
Z t

0

�0 (u) du

�
(3.20)

= [S0 (t)]
� (3.21)
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given the �baseline�survivor function, S0 (t), where

S0 (t) � exp
�
�
Z t

0

�0 (u) du

�
: (3.22)

Thus logS (t;X) = � logS0 (t). You can verify that it is also the case that

logS (t;X) = �� logS�0 (t) where S
�
0 (t) � exp

h
�
R t
0
��0 (u) du

i
.

Hence, in the PH model, di¤erences in characteristics imply a scaling of
the common baseline survivor function. Given the relationships between the
survivor function and the probability density function, we also �nd that for a
PH model

f(t) = f0(t)� [S0 (t)]
��1 (3.23)

where f0(t) is the baseline density function, f0(t) = f(tjX = 0).
Alternatively, (3.19) may be re-written in terms of the integrated hazard

function H(t) = � lnS(t), implying

H(t) = �H0 (t) : (3.24)

where H0(t) = � lnS0(t).
If the baseline hazard does not vary with survival time, �0 (u) = � for all u,

then H0 (t) =
R t
0
�0 (u) du = �

R t
0
du = �t. So, in the constant hazard rate case,

a plot of the integrated hazard against survival time should yield a straight line
through the origin. Indeed, if the integrated hazard plot is concave to the origin
(rising but at a decreasing rate), then this suggests that the hazard rate declines
with survival time rather than constant. Similarly if the integrated hazard plot
is convex to the origin (rising but at a increasing rate), then this suggests that
the hazard rate increases with survival time.
The relationship between the survivor function and baseline survivor func-

tion also implies that

ln[� lnS(t)] = ln�+ ln (� ln [S0 (t)]) (3.25)

= �0X + ln(� ln[S0 (t)]) (3.26)

or, re-written in terms of the integrated hazard function,

ln[H(t)] = �0X + ln[H0 (t)] (3.27)

The left-hand side is the log of the integrated hazard function at survival time
t. The result suggests that one can check informally whether a model satis�es
the PH assumption by plotting the log of the integrated hazard function against
survival time (or a function of time) for groups of persons with di¤erent sets
of characteristics. (The estimate of the integrated hazard would be derived
using a non-parametric estimator such as the Nelson-Aalen estimator referred
to in Chapter 4.) If the PH assumption holds, then the plots of the estimated
ln[H(t)] against t for each of the groups should have di¤erent vertical intercepts
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but a common shape, moving in parallel. To see this, suppose that there are
two groups, labelled A and B. Hence,

ln[HA(t)] = �0XA + ln[H0 (t)]

ln[HB(t)] = �0XB + ln[H0 (t)]:

The group-speci�c intercepts are the numbers implied by �0XA and �0XB

whereas the common shape arises because the remaining term, the function
of t is common to both groups.

Incorporating time-varying covariates

It is relatively straightforward in principle to generalise the PH speci�cation to
allow for time-varying covariates. For example, suppose that

� (t;Xt) = �0 (t) exp(�
0Xt) (3.28)

where there is now a �t�subscript on the vector of characteristics X. Observe
that for any given survival time t = t, we still have that absolute di¤erences in
X correspond to proportional di¤erences in the hazard. However the propor-
tionality factor now varies with survival time rather than being constant (since
the variables in X on the right-hand side of the equation are time-varying).
The survivor function is more complicated too. From the standard relationship
between the hazard and the survivor functions, we have:

S (t;Xt) = exp

�
�
Z t

0

� (u) du

�
(3.29)

= exp

�
�
Z t

0

�0 (u) exp(�
0Xu)du

�
: (3.30)

In general, the survivor function cannot be simply factored as in the case when
covariates are constant. Progress can be made, however, by assuming that each
covariate is constant within some pre-de�ned time interval.

To illustrate this, suppose that there is a single covariate that takes on two
values, depending on whether survival time is before or after some date s, i.e.

X = X1 if t < s
X = X2 if t � s:

(3.31)

The survivor function (3.29) now becomes
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S (t;Xt) = exp

�
�
Z s

0

�0 (u) exp(�X1)du�
Z t

s

�0 (u) exp(�X2)du

�
(3.32)

= exp

�
��1

Z s

0

�0(u)du� �2
Z t

s

�0 (u) du

�
(3.33)

= exp

�
��1

Z s

0

�0 (u) du

�
exp

�
��2

Z t

s

�0 (u) du

�
(3.34)

= [S0(s)]
�1 [S0(t)]

�2

[S0(s)]
�2
: (3.35)

The probability of survival until time t is the probability of survival until time
s, times the probability of survival until time t conditional on survival up until
time s (the conditioning is accounted for by the expression in the denominator
of the second term in the product). The density function can be derived in the
usual way as the product of the survivor function and the hazard rate.
Expressions of this form underpin the process of estimation of PH models

with time-varying covariates. As we shall see in Chapter 5, there are two parts
to practical implementation: (a) reorganisation of one�s data set to incorporate
the time-varying covariates (�episode splitting�), and (b) utilisation of estimation
routines that allow for conditioned survivor functions such as those in the second
term in (3.32) �so-called �delayed entry�.

3.2.7 Accelerated Failure Time (AFT) models

Let us again assume for the moment that personal characteristics do not vary
with survival time.

AFT speci�cation

The AFT model assumes a linear relationship between the log of (latent) survival
time T and characteristics X :

ln (T ) = ��0X + z (3.36)

where �� is a vector of parameters (cf. 3.6), and z is an error term. This
expression may be re-written as

Y = �+ �u (3.37)

or
Y � �
�

= u (3.38)

where Y � ln (T ) ; � � ��0X, and u = z=� is an error term with density function
f(u), and � is a scale factor (which is related to the shape parameters for the
hazard function �see below). This form is sometimes referred to as a generalized
linear model (GLM) or log-linear model speci�cation.
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Distribution of u Distribution of T
Extreme Value (1 parameter) Exponential
Extreme Value (2 parameter) Weibull
Logistic Log-logistic
Normal Lognormal
log Gamma (3 parameter Gamma) Generalised Gamma

Table 3.2: Di¤erent error term distributions imply di¤erent AFT models

Distributional assumptions about u determine which sort of regression model
describes the random variable T : see Table 3.2.
In the case of the Exponential distribution, the scale factor � = 1, and

f(u) = exp[u � exp(u)]. In the Weibull model, � is a free parameter, and
� = 1=� to use our earlier notation. The density f(u) = � exp[�u � exp(�u)]
in this case. For the Log-logistic model, f(u) = exp(u)=[1 + exp(u)], and free
parameter � = ', to use our earlier notation.
For the Lognormal model, the error term u is normally distributed, and we

have a speci�cation of a (log)linear model that appears to be similar to the
standard linear model that is typically estimated using ordinary least squares.
This is indeed the case: it is the example that we considered in the Introduction.
The speci�cation underscores the claim that the reason that OLS did not provide
good estimates in the example was because it could not handle censored data
rather than the speci�cation itself. (The trick to handle censored data turns
out to hinge on a di¤erent method of estimation, i.e. maximum likelihood. See
Chapter 5.) The table also indicates that the normal linear model might be
inappropriate for an additional reason: the hazard rate function may have a
shape other than that assumed by the lognormal speci�cation.

Interpretation

But why the �Accelerated Failure Time�label for these models? From (3.36),
and letting  � exp

�
���0X

�
= exp(��), it follows that:

ln (T ) = z: (3.39)

The term  , which is constant by assumption, acts like a time scaling factor.
The two key cases are as follows:

�  > 1: it is as if the clock ticks faster (the time scale for someone with
characteristics X is T , whereas the time scale for someone with charac-
teristics X = 0 is T ). Failure is �accelerated�(survival time shortened).

�  < 1 : it is as if the clock ticks slower. Failure is �decelerated�(survival
time lengthened).

We can also see this time scaling property directly in terms of the survivor
function. Recall the de�nition of the survivor function:
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S(t;X) = Pr[T > tjX]: (3.40)

Expression (3.40) is equivalent to writing:

S(t;X) = Pr[Y > ln(t)jX] (3.41)

= Pr[�u > ln(t)� �] (3.42)

= Pr[exp (�u) > t exp(��)]: (3.43)

Now de�ne a �baseline�survivor function, S0(t;X), which is the corresponding
function when all covariates are equal to zero, i.e. X = 0, in which case then
� = ��0, and exp(��) = exp(���0) �  0. Thus:

S0(t) = Pr[T > tjX = 0]: (3.44)

This expression can be rewritten using (3.43) as

S0(t) = Pr[exp (�u) > t 0] (3.45)

or
S0(s) = Pr[exp (�u) > s 0] (3.46)

for any s. In particular, let s = t exp(��)= 0, and substitute this into the
expression for S0(s): Comparisons with (3.43), show that we can rewrite the
survivor function as:

S(t;X) = S0[t exp (��)] (3.47)

= S0[t ] (3.48)

where  � exp (��). It follows that  > 1 is equivalent to having � < 0 and
 < 1 is equivalent to having � > 0.
In sum, the e¤ect of the covariates is to change the time scale by a con-

stant (survival time-invariant) scale factor  � exp (��). When explaining this
idea, Allison (1995, p. 62) provides an illustration based on longevity. The
conventional wisdom is that one year for a dog is equivalent to seven years for a
human, i.e. in terms of actual calendar years, dogs age faster than humans do.
In terms of (3.47), if S(t;X) describes the survival probability of a dog, then
S0(t) describes the survival probability of a human, and  = 7.
How may we intrepret the coe¢ cients ��k? Di¤erentiation shows that

��k =
@ ln (T )

@Xk
: (3.49)

Thus an AFT regression coe¢ cient relates proportionate changes in survival
time to a unit change in a given regressor, with all other characteristics held
�xed. (Contrast this with the interpretation of the coe¢ cients in the PH model
�they relate a one unit change in a regressor to a proportionate change in the
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hazard rate, not survival time.) Stata allows you to choose to report either b��kor
exp(b��k):
Recall from (3.36) that

T = exp(��0X) exp(z) (3.50)

If persons i and j are identical on all but the kth characteristic, i.e. Xim = Xjm

for all m 2 f1; :::;Knkg, and they have the same z, then

Ti
Tj
= exp[��k(Xik �Xjk)]: (3.51)

If, in addition, Xik � Xjk = 1, i.e. there is a one unit change in Xk, ceteris
paribus, then

Ti
Tj
= exp(��k): (3.52)

The exp(��k) is called the time ratio.

Some further implications

Using the general result that �(t) = �[@S(t)=@t]=S(t), and applying it to (3.47),
the relationship between the hazard rate for someone with characteristics X and
the hazard rate for the case when X = 0 (i.e. the �baseline�hazard �0(:)), is
given for AFT models by:

�(t;X) =  �0(t ): (3.53)

Similarly, the probability density function for AFT models is given by:

f(t;X) =  �0(t )S0(t ) (3.54)

=  f0(t):

The Weibull model is the only model that satis�es both the PH and
AFT assumptions

The Weibull distribution is the only distribution for which, with constant co-
variates, the PH and AFT models coincide. To show this requires �nding the
functional form which satis�es the restriction that

[S0(t)]
� = S0[t ]: (3.55)

See Cox and Oakes (1984, p. 71) for a proof.
This property implies a direct correspondence between the parameters used

in the Weibull PH and Weibull representations. What are the relationships?
Recall that the PH version of Weibull model is:

� (t;X) = �t��1� (3.56)

= �0 (t)� (3.57)
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with baseline hazard �0 (t) = �t��1, which is sometimes written �0 (t) = (1=�)t
1
��1

with � = 1=� (see earlier for reasons). Making the appropriate substitutions,
one can show that the Weibull AFT coe¢ cients (��) are related to the Weibull
PH coe¢ cients (�) as follows:

��k = ���k = ��k=�, for each k: (3.58)

To see this for yourself, substitute the PH and AFT Weibull survivor functions
into (3.55):

[exp(�t�)]� = exp(�[t exp(��)]
�

):

By taking logs of both sides, and rearranging expressions, you will �nd that this
equality holds only if ��k = ��k=�, for each k.
In Stata, you can choose to report either � or �� (or the exponentiated values

of each coe¢ cient).

Incorporating time-varying covariates

Historically AFT models have been speci�ed assuming that the vector summa-
rizing personal characteristics is time-invariant. Clearly it is di¢ cult to incor-
porate them directly into the basic equation that relates log survival time to
charcteristics: see (3.36). However they can be incorporated via the hazard
function and thence the survivor and density functions. A relatively straight-
forward generalisation of the AFT hazard to allow for time-varying covariates
is to suppose that

�(t;Xt) =  t�0(t t) (3.59)

where there is now a �t�subscript on  t � exp(���0Xt). As in the PH case, we
can factor the survivor function if we assume each covariate is constant within
some pre-de�ned time interval. To illustrate this, again suppose that there is a
single covariate that takes on two values, depending on whether survival time
is before or after some date s, i.e.

X = X1 if t < s
X = X2 if t � s:

(3.60)

We therefore have  1 � exp(���X1) and  2 � exp(���X2). The survivor
function now becomes

S (t;Xt) = exp

�
�
Z s

0

�0 (u 1) 1du�
Z t

s

�0 (u 2) 2du

�
(3.61)

= [S0(s 1)]
 1
[S0(t 2)]

 2

[S0(s 2)]
 2
: (3.62)

where manipulations similar to those used in the corresponding derivation for
the PH case have been used. The density function can be derived as the product
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Function Proportional hazards Accelerated failure time
Hazard, � (t;X) �0 (t)�  �0(t )

Survivor, S (t;X) [S0 (t)]
�

S0(t )

Density, f(t;X) f0(t)� [S0 (t)]
��1

 f0(t)

Note: � = exp(�0X);  = exp(���0X): The characteristics vector X is time-invariant.

Table 3.3: Speci�cation summary: proportional hazard versus accelerated fail-
ure time models

Model PH AFT
Exponential X X
Weibull X X
Log-logistic � X
Lognormal � X
Gompertz X �
Generalized Gamma � X

Table 3.4: Classi�cation of models as PH or AFT: summary

of the hazard rate and this survivor function. As in the PH case, estimation
of AFT models with time-varying covariates requires a combination of episode
splitting and software that can handle conditioned survivor functions (delayed
entry).

3.2.8 Summary: PH versus AFT assumptions for contin-
uous time models

We can now summarise the assumptions about the functional forms of the haz-
ard function, density function, and survivor function: see Table 3.3 which shows
the case where there are no time-varying covariates.

Table 3.4 classi�es parametric models according to whether they can be
interpreted as PH or AFT. Note that the PH versus AFT description refers
to the interpretation of parameter estimates and not to di¤erences in how the
model per se is estimated. As we see in later chapters, estimation of all the
models cited so far is based on expressions for survivor functions and density
functions.

3.2.9 A semi-parametric speci�cation: the piecewise-constant
Exponential (PCE) model

The Piecewise-Constant Exponential (PCE) model is an example of a semi-
parametric continuous time hazard speci�cation. By contrast with all the para-
metric models considered so far, the speci�cation does not completely character-
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ize the shape of the hazard function. Whether it generally increases or decreases
with survival time is left to be �tted from the data, rather than speci�ed a priori.
*Insert chart* shape of baseline hazard in this case.
The time axis is partitioned into a number of intervals using (researcher-

chosen) cut-points. It is assumed that the hazard rate is constant within each
interval but may, in principle, di¤er between intervals. An advantage of the
model compared to the ones discussed so far is that the overall shape of the
hazard function does not have to be imposed in advance. For example, with
this model, one can explore whether the hazard does indeed appear to vary
monotonically with survival time, and then perhaps later choose one of the
parametric models in the light of this check.
It turns out that this is a special (and simple) case of the models incorporat-

ing time-varying covariates discussed earlier. The PCE model is a form of PH
model for which we have, in general, � (t;Xt) = �0 (t) exp(�

0Xt): In the PCE
special case, we have:

� (t;Xt) =

8>>><>>>:
�1 exp(�

0X1) t 2 (0; �1]
�2 exp(�

0X2) t 2 (�1; �2]
...

...
�K exp(�

0XK) t 2 (�K�1; �K ]

(3.63)

The baseline hazard rate (�) is constant within each of the K intervals but
di¤ers between intervals. Covariates may be �xed or, if time-varying, constant
within each interval. This expression may be rewritten as

� (t;Xt) =

8>>><>>>:
exp

�
log(�1) + �

0X1

�
t 2 (0; �1]

exp
�
log(�2) + �

0X2

�
t 2 (�1; �2]

...
...

exp
�
log(�K) + �

0XK

�
t 2 (�K�1; �K ]

(3.64)

or

� (t;Xt) =

8>>>><>>>>:
exp(e�1) t 2 (0; �1]
exp(e�2) t 2 (�1; �2]

...
...

exp(e�K) t 2 (�K�1; �K ]

(3.65)

so the constant interval-speci�c hazard rates are equivalent to having interval-
speci�c intercept terms in the overall hazard. One can estimate these by de�ning
binary (dummy) variables that refer to each interval, and the required estimates
are the estimated coe¢ cients on these variables. However, observe that in order
to identify the model parameters, one cannot include all the interval-speci�c
dummies and an intercept term in the regression. Either one includes all the
dummies and excludes the intercept term, or includes all but one dummy and
includes an intercept. (To see why, note that, for the �rst interval, and similarly
for the others, e�1 = log(�1) + �0 + �1X1 + �2X2 + �3X3 + : : :+ �KXK .)



40 CHAPTER 3. FUNCTIONAL FORMS FOR THE HAZARD RATE

The expression for the PCE survivor function is a special case of the earlier
expression for survivor function where we assumed that covariates were constant
within some pre-de�ned interval (cf. 3.32). If we consider the case where K = 2
(as earlier), then it can be shown that

S (t;Xt) = [S0(s)]
e�1 [S0(t)]e�2
[S0(s)]

e�2 (3.66)

= [exp(�s)]e�1 [exp(�t)]
e�2

[exp(�s)]e�2 (3.67)

= exp(�se�1) exp[�(t� s)e�2]: (3.68)

It was stated earlier that expressions with this structure were the foundation
for estimation of models with time-varying covariates �combining episode split-
ting and software that can handle delayed entry spell data. For the PCE model,
however, one only needs to episode split; one does not need software that can
handle spells with delayed entry (the spell from s to t in our example). With
a constant hazard rate, the relevant likelihood contribution for this spell is the
same as a spell from time 0 to (t� s): note the second term on the right-hand
side of (3.68).
The PCE model should be distinguished from Cox�s Proportional Hazard

model that is considered in Chapter 7. Both are continuous time models, can
incorporate time-varying covariates, and allow for some �exibility in the shape
of the hazard function. However the Cox model is more general, in the sense
that it allows estimates of the slope parameters in the � vector to be derived
regardless of what the baseline hazard function looks like. The PCE model
requires researcher input in its speci�cation (the cutpoints); the Cox model
estimates are derived for a totally arbitrary baseline hazard function. On the
other hand, if you desire �exibility and explicit estimates of the baseline hazard
function, you might use the PCE model.

3.3 Discrete time speci�cations

We consider two models. The �rst is the discrete time representation of a contin-
uous time proportional hazards model, and leads to the so-called complementary
log-log speci�cation. This model can also be applied when survival times are
intrinsically discrete. The second model, the logistic model, was primarily de-
veloped for this second case but may also be applied to the �rst. It may be given
an interpretation in terms of the proportional odds of failure. For expositional
purposes we assume �xed covariates.



3.3. DISCRETE TIME SPECIFICATIONS 41

3.3.1 A discrete time representation of a continuous time
proportional hazards model

The underlying continuous time model is summarised by the hazard rate � (t;X),
but the available survival time data are interval-censored �grouped or banded
into intervals in the manner described earlier. That is, exact survival times are
not known, only that they fall within some interval of time. What we do here
is derive an estimate of parameters describing the continuous time hazard; but
taking into account the nature of the banded survival time data that is available
to us.
The survivor function at time aj , the date marking the end of the interval

(aj�1; aj ], is given by:

S(aj ; X) = exp

�
�
Z aj

0

� (u;X) du

�
: (3.69)

Suppose also that the hazard rate satis�es the PH assumption:

� (t;X) = �0 (t) e
�0X = �0 (t)� (3.70)

where, as before, �0X � �0 + �1X1 + �2X2 + : : : �KXK and � � exp(�0X).
These assumptions imply that

S(aj ; X) = exp

�
�
Z aj

0

�0 (t)�du

�
(3.71)

= exp

�
��
Z aj

0

�0 (t) du

�
(3.72)

= exp [�Hj�] (3.73)

whereHj � H(aj) =
R aj
0
�0 (u;X) du is the integrated baseline hazard evaluated

at the end of the interval. Hence, the baseline survivor function at aj is:

S0 (aj) = exp(�Hj): (3.74)

The discrete time (interval) hazard function, h(aj ; X) � hj(X) is de�ned by

hj(X) =
S(aj�1; X)� S(aj ; X)

S(aj�1; X)
(3.75)

= 1� S(aj ; X)

S(aj�1; X)
(3.76)

= 1� exp [� (Hj�1 �Hj)] (3.77)

which implies that

log (1� hj (X)) = � (Hj�1 �Hj) (3.78)

and hence
log (� log[1� hj (X)]) = �0X + log(Hj �Hj�1):
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Similarly, the discrete time (interval) baseline hazard for the interval (aj�1; aj)
is

1� h0j = exp (Hj�1 �Hj) (3.79)

and hence

log [� log (1� h0j)] = log (Hj �Hj�1) (3.80)

= log

"Z aj

aj�1

�0 (u) du

#
(3.81)

= j ; say (3.82)

where j is the log of the di¤erence between the integrated baseline hazard �0(t)
evaluated at the end of the interval (aj�1; aj ] and the beginning of the interval.
We can substitute this expression back into that for h(aj ; X) and derive an
expression for the interval hazard rate:

log(� log[1� hj (X)]) = �0X + j , or (3.83)

h (aj ; X) = 1� exp[� exp
�
�0X + j

�
]: (3.84)

The log(� log(.)) transformation is known as the complementary log-log trans-
formation; hence the discrete-time PH model is often referred to as a cloglog
model.
Observe that, if each interval is of unit length, then we can straightforwardly

index time intervals in terms of the interval number rather than the dates mark-
ing the end of each interval. In this case, we can write the discrete time hazard
equivalently as

h (j;X) = 1� exp[� exp
�
�0X + j

�
]:

The cloglog model is a form of generalized linear model with particular link
function: see (3.83). When estimated using interval-censored survival data, one
derives estimates of the regression coe¢ cients �, and of the parameters j : The
� coe¢ cients are the same ones as those characterizing the continuous time
hazard rate � (t) = �0 (t) exp(�

0X). However the parameters characterizing the
baseline hazard function �0 (t) cannot be identi�ed without further assumptions:
the j summarize di¤erences in values of the integrated hazard function, and
are consistent with a number of di¤erent shapes of the hazard function within
each interval. To put things another way, the j summarize the pattern of
duration dependence in the interval hazard, but one cannot identify the precise
pattern of duration dependence in the continuous time hazard without further
assumptions.
Restrictions on the speci�cation of the j can lead to discrete time models

corresponding directly to the parametric PH models considered in the previous
chapter. For example, if the continuous time model is the Weibull one, and
we have unit-length intervals, then evaluation of the integrated baseline hazard
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�see later in chapter for the formula �reveals that j = (j)� � (j � 1)�. In
practice, however, most analysts do not impose restrictions such as these on the
j when doing empirical work. Instead, either they do not place any restrictions
on how the j vary from interval to interval (in which case the model is a type
of semi-parametric one) or, alternatively, they specify duration dependence in
terms of the discrete time hazard (rather than the continuous time one). That
is, the variation in j from interval to interval is speci�ed using a parametric
functional form. Examples of these speci�cations are given below.
Note, �nally, that the cloglog model is not the only model that is consistent

with a continuous time model and interval-censored survival time data (though
it is the most commonly-used one). Sueyoshi (1995) has shown how, for example,
a logistic hazard model (as considered in the next sub-section) with interval-
speci�c intercepts may be consistent with an underlying continuous time model
in which the within-interval durations follow a loglogistic distribution.

3.3.2 A model in which time is intrinsically discrete

When survival times are intrinsically discrete, we could of course apply the
discrete time PH model that we have just discussed, though of course it would
not have the same interpretation. An alternative, also commonly used in the
literature, is a model that can be labelled the proportional odds model. (Beware
that here the odds refer to the hazard, unlike in the case of the Loglogistic model
where they referred to the survivor function.) Let us suppose, for convenience,
that survival times are recorded in �months�.
The proportional odds model assumes that the relative odds of making a

transition in month j, given survival up to end of the previous month, is sum-
marised by an expression of the form:

h (j;X)

1� h (j;X) =
�

h0 (j)

1� h0 (j)

�
exp

�
�0X

�
(3.85)

where h (j;X) is the discrete time hazard rate for month j, and h0 (j;X) is the
corresponding baseline hazard arising when X = 0. The relative odds of making
a transition at any given time is given by the product of two components: (a)
a relative odds that is common to all individuals, and (b) an individual-speci�c
scaling factor. It follows that

log it [h (j;X)] = log
�

h (j;X)

1� h (j;X)

�
= �j + �

0X (3.86)

where �j = logit[ h0 (j)]. We can write this expression, alternatively, as

h(j;X) =
1

1 + exp
�
��j � �0X

� : (3.87)

This is the logistic hazard model and, given its derivation, has a proportional
odds interpretation. In principle the �j may di¤er for each month. Often
however the pattern of variation in the �j , and the j in the cloglog model, are
characterized using some function of j.
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3.3.3 Functional forms for characterizing duration depen-
dence in discrete time models

Examples of duration dependence speci�cations include:

� r log (j), which can be thought of a discrete-time analogue to the contin-
uous time Weibull model, because the shape of the hazard monotonically
increases if r > 0, decreases if r < 0, or is constant if r = 0 (r + 1 = q
is thus analogous to the Weibull shape parameter �). If this speci�cation
were combined with a logistic hazard model, then the full model speci�ca-
tion would be logit[h (j;X)] = r log (j) + �0X, and r is a parameter that
would be estimated together with intercept and slope parameters within
the vector �.

� z1j + z2j
2 + z3j

3 + ::: + zpj
p, i.e. a p-th order polynomial function of

time, where the shape parameters are z1; z2; z3; :::zp: If p = 2 (a quadratic
function of time), the interval hazard is U-shaped or inverse-U-shaped. If
the quadratic speci�cation were combined with a cloglog hazard model,
then the full model speci�cation would be cloglog[h (j;X)] = z1j+ z2j

2+
�0X, and z1j and z2 are parameters that would be estimated together
with intercept and slope parameters within the vector �.

� piecewise constant, i.e. groups of months are assumed to have the same
hazard rate, but the hazard di¤ers between these groups. If this speci�-
cation were combined with a logistic hazard model, then the full model
speci�cation would be cloglog[h (j;X)] = 1D1+2D2+ :::+ JDJ+ �0X,
where Dl is a binary variable equal to one if j = l and equal to zero oth-
erwise. I.e. the researcher creates dummy variables corresponding to each
interval (or group of intervals). When estimating the full model, one would
not include an intercept term within the vector �, or else as it would be
collinear. (Alternatively one could include an intercept term but drop one
of the dummy variables.)

The choice of shape of hazard function in these models is up to the investi-
gator �just as one can choose between di¤erent parametric functional forms in
the continuous time models.
In practice, cloglog and logistic hazard models that share the same duration

dependence speci�cation and the same X yield similar estimates �as long as
the hazard rate is relatively �small�. To see why this is so, note that

log it(h) = log
�

h

1� h

�
= log(h)� log(1� h): (3.88)

As h! 0, then log(1� h)! 0 also. That is,

log it(h) � log(h) for �small�h:

With a su¢ ciently small hazard rate, the proportional odds model (a linear
function of duration dependence and characteristics) is a close approximation
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to a model with the log of the hazard rate as dependent variable. The result
follows from the fact that the estimates of � from a discrete time proportional
hazards model correspond to those of a continuous time model in which log(�)
is a linear function of characteristics.

3.4 Deriving information about survival time dis-
tributions

The sorts of questions that one might wish to know, given estimates of a given
model, include:

� How long are spells (on average)?

� How do spell lengths di¤er for persons with di¤erent characteristics?

� What is the pattern of duration dependence (the shape of the hazard
function with survival time)?

To provide answers to these questions, we need to know the shape of the
survivor function for each model. We also need expressions for the density and
survivor functions in order to construct expressions for sample likelihoods in
order to derive model estimates using the maximum likelihood principle, as we
shall see in Chapters 5 and 6. The integrated hazard function also has several
uses, including being used for speci�cation tests. We derived a number of general
results for PH and AFT models in an earlier section; in essence what we are
doing here is illustrating those results, with reference to the speci�c functional
forms for distributions that were set out in the earlier sections of this chapter.
To illustrate how one goes about deriving the relevant expressions, we focus

on a relatively small number of models, and assume no time-varying covariates.

3.4.1 The Weibull model

Hazard rate

From Section 3.2, we know that the Weibull model hazard rate is given by

� (t;X) = �t��1 exp
�
�0X

�
(3.89)

= �t��1� (3.90)

where � � exp
�
�0X

�
. The baseline hazard function is �0 (t) = �t��1 or, using

the alternative characterization mentioned earlier, ��0 (t) = �t��1 exp(�0). The
expression for the hazard rate implies that:

log[�(t;X)] = log�+ (�� 1) log (t) + �0X (3.91)
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We can easily demonstrate the Weibull model satis�es the general properties of
PH model, discussed earlier. Remember that all these results also apply to the
Exponential model, as that is simply the Weibull model with � = 1. First,

@� (t;X)

@Xk
= ��k (3.92)

or
@ log � (t;X)

@Xk
= �k (3.93)

where Xk is the kth covariate in the vector of characteristics X. Thus each co-
e¢ cient summarises the proportionate response of the hazard to a small change
in the relevant covariate.
From this expression can be derived the elasticity of the hazard rate with

respect to changes in a given characteristic:

Xk

�

@�

@Xk
=

@ log �

@ logXk
= �kXk: (3.94)

If Xk � log(Zk), then the elasticity of the hazard with respect to changes in Zk
is

@ log �

@ logZk
= �k: (3.95)

The Weibull model also has the PH property concerning the relative hazard
rates for two persons at same t, but with di¤erent X :

�
�
t;X1

�
�
�
t;X2

� = exp ��0 (X1 �X2)
�
: (3.96)

The Weibull shape parameter � can also be interpreted with reference to the
elasticity of the hazard with respect to survival time:

@ log � (t;X)

@ log (t)
= �� 1: (3.97)

*Insert graphs*
The relative hazard rates for two persons with same X = X, but at di¤erent

survival times t and u, where t > u, are given by

�
�
t;X

�
=�
�
u;X

�
=

�
t

u

���1
: (3.98)

Thus failure at time t is (t=u)��1 times more likely than at time u, unless � = 1
in which case failure is equally likely. Constrast the cases of � > 1 and � < 1:
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Survivor function

Recall that � (t;X) = �t��1�. But we know that for all models, S (t;X) =

1�F (t;X) = exp
h
�
R t
0
� (u;X) du

i
. So substituting the Weibull expression for

the hazard rate into this expression:

S (t;X) = exp

�
�
Z t

0

�u��1�du
�

(3.99)

= exp

 
���

(
u�

�

�t
0

)!
(3.100)

= exp

�
���

�
t�

�
� 0

�

�

��
(3.101)

using the fact that there are no time-varying covariates. The expression in the
curly brackets {.} refers to the evaluation of the de�nite integral. Hence the
Weibull survivor function is:

S (t;X) = exp (��t�) : (3.102)

*Insert graphs* to show how varies with X and with �

Density function

Recall that f(t) = �(t)S(t), and so in the Weibull case:

f (t;X) = �t��1� exp (��t�) : (3.103)

Integrated hazard function

Recall that H (t;X) = � lnS(t;X). Hence, in the Weibull case,

H (t;X) = �t�: (3.104)

It follows that

logH (t;X) = log(�) + � log(t) (3.105)

= �0X + � log(t): (3.106)

This expression suggests that a simple graphical speci�cation test of whether
observed survival times follow the Weibull distribution can be based on a plot
of the log of the integrated hazard function against the log of survival time. If
the distribution is Weibull, the graph should be a straight line (with slope equal
to the Weibull shape parameter �) or, for groups characterised by combinations
of X, the graphs should be parallel lines.
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Quantiles of the survivor function, including median

The median duration is survival time m such that S(m) = 0:5:
*Insert chart * S(t) against t, showing m
From (3.102) we have

logS (t;X) = ��t� (3.107)

and hence

t =

�
1

�
[� logS (t)]

�1=�
: (3.108)

Thus, at the median survival time, we must also have that

m =

�
1

�
[� log (0:5)]

�1=�
(3.109)

=

�
log (2)

�

�1=�
: (3.110)

Expressions for the upper and lower quartiles (or any other quantile) may be
derived similarly. Substitute t = 0:75 or 0:25 in the expression for m rather
than 0.5.
How does the median duration vary with di¤erences in characteristics? Con-

sider the following expression for the proportionate change in the median given
a change in a covariate:

@ logm

@Xk
=
1

�

@[log(2)� log(�)]
@Xk

= � 1
�

@ log(�)

@Xk
= ��k

�
: (3.111)

Observe also that this elasticity is equal to ��k. Also, using the result that
@ logm=@Xk = (1=m)@m=@Xk, the elasticity of the median duration with re-
spect to a change in characteristics is

Xk

m

@m

@Xk
=

@ log(m)

@ log(Xk)
=
��kXk

�
= ��kXk: (3.112)

If Xk � log(Zk), then the elasticity of the median with respect to changes in
Zk is ��k=� = ��k:

Mean (expected) survival time

In general, the mean or expected survival time is given by

E (T ) �
Z 1

0

tf (t) dt =

Z 1

0

S (t) dt (3.113)

where the expression in terms of the survivor function was derived using integra-
tion by parts. Hence in the Weibull case, E (T ) =

R1
0
exp (��t�) dt. Evaluation

of this integral yields (Klein and Moeschberger 1990, p.37):
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� �
�
1 + 1

�

�
[log (2)]

1=� Ratio of mean to median
4.0 0.906 0.912 0.99
3.0 0.893 0.885 1.01
2.0 0.886 0.832 1.06
1.1 0.965 0.716 1.35
1.0 1.000 0.693 1.44
0.9 1.052 0.665 1.58
0.8 1.133 0.632 1.79
0.7 1.266 0.592 2.14
0.6 1.505 0.543 2.77
0.5 2.000 0.480 4.17

Table 3.5: Ratio of mean to median survival time: Weibull model

E (T ) =
�
1

�

� 1
�

�

�
1 +

1

�

�
(3.114)

where �(:) is the Gamma function. The Gamma function has a simple formula
when its argument is an integer: �(n) = (n � 1)!, for integer-valued n. For
example, �(5) = 4! = 4 � 3 � 2 � 1 = 24: �(4) = 3! = 6. �(3) = 2! = 2:
�(2) = 1. For non-integer arguments, one has to use special tables (or a built-in
function in one�s software package). Observe that for Exponential model (� =
1), the mean duration is simply 1=�.
So, if � = 0:5, i.e. there is negative duration dependence (a monotonically

declining hazard), then E (T ) = (1=�)
1
�� (3) = 2=�2. Compare this with the

median m � 0:480=�2. More generally, the ratio of the mean to the median in
the Weibull case is

ratio =
�
�
1 + 1

�

�
[log (2)]

1=�
(3.115)

Table 3.5 summarises the ratio of the mean to median for various values of
�. Observe that, unless the hazard is increasing at a particularly fast rate (large
� > 0), then the mean survival time is longer than the median.
The elasticity of the mean duration with respect to a change in characteristics

is
Xk

E (T )
@E (T )
@Xk

=
��kXk

�
(3.116)

which is exactly the same as the corresponding elasticity for the median. Note
that @ log E (T ) =@Xk = ��k=�, so that if Xk � log(Zk), then the elasticity of
the median with respect to changes in Zk is ��k=�, i.e. the same expression as
for the corresponding elasticity for the median!
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3.4.2 Gompertz model

From Section 3.2, the Gompertz model hazard rate is given by

� (t;X) = � exp(t): (3.117)

By integrating this expression, one derives the integrated hazard function

H (t;X) =
�


[exp(t)� 1]: (3.118)

Since H(t) = � logS(t), it follows that the expression for the survivor function
is:

S (t;X) = exp

�
�


[1� exp(t)]

�
: (3.119)

The density function can be derived as f(t;X) = � (t;X)S (t;X). Observe that
if  = 0, then we have the Exponential hazard model.
To derive an expression for the median survival time, we applying the same

logic as above, and �nd that

m =
1


log

�
1 +

 log 2

�

�
: (3.120)

There is no closed-form expression for the mean.

3.4.3 Log-logistic model

Hazard rate

From Section 3.2, the Log-logistic model hazard rate is given by

� (t;X) =
 

1
 t(

1
�1)


h
1 + ( t)

1


i (3.121)

=
' 't('�1)

1 + ( t)
' (3.122)

for ' � 1=.where shape parameter  > 0 and  = exp
�
���0X

�
.

Survivor function

The log-logistic survivor function is given by

S (t;X) =
1

1 + ( t)
1=

(3.123)

=
1

1 + ( t)
' : (3.124)
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Beware: this expression di¤ers slightly from that shown by e.g. Klein and
Moeschberger (1997), since they parameterise the hazard function di¤erently.
*Insert graphs* to show how varies with X and with 

Density function

Recall that f(t;X) = �(t;X)S(t;X), and so in the Log-logistic case:

f (t;X) =

1
 

1
 t(

1
�1)h

1 + ( t)
1=
i2 (3.125)

=
' 't('�1)

[1 + ( t)
'
]
2 (3.126)

Integrated hazard function

From above, we have

H(t;X) = log
h
1 + ( t)

1


i
= log [1 + ( t)

'
] (3.127)

and hence

ln[exp[H(t;X)]� 1] = �'��0X + ' log (t) : (3.128)

One might therefore graph an estimate of the left-hand side against log(t) as a
speci�cation check for the model: the graph should be a straight line. A more
common check is expressed in terms of the log odds of survival, however: see
below.

Quantiles of the survivor function, including median

The median survival time is

m =  �1: (3.129)

Hence it can be derived that @m=@Xk = �k= 
2, and so the elasticity of the

median with respect to a change in Xk is

@ log (m)

@ log (Xk)
=
�kXk

 
: (3.130)
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Mean (expected) survival time

There is no closed form expression for mean survival time unless  < 1 or
equivalently ' > 1 (i.e. the hazard rises and then falls). In this case, the mean
is (Klein and Moeschberger, 1997, p. 37):

E (T ) = 1

 

�

sin (�)
;  < 1: (3.131)

where � is the trigonometric constant 3.1415927.... (Klein and Moeschberger�s
expression is in terms of the relatively unfamiliar cosecant function, Csc(x).
Note however that Csc(x) = 1= sin(x).) The elasticity of the mean is given by

@ log E (T )
@ log (Xk)

=
�kXk

 
=

@ log (m)

@ log (Xk)
; (3.132)

i.e. the same expression as for the elasticity of the median.
The ratio of the mean to the median is given by

E (T )
m

=
�

sin (�)
;  < 1:

Log-odds of survival interpretation

The Log-logistic model can be given a log-odds of survival interpretation. From
(3.123), the (conditional) odds of survival to t is

S(t;X)

1� S(t;X) = ( t)
� 1
 (3.133)

and at X = 0 (i.e.  = exp(���0) �  0, also, so

S(t;XjX = 0)

1� S(t;XjX = 0)
= (t 0)

� 1
 (3.134)

and therefore

S(t;X)

1� S(t;X) =
�

S(t;XjX = 0)

1� S(t;XjX = 0)

�
(
 

 0
)�

1
 : (3.135)

Hence the (conditional) log odds of survival at each t for any individual
depend on a �baseline�conditional odds of survival (common to all persons) and
a person-speci�c factor depending on characteristics (and the shape parameter
) that scales those �baseline�conditional odds: ( = 0) = exp(���1�X1���2�X2�
:::� ��K�XK).
The log-odds property suggests a graphical speci�cation check for the Log-

logistic model. From (3.133), we have

log

�
S(t;X)

1� S(t;X)

�
= ��0X � ' log(t): (3.136)
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The check is therefore based on a graph of log[(1 � S(t;X))=S(t;X)] against
log(t) �it should be a straight line if the Log-logistic model is appropriate. Or
give rise to parallel lines if plotted separately for di¤erent groups classi�ed by
combinations of values of X.

3.4.4 Other continuous time models

See texts for discussion of other models. Most continuous time parametric
models have closed form expressions for the median but not for the mean.

3.4.5 Discrete time models

The expressions for the median and mean, etc., depend on the baseline hazard
speci�cation that the researcher chooses. For discrete time models, there is
typically no closed form expressions for median and mean and they have to be
derived numerically (see web Lessons for examples).
Recall that survival up to the end of the jth interval (or completion of the

jth cycle) is given by:

S(j) = Sj =

jY
k=1

(1� hk) (3.137)

and hk is a logit or complementary log-log function of characteristics and sur-
vival time. In general this function is not invertible so as to produce suitable
closed form expressions. The median is de�ned implicitly by �nding the value
of j such that S(tj) = 0:5.
Things are simpler in the special case in which the discrete hazard rate is

constant over time, i.e. hj = h all j (the case of a Geometric distribution of
survival times). In this case,

Sj = (1� h)j (3.138)

log Sj = j log(1� h) (3.139)

and so the median is

m =
log(0:5)

log(1� h) =
� log(2)
log(1� h) : (3.140)

In the general case, in which the hazard varies with survival time, the mean
survival time E(T ) satis�es

E(T ) =
KX
k=1

kf(k) (3.141)

or, alternatively,
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E(T ) =
KX
k=1

S(k) (3.142)

where f(k) = Pr(T = k), and K is the maximum survival time. In the special
case in which the hazard rate is constant at all survival times, then

E(T ) =
�
1� h
h

��
1� (1� h)K

�
(3.143)

implying that the mean survival time is approximated well by (1� h)=h if K is
�large�.



Chapter 4

Estimation of the survivor
and hazard functions

In this chapter, we consider estimators of the survivor and hazard functions �
the empirical counterparts of the concepts that we considered in the previous
chapter. One might think of the estimators considered here as non-parametric
estimators, as no prior assumptions are made about the shapes of the relevant
functions. The methods may be applied to a complete sample, or to subgroups
of subjects within the sample, where the groups are de�ned by some combina-
tion of observable characteristics. The analysis of subgroups may, of course, be
constrained by cell size considerations �which is one of the reasons for taking
account of the e¤ects of di¤erences in characteristics on survival and hazard
functions by using multiple regression methods. (These are discussed in the
chapters following.) In any case, because the non-parametric analysis is infor-
mative about the pattern of duration dependence, it may also assist with the
choice of parametric model.
We shall assume that we have a random sample from the population of

spells, and allow for right-censoring (but not truncation). We consider �rst
the Kaplan-Meier product-limit estimator and then the lifetable estimator. The
main di¤erence between them is that the former is speci�ed assuming continuous
time measures of spells, whereas for the latter the survival times are banded
(grouped).

4.1 Kaplan-Meier (product-limit) estimators

Let t1 < t2 < ::: < tj < ::: < tk < 1 represent the survival times that are
observed in the data set. From the data, one can also determine the following
quantities:

dj : the number of persons observed to �fail�(make a transition out of the state)
at tj

55
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Failure time # failures # censored # at risk of failure
t1 d1 m1 n1
t2 d2 m2 n2
t3 d3 m3 n3
...

...
...

...
tj dj mj nj
...

...
...

...
tk dk mk nk

Table 4.1: Example of data structure

mj : the number of persons whose observed duration is censored in the interval
[tj ; tj+1), i.e. still in state at time t but not in state by t+ 1

nj : the number of persons at risk of making a transition (ending their spell)
immediately prior to tj , which is made up of those who have a censored
or completed spell of length tj or longer:

nj = (mj + dj) + (mj+1 + dj+1) + ::::+ (mk + dk)

Table 4.1 provides a summary of the data structure.

4.1.1 Empirical survivor function

The proportion of those entering a state who survive to the �rst observed sur-
vival time t1, bS(t1), is simply one minus the proportion who made a tran-
sition out of the state by that time, where the latter can be estimated by
the number of exits divided by the number who were at risk of transition:
d1=(d1 + m1) = d1=n1. Similarly the proportion surviving to the second ob-
served survival time t2 is bS(t1) multiplied by one minus the proportion who
made a transition out of the state between t1 and t2. More generally, at sur-
vival time tj , bS(tj) = Y

jjtj<t

�
1� dj

nj

�
: (4.1)

So, the Kaplan-Meier estimate of the survivor function is given by the prod-
uct of one minus the number of exits divided by the number of persons at risk of
exit, i.e. the product of one minus the �exit rate�at each of the survival times.
Standard errors can be derived for the estimates using Greenwood�s formulae
(see texts).
From this, one can also derive an estimate of the failure function bF (tj) =

1� bS (tj) and the integrated hazard function bH(tj), since
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S (t) = exp

�
�
Z t

0

� (u) du

�
= exp [�H (t)] (4.2)

=) bH (tj) = � log bS (tj) : (4.3)

It is important to note that one can only derive estimates of the survivor
function (and the integrated hazard function) at the dates at which there are
transitions, and the last estimate depends on the largest non-censored survival
time. To derive estimates of survival probabilities at dates beyond the maximum
observed failure time, or at dates between within-sample failure times, requires
additional assumptions. Re�ecting this, the estimated survivor function is con-
ventionally drawn as a step function, with the �rst �step�, at t = 0, having a
height of one and width t1, with the next �step�beginning at time t1with heightbS(t1) and width t2 � t1, and so on. The shape of this step function is not like
a regular staircase: the height between steps varies (depending on the survivor
function estimates), so too does the width of the steps (depending on the times
at which failures were observed). To put things another way, one has a set of
estimates at fbS(tj); tjg at various tj but, to draw the survivor function, one can-
not simply �connect the dots�(as in children�s drawing books). This would be
making assumptions about the shape of the survivor function or, equivalently,
the hazard function, that would most likely be unwarranted. This is a price
that one has to pay for using a non-parametric estimator.
Indeed, the non-parametric step function nature of the survivor function and

the integrated hazard function has implications for estimation of the hazard
function. One might think that one could derive an estimate of the hazard
rate b� (t) directly from the estimates of the integrated hazard function, using
the property that @H (t) =@t = � (t). To do this one would need estimates
of the slope of the integrated hazard function at a series of survival times.
But the estimated integrated hazard function (�cumulative hazard�) is also a
step function (with higher steps at longer observed survival times). Trying to
estimate the slope of the integrated hazard function at each of the observed
survival time is equivalent to trying to �nd the slope at the corner of each of
the steps. Clearly, the slope is not well-de�ned: so, nor is a non-parametric
estimate of the hazard rate.
What is one to do if an estimate of the hazard function is required? One

possibility is to divide the survival time axis into a number of regular intervals of
times and to derive estimates of the interval hazard rate (h rather than �): see
the discussion of life-table estimators below. Another possibility is to return to
the estimated integrated hazard function, and to smooth this step function (for
example using a kernel smoother). In e¤ect, this is a statistically sophisticated
method of �connecting the dots�. See e.g. Klein and Moeschberger (1997, section
6.2) for a full discussion.
The advantage is, of course, that once one has a smooth curve, one can also

derive its slope. (The estimated slope is the �smoothed hazard�.) The disadvan-
tage is that smoothing incorporates assumptions that need not be appropriate.
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What if, for example, there are genuine step changes in survival probabilities?
(Think about exit from employment into retirement: there are likely to be large
� and genuine � changes in survival probabilities at the age at which people
qualify for state pensions.)
An alternative to the Kaplan-Meier estimator of the survival and integrated

hazard functions is the Nelson-Aalen estimator. In essence, with the Kaplan-
Meier estimator, one estimates the survivor function and derives the cumulative
hazard function from that; with the Nelson-Aalen estimator, it is vice-versa.
The Nelson-Aalen estimator of the cumulative hazard is

bH(tj) = X
jjtj<t

�
dj
nj

�
(4.4)

and this provides an estimate of the survivor function which is exp(� bH(tj)),
sometimes called the Fleming-Harrington estimator. It turns out that the esti-
mators are asymptotically equivalent (they provide the same estimates as the
sample size becomes in�nitely large), but have di¤erent small sample properties.
The Nelson-Aalen estimator of the cumulative hazard function has better small-
sample properties that the Kaplan-Meier estimator, whereas for estimation of
the survivor function, the relative advantage is reversed. (In practice, with
datasets with sample sizes typical in the social sciences, the di¤erence between
corresponding estimates is often negliglible.)
The sts command in Stata provides estimates of the Kaplan-Meier (product-

limit) estimator of the survivor function and Nelson-Aalen estimator of the cu-
mulative hazard function; sts graph includes an option for graphing smoothed
hazards, with �exibility about the degree of smoothing (bandwidth).

4.2 Lifetable estimators

The lifetable method uses broadly the same idea as the Kaplan-Meier one, but
it was explicitly developed to handle situation where the observed information
about the number of exits and the number at risk are those that pertain to
intervals of time, i.e. there is grouped survival time data.
De�ne intervals of time Ij where j = 1; ::::; J : Ij : [tj ; tj+1), where

dj : the number of failures observed in interval Ij

mj : the number of censored spell endings observed in interval Ij

Nj : the number at risk of failure at start of interval.

Because the survival time axis is grouped into bands, one wants to adjust
the observed number of persons at risk in a given interval to take account of the
fact that during the period, some people will have left. The idea is to produce
an �averaged�estimate centred on the midpoint of the interval. Suppose that
transitions are evenly spread over each interval, in which case half of the total
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number of events for each interval will have left half-way through the relevant
interval. We can therefore de�ne an adjusted number at risk of exit:

nj : the adjusted number at risk of failure used for midpoint of interval

nj = Nj �
dj
2

(4.5)

and hence bS (j) = jY
k=1

�
1� dk

nk

�
: (4.6)

From this expression can be derived an estimate of the density function
(recall S(t) = 1� F (t))

bf (j) = bF (j + 1)� bF (j)
tj+1 � tj

=
bS (j)� bS (j + 1)

tj+1 � tj
(4.7)

and an estimate of the hazard rate

b� (j) =
h bf (j)ieS (j) (4.8)

where eS (k) = bS(k) + bS(k + 1)
2

(4.9)

and is taken as applying to the time corresponding to the midpoint of the
interval. See Stata�s ltable command.
Note that the �adjustment�is used because the underlying survival times are

continuous, but the observed survival time data are grouped.
If the time axis were intrinsically discrete, so that the intervals referred to

basic units of time or �cycles�, then the �adjustment�is not required. The same
is true if one simply wanted to derive an estimate of the interval hazard rate.
The formula for the estimator of the survivor function in this case is the same
as that for the Kaplan-Meier one in the continuous time case. Observe that if
there are no events within some interval Ij , then the estimator of the interval
hazard is equal to zero.
** to be added: discussion of formulae for standard errors; strati�cation,

and tests of homogeneity **
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Chapter 5

Continuous time
multivariate models

In this chapter and the next, we return to the problem that was raised in Chapter
1. We drew attention to problems with using OLS (and some other commonly
used econometric methods) to estimate multivariate models of survival times
given the issues of censoring and time-varying covariates. The principal lesson
of this chapter (and the next) is that these problems may be addressed by
using estimation based on maximum likelihood methods (ML). ML methods
per se are not considered at all here �see any standard econometrics text, e.g.
Greene (2003), for a discussion of the ML principle and the nice properties of ML
estimates. For a very useful (and free) introduction, see chapter 1 of Gould et al.
(2003), downloadable from http://www.stata-press.com/books/ml-ch1.pdf. In
this chapter we consider parametric regression models formulated in continuous
time; in the next chapter we consider discrete time regression models. The
continuous time Cox regression model is considered in Chapter 7 (it uses an
estimation principle that di¤ers from ML).
A second lesson of this and succeeding chapters is that the sample likelihood

used needs to be appropriate for the type of process that generated the data,
i.e. the type of sampling scheme. The main sampling schemes in social science
applications are as follows:

1. a random sample from the in�ow to the state (or of the population or
some other group �as long as sample selection is unrelated to survival)
and each spell is monitored (from start) until completion;

2. a random sample as in (1) and either (a) each spell is monitored until
some common time t�, or (b) the censoring point varies;

3. a sample from the stock at point of time who are interviewed some time
later (this corresponds to the delayed entry or left truncated spell data
case discussed in the biostatistics literature);

61



62 CHAPTER 5. CONTINUOUS TIME MULTIVARIATE MODELS

4. a sample from the stock with no re-interview.

5. a sample from the out�ow (the case of right truncated spell data).

Cases (3) � (5) di¤er from the �rst two in that one has to take account
of �selection e¤ects�when characterising the sample likelihood. For continuous
time data, Stata�s streg modules handle cases (1)�(3) straightforwardly with
no problem, as long as the data have been stset data correctly. Cases (4) and
(5) require one to write one�s own maximisation routines.
Let us consider the likelihood contributions relevant in each case. The like-

lihood contribution per spell is Li and for the sample as a whole,

L =
nY
i=1

Li

or, equivalently, in terms of the log-likelihood function,

logL =
nX
i=1

logLi:

Software for maximization likelihood estimation typically works by requiring
speci�cation of expressions of logLi for each individual i (corresponding to a
row in the analysis data set), and logL is derived by summing down the rows.

5.0.1 Random sample of in�ow and each spell monitored
until completed

Suppose we have a sample of completed spells (or persons �since we assume one
spell per person), indexed by i = 1; : : : ; n. Then each individual contribution to
the likelihood is given by the relevant density function. (There are no censored
spells, by construction.). Hence the overall sample likelihood function is given
by

L =
nY
i=1

f (Ti) (5.1)

where Ti denotes completed spell length for person i; and hence

logL =
nX
i=1

log f (Ti) :

with logLi = log f (Ti) :To complete the model speci�cation, one has to choose
a speci�c parametric model for the survival time distribution, e.g. Weibull, and
substitute the relevant expression for into the expression for log f (Ti).
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5.0.2 Random sample of in�ow with (right) censoring,
monitored until t�

Now the sample consists of

� completed spells, indexed j = 1; :::; J , with Tj such that Tj � t�: Lj =
f(Tj), and

� (right) censored spells, indexed k = 1; :::;K, with Tk such that Tk > t�:
Lk = S(t�)

It follows that

L =
JY
j=1

f(Tj)
KY
k=1

S(t�): (5.2)

5.0.3 Random sample of population, right censoring but
censoring point varies

This is almost the same as the case just considered. It is probably the most
common likelihood used in empirical applications.

L =
JY
j=1

f(Tj)

KY
k=1

S(Tk) (5.3)

The likelihood L is often written di¤erently in this case, in terms of the hazard
rate. Taking logs of both sides implies:

logL =

JX
j=1

log f(Tj) +

KX
k=1

logS(Tk) (5.4)

=

JX
j=1

log

��
f(Tj)

S(Tj)

�
S(Tj)

�
+

KX
k=1

logS(Tk) (5.5)

=

JX
j=1

log [�(Tj)S(Tj)] +

KX
k=1

logS(Tk) (5.6)

=

JX
j=1

log �(Tj) +

JX
j=1

logS(Tj) +

KX
k=1

logS(Tk) (5.7)

=

JX
j=1

log �(Tj) +

NX
i=1

logS(Ti) (5.8)

=
NX
i=1

[ci log �(Ti) + logS(Ti)] (5.9)
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where ci is a censoring indicator de�ned such that

ci =

�
1 if spell complete
0 if spell censored.

(5.10)

In this case, we have

logLi = ci log �(Ti) + logS(Ti):

Given the relationship between the survivor function and the integrated hazard
function, one can also write the log-likelihood contribution for each individual
as

logLi = ci log �(Ti)�H(Ti)

= ci log �(Ti)�
Z Ti

0

�(u)du: (5.11)

Again, it is by choice of di¤erent parametric speci�cations for �(t) that the
model is fully speci�ed.
If all survival times are censored (ci = 0, for all i), then the model cannot

be �tted. If there are no exits, then the sample provides no information about
the nature of duration dependence in the hazard rate.

5.0.4 Left truncated spell data (delayed entry)

The most common social science example of this type of sampling scheme is
when there is a sample from the stock of individuals at a point in time, who
are interviewed some time later (�stock sampling with follow-up�). Spell start
dates are assumed to be known (these dates are of course before the date of the
stock sample), so the total time at risk of exit can be calculated, together with
the time between sampling and interview (last observation). Entry is �delayed�
because the observation of the subjects under study occurs some time after they
are �rst at risk of the event.
A sample from the stock is a non-random sample (see below), but we can

handle the �selection bias�using information about the elapsed time between
sampling and interview. We have to analyse outcomes that have occurred by
the time of interview conditional on surviving in the state up to the sampling
time.
*Insert chart* time line indicating sampling time and interview times
Let us index spells that were completed by the time of the interview by

j = 1; :::; J , and index spells still in progress at the time of the interview (right-
censored) by k = 1; :::;K. Then we may de�ne

the incomplete spell length for each person at the time that the spell was
sampled from the stock: Tj for completed spells, Tk for censored spells.

the total observed spell length is Tj + �tj for spells that were completed by
the time of the interview, and Tk+Zk for censored spells, where Zk is the
length of time between sampling and interview.
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For both completed and censored spells, we have to condition on the fact that
the person survived su¢ ciently long in the state to be at risk of being sampled in
the stock. For example, suppose that the sample was of the stock of unemployed
persons at 1 May 2001. Of all those who entered unemployment on 1 January
2001, some will have left unemployment by May; only the �slower�exiters will
still be unemployed in May and at risk of being sampled in the stock. If we
ignored this problem, we would not take account of the length-biased sampling.
How do we do this?
Recall the expression for a conditional probability:

Pr(AjB) = Pr(A \B)
Pr(B)

: (5.12)

By analogy, we de�ate the likelihood contribution for each individual by the
probability of survival from entry to the state until the stock sampling date.
But this probability is given for each i by the survival function: S(Ti). Hence,

Likelihood contribution for leavers (type j):

Lj =
f (Tj +�tj)

S (Tj)
: (5.13)

Likelihood for stayers (type k):

Lk =
S(Tk + Zk)

S (Tk)
: (5.14)

Hence the overall sample likelihood is

L =
JY
j=1

f (Tj +�tj)

S (Tj)

KY
k=1

S (Tk + Zk)

S (Tk)
: (5.15)

To write this expression in a form closer to that used in the previous sub-
section, let us simply de�ne Ti as the total spell length, and use the censoring
indicator ci to distinguish between censored and complete spells, and let � i be
the date at which the stock sample was drawn:Then

L =
NY
i=1

�
f (Ti)

S (� i)

�ci �S (Ti)
S (� i)

�1�ci
(5.16)

=
NY
i=1

[� (Ti)]
ci

�
S (Ti)

S (� i)

�
(5.17)

or

logL =
NX
i=1

�
ci log �(Ti) + log

�
S (Ti)

S (� i)

��
(5.18)
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which is directly comparable with the (log)likelihood derived for the case without
left-truncation. This expression can be re-written as

logL =
NX
i=1

fci log �(Ti) + log [wiS (Ti)]g (5.19)

where wi � 1=S (� i). Think of the wi as being like an weighting variable: one
weights the delayed entry observations by a type of inverse-probability weight
to account for the left truncation. The later in time that � i is (the closer to Ti),
the larger the weight. If there is no left truncation, then S (� i) = 1 = wi:
This model can also be estimated straightforwardly in Stata using streg as

long as the data have been properly stset �rst (use the enter option to indicate
the �entry�time, i.e. stock sampling date).
Lancaster (1979) also considered a variation on this sampling scheme. In

his data set, he did not have the exact date of exit for those spells that ended
in the interval between stock sampling and interview: he only knew that there
had been an exit. To estimate a model with this structure, one simply replaces
the expression f (Tj +�tj) in (5.15) with S (Tj)� S (Tj +�tj).

5.0.5 Sample from stock with no re-interview

This is a di¢ cult and awkward case. It used to be relatively common because
of a lack of suitable longitudinal surveys. This model could be �tted using data
from standard cross-sectional household surveys: these surveys include samples
of unemployed people, and typically include a single question asking how long
the respondent had been unemployed. See Nickell (1979) and Atkinson et al.
(1984) for applications.
In this situation we have no information that we can use to condition survival

on (as in the previous subsection). So, in order to derive the sample likelihood,
we have to write down the probability of observing such a spell including taking
account of the di¤erent chances of entering unemployment at di¤erent dates.
Someone unemployed when surveyed at the start of October 2001 could have
entered unemployment on 1 January and remained unemployed 9 months, or
entered unemployment on 1 February and remained unemployed 8 months, or
unemployment on 1 March and remained unemployed 7 months. (Similarly for
the unemployed people who were surveyed during a di¤erent month.)
We want to model the chance of having an incomplete spell of length t at

calendar time s, conditional on being unemployed at date s �where the chance
of the latter itself depends on the chances of having entered unemployment at
some date in the past, r, and then remaining unemployed between r and s.
Distinguish a series of di¤erent event types:

A : incomplete spell of length t at calendar time s

B : unemployed at date s (may di¤er by person �be si �if from survey with
interviews through year)



67

C : survival of spell until time s given entry at time r (i.e. spell length t = s�r)

D : entry to unemployment at date r.

Li = Pr (AjB) (5.20)

= Pr (A \B) =Pr (B) (5.21)

= Pr (A) =Pr (B) (5.22)

=
Pr (C) Pr (D)

Pr (B)
; since P (A) = Pr (C) Pr (D) (5.23)

What are the expressions for the component probabilities? Look �rst at:

Pr (B) =
sX

�=�1
Si (s� � jentry at �)ui (�) : (5.24)

This says that the probability of being unemployed at s is the sum over all dates
before the interview (indexed by �) of the product of the probability of entering
unemployment at date � and the probability of remaining unemployed between
� and s.
We now need to make an assumption about unemployment in�ow rates in

order to evaluate Pr(D): Assume that

Pr(D) = ui(r) = �iu(r), (5.25)

i.e. the probability of entry at r factors into an individual �xed e¤ect (this varies
with i but not time) and a function depending on time but not i (i.e. common
to all persons).

Li =
S(sijentry at ri)�iu (ri)

siP
�=�1

S(si � � jentry at �)�iu(�)
(5.26)

=
S(sijentry at ri)u (ri)

siP
�=�1

S(si � � jentry at �)u(�)
: (5.27)

Observe the cancelling of the individual �xed e¤ects. Implementing the
model one can use �external�data about unemployment entry rates for the u(:)
term. This likelihood cannot be �tted using a canned routine in standard pack-
ages and has to be specially written (tricky!).

5.0.6 Right truncated spell data (out�ow sample)

An example of this sampling scheme is where one has a sample of all the persons
who left unemployment at a particular date and one wants to study the hazard
of (re)employment. Or one wants to study longevity, and has a sample based
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on death records. In these sorts of cases, there is an over-representation of short
spells relative to long spells. Of all people beginning a spell at a particular date,
those who are more likely to survive (have relatively long spells) are less likely
to be found in the out�ow at a particular date �a form of �selection bias�. To
control for this, one has to condition on failure at the relevant survival time
when specifying each individual�s likelihood contribution.
The sample likelihood is given by

L =
nY
i=1

f (Ti)

F (Ti)
: (5.28)

There are no censored spells, of course, by de�nition. The numerator in (5.28)
is the density function for a spell of length Ti. This must be conditioned: hence
the expression in the denominator in (5.28) which gives the probability of failure
at t = Ti, i.e. the probability of entering at t = 0, surviving up until the instant
just before time t = Ti, and then making the transition at t = Ti.

5.1 Episode splitting: time-varying covariates
and estimation of continuous time models

To illustrate this, let us return to the most commonly assumed sampling scheme,
i.e. a random sample of spells with right censoring but the censoring point varies.
In our sample likelihood derivation above, we implicitly assumed

� explanatory variables were all constant �there were no time-varying co-
variates;

� the data set was organised so that there was one row for each individual
at risk of transition.

Estimation of continuous time parametric regression models incorporating
time-varying covariates requires episode splitting. One has to split the sur-
vival time (episode) for each individual into subperiods within which each time-
varying covariate is constant. I.e. one has to create multiple records for each
individual, with one record per subperiod.1 What is the logic behind this?
Consider a person i with two di¤erent values for a covariate:

X1 if t < u
X2 if t � u

(5.29)

Recall that the log-likelihood contribution for person i in the data structure
that we have is:

1Episode splitting to incorporate time-varying covariates is also required for other types
of model. For the Cox model it need only be done at the survival times at which transitions
occur (see Chapter 7) and, for discrete-time models, episode splitting is done at each time
point (see Chapter 6).
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Record # Censoring indicator Survival time Entry time TVC value
Single data record for i
1 ci = 0 or 1 Ti 0 -

Multiple data records for i (after episode splitting)
1 ci = 0 u 0 X1

2 ci = 0 or 1 Ti u X2

Table 5.1: Example of episode splitting

logLi = ci log [� (Ti)] + log [S (Ti)] (5.30)

where i�s observed survival time is Ti and the censoring indicator ci = 1 if i�s
spell is complete (transition observed) and 0 if the spell is censored. But

log [S (Ti)] = log

�
S (u)

S (Ti)

S (u)

�
(5.31)

= log [S (u)] + log

�
S (Ti)

S (u)

�
: (5.32)

(This expression, incorporating some notational liberties to facilitate exposition,
follows directly from the discussion about the incorporation of time-varying co-
variates into PH and AFT models in Chapter 3.) Thus the log of the probability
of survival until T = (log of probability of survival to time u) + (log of proba-
bility of survival to Ti, conditional on entry at u).
So what we do is create one new record with ci = 0; t = u (a right censored

episode), plus one new record summarising an episode with �delayed entry�at
time u and censoring indicator ci has the value as in the original data. In the
�rst episode and record, the time-varying covariate takes on the value X1 and in
the second record the time-varying covariate takes on the value X2. See Table
5.1 for a summary of the old and new data structures.
Thus episode splitting (when combined with software that can handle left

truncated spell data) gives the correct log-likelihood contribution. In Stata,
episode splitting is easily accomplished using stsplit (applied after the data
have been stset, and which then cleverly updates stset). Then one creates the
appropriate time-varying covariate values for each record and, �nally, multivari-
ate continuous time models can be straightforwardly estimated using the streg
or stcox commands.
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Chapter 6

Discrete time multivariate
models

6.1 In�ow sample with right censoring

We now measure time in discrete intervals indexed by the positive integers, and
let us suppose that each interval is a month long. We observe a person i�s spell
from month k = 1 through to the end of the jth month, at which point i�s spell
is either complete (ci = 1), or right censored (ci = 0). The discrete hazard is

hij = Pr (Ti = jjTi � j) : (6.1)

The likelihood contribution for a censored spell is given by the discrete time
survivor function

Li = Pr(Ti > j) = Si(j) (6.2)

=

jY
k=1

(1� hik) (6.3)

and the likelihood contribution for each completed spell is given by the discrete
time density function:

Li = Pr(Ti = j) = fi(j) (6.4)

= hijSi(j � 1) (6.5)

=
hij

1� hij

jY
k=1

(1� hik) (6.6)

The likelihood for the whole sample is

71
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L =
nY
i=1

[Pr(Ti = j)]
ci [Pr (Ti > j)]

1�ci (6.7)

=
nY
i=1

"�
hij

1� hij

� jY
k=1

(1� hik)
#ci " jY

k=1

(1� hik)
#1�ci

(6.8)

=
nY
i=1

"�
hij

1� hij

�ci jY
k=1

(1� hik)
#

(6.9)

where ci is a censoring indicator de�ned such that ci = 1 if a spell is complete
and ci = 0 if a spell is right-censored (as in the previous chapter). This implies
that

logL =
nX
i=1

ci log

�
hij

1� hij

�
+

nX
i=1

jX
k=1

log (1� hik) : (6.10)

Now de�ne a new binary indicator variable yik = 1 if person i makes a transition
(their spell ends) in month k, and yik = 0 otherwise. That is,

ci = 1 =) yik = 1 for k = Ti; yik = 0 otherwise (6.11)

ci = 0 =) yik = 0 for all k (6.12)

Hence, we can write

logL =
nX
i=1

jX
k=1

yik log

�
hik

1� hik

�
+

nX
i=1

jX
k=1

log (1� hik) (6.13)

=
nX
i=1

jX
k=1

[yik log hik + (1� yik) log (1� hik)] : (6.14)

But this expression has exactly the same form as the standard likelihood function
for a binary regression model in which yik is the dependent variable and in
which the data structure has been reorganized from having one record per spell
to having one record for each month that a person is at risk of transition from
the state (so-called person-month data or, more generally, person-period data).
Table 6.1 summarises the two data structures.

This is just like the episode splitting described earlier for continuous time
models which also lead to the creation of data records, except that here there is
episode splitting on a much more extensive basis, and done regardless of whether
there are any time-varying covariates among the X. As long as the hazard is
not constant, then the variable summarizing the pattern of duration dependence
will itself be a time-varying covariate in this re-organised data set.
This result implies that there is an easy estimation method available for

discrete time hazard models using data with this sampling scheme (see inter
alia Allison, 1984; Jenkins, 1995). It has four steps:
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Person data Person-month data
person id, i ci Ti person id, i ci Ti yik person-month id, k
1 0 2 1 0 2 0 1

1 0 2 0 2
2 1 3 2 1 3 0 1
...

...
... 2 1 3 0 2

2 1 3 1 3
...

...
...

...
...

Table 6.1: Person and person-period data structures: example

1. Reorganize data into person-period format;

2. Create any time-varying covariates �at the very least this includes a vari-
able describing duration dependence in the hazard rate (see the discussion
in Chapter 3 of alternative speci�cations for the j terms);

3. Choose the functional form for hik (logistic or cloglog);

4. Estimate the model using any standard binary dependent regression pack-
age: logit for a logistic model; cloglog for complementary log-log model.

The easy estimation method is not the only way of estimating the model. In
principle, one could estimate the sequence likelihood given at the start without
reorganising the data. Indeed before the advent of cheap computer memory or
storage, one might have had to do this because the episode splitting required
for the easy estimation method could create very large data sets with infeasible
storage requirements.
That the likelihood for discrete time hazard model can be written in the

same form as the likelihood for a binary dependent model also has some other
implications. For example, the latter models can only be estimated if the data
contains both �successes�and �failures�in the binary dependent variable. In the
current context, it means that in order to estimate discrete time hazard models
in this way, the data must contain both censored and complete spells. (To see
this, look at �rst order condition for a maximum of the log-likelihood function.)
The easy estimation method also can be used when there is stock sample

with follow-up (�delayed entry�), as we shall now see.

6.2 Left-truncated spell data (�delayed entry�)

We proceed in the discrete time case in an analogous manner to that employed
with continuous time data. Recall that with no delayed entry

Li =
�

hij
1� hij

�ci jY
k=1

(1� hik) =
�

hij
1� hij

�ci
Si (j) : (6.15)
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With delayed entry at time ui (say) for person i, we have to condition on survival
up to time ui (corresponding to the end of the uith interval or cycle), which
means dividing the expression above by S (ui). Hence with left-truncated data,
the likelihood contribution for i is:

Li =

�
hij
1�hij

�ci jQ
k=1

(1� hik)

Si (ui)
: (6.16)

But

Si (ui) =

uiY
k=1

(1� hik) (6.17)

and this leads to a �convenient cancelling�result (Guo, 1993; Jenkins, 1995):

Li =

�
hij

1� hij

�ci 26664
jQ

k=1

(1� hik)
uiQ
k=1

(1� hik)

37775 (6.18)

=

�
hij

1� hij

�ci jY
k=ui+1

(1� hik) : (6.19)

Taking logarithms, we have

logLi =
jX

k=ui+1

[yik log hik + (1� yik) log (1� hik)] (6.20)

which is very similar to the expression that we had in the no-delayed-entry
case, except that the summation now runs over the months from the month of
�delayed entry�(e.g. when the stock sample was drawn) to the month when last
observed.
Implementation of the easy estimation method using data with this sampling

scheme now has four steps (Jenkins, 1995):

1. Reorganize data into person-period format;

2. Throw away the records for all the periods prior to the time of �delayed en-
try�(the months up to and including u in this case), retaining the months
during which each individual is observed at risk of experiencing the event;

3. Create any time-varying covariates (at the very least this includes a vari-
able describing duration dependence in the hazard rate �see above);

4. Choose the functional form for hik (logistic or cloglog);

5. Estimate the model using any standard binary dependent regression pack-
age: logit for a logistic model; cloglog for complementary log-log model.

The only di¤erence from before is step 2 (throwing data away). Actually, in
practice, steps one and two might be combined. If one has a panel data set, for
instance, one can create a data set with the correct structure directly.
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6.3 Right-truncated spell data (out�ow sample)

Again the speci�cation for the sample likelihood closely parallels that for the
continuous time case. There are no censored cases; all spells are completed, by
construction. But one has to account for the selection bias arising from out�ow
sampling by conditioning each individual�s likelihood contribution on failure at
the observed survival time. Each spell�s contribution to the sample likelihood is
given by the discrete density function, f(j), divided by the discrete time failure
function, F (j) = 1� S(j). Hence i�s contribution to sample likelihood is:

Li =

�
hij
1�hij

� jQ
k=1

(1� hik)

1�
�

jQ
k=1

(1� hik)
� : (6.21)

Unfortunately the likelihood function does not conveniently simplify in this case
(as it did in the left-truncated spell data case).
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Chapter 7

Cox�s proportional hazard
model

This model, proposed by Cox (1972), is perhaps the most-often cited article
in survival analysis. The distinguishing feature of Cox�s proportional hazard
model, sometimes simply referred to as the �Cox model�, is its demonstration
that one could estimate the relationship between the hazard rate and explana-
tory variables without having to make any assumptions about the shape of the
baseline hazard function (cf. the parametric models considered earlier). Hence
the Cox model is sometimes referred to as a semi-parametric model. The result
derives from innovative use of the proportional hazard assumption together with
several other insights and assumptions, and a partial likelihood (PL) method of
estimation rather than maximum likelihood. Here follows an intuitive demon-
stration of how the model works, based on the explanation given by Allison
(1984).
We are working in continuous time, and suppose that we have a random

sample of spells, some of which are censored and some are complete. (The
models can be estimated using left-truncated data, but we shall not consider
that case here.)
Recall the PH speci�cation

� (t;Xi) = �0 (t) exp
�
�0Xi

�
(7.1)

= �0 (t)�i: (7.2)

or, equivalently,
� (t;Xi) = ��0 (t)�

�
i : (7.3)

We shall suppose, for the moment, that the X vector is constant, but note that
the Cox model can in fact also handle time-varying covariates.
Cox (1972) proposed a method for estimating the slope coe¢ cients in � (i.e.

excluding the intercept) without having to specify any functional form for the

77
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Person # Time Event #
i ti k
1 2 1
2 4 2
3 5 3
4 5*
5 6 4
6 9*
7 11 5
8 12*

*: censored observation

Table 7.1: Data structure for Cox model: example

baseline hazard function, using the method of PL. PL works in terms of the
ordering of events by constrast with the focus in ML on persons (spells).
Consider the illustrative data set shown in Table 7.1. We assume that there

is a maximum of one event at each possible survival time (this rules out ties in
survival times �for which there are various standard ways of adapting the Cox
model). In the table persons are arranged in order of survival times.

The sample Partial Likelihood is given by

PL =

KY
k=1

Lk (7.4)

This is quite di¤erent from the sample likelihood expressions we had before in
the maximum likelihood case. The k indexes events, not persons. But what
then is each Lk? Think of it as the following:

Lk = Pr(person i has event at t = ti conditional on being in the risk set at t = ti), i.e.(7.5)

= Pr(this particular person i experiences the event at t = ti,

given that one observation amongst many at risk experiences the event)

Or, of the people at risk of experiencing the event, which one in fact does
experience it? To work out this probability, use the rules of conditional prob-
ability together with the result that the probability density for survival times
is the product of the hazard rate and survival function, i.e. f(t) = �(t)S(t),
and so the probability that an event occurs in the tiny interval [t; t + �t) is
f (t) dt = �(t)S(t)dt:
Consider event k = 5 with risk set i 2 f7; 8g: We can de�ne

A = Pr (event experienced by i = 7 and not i = 8) = [�7(11)S7(11)dt] [S8(11)]

B = Pr (event experienced by i = 8 and not i = 7) = [�8(11)S8(11)dt] [S7(11)]
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Now consider the expression for probability A conditional on the probability
of either A or B (the chance that either could have experienced event, which is
a sum of probabilities). Using the standard conditional probability formula, we
�nd that

L5 =
A

A+B
=

�7 (11)

�7 (11) + �8 (11)
(7.6)

Note that the survivor function terms cancel. This same idea can be applied to
derive all the other Lk: For example,

L1 =
�1 (2)

�1 (2) + �2 (2) + ::::+ �8 (2)
: (7.7)

Everyone is in the risk set for the �rst event.
Now let us apply the PH assumption � (t;Xi) = �0 (t)�i, starting for illus-

tration with event k = 5 with associated risk set i 2 f7; 8g: We can substitute
into the expression for L5 above, and �nd that

L5 =
�0 (11)�7

�0 (11)�7 + �0 (11)�8
(7.8)

=
�7

�7 + �8
: (7.9)

The baseline hazard contributions cancel. (The intercept term, which is
common to all, exp(�0), also cancels from both the numerator and the denom-
inator since it appears in each of the � terms.) By similar arguments,

L1 =
�1

�1 + �2 + :::+ �8
(7.10)

and so on. Given each Lk expression, one can construct the complete PL expres-
sion for the whole sample of events, and then maximize it to derive estimates
of the slope coe¢ cients within �: It has been shown that these estimates have
�nice�properties.
Note that the baseline hazard function is completely unspeci�ed, which can

be seen as a great advantage (one avoids potential problems from specifying the
wrong shape), but some may also see it as a disadvantage if one is particularly
interested in the shape of the baseline hazard function for its own sake.
One can derive an estimate of the baseline survivor and cumulative hazard

functions (and thence of the baseline hazard using methods analogous to the
Kaplan-Meier procedure discussed earlier �with the same issues arising).
If there are tied survival times, then the neat results above do not hold

exactly. In this case, either one has to use various approximations (several stan-
dard ones are built into software packages by default), or modify the expressions
to derive the �exact�partial likelihood �though this may increase computational
time substantially. (It turns out that the speci�cation in the latter case is closely
related to the conditional logit model.) On the other hand, if one �nds that the
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incidence of tied survival times is relatively high in one�s data set, then perhaps
one should ask whether a continuous time model is suitable. One could instead
apply the discrete time proportional hazards model.
The Cox PL model can incorporate time-varying covariates. In empirical im-

plementation, one uses episode splitting again. By constrast with the approaches
to this employed in the last two chapters, observe that now the splitting need
only be done at the failure times. This is because the PL estimates are derived
only using the information about the risk pool at each failure time. Thus co-
variates are only �evaluated�during the estimation at the failure times, and it
does not matter what happens to their values in between.
Finally observe that the expression for each Lk does not depend on the pre-

cise survival time at which the kth event occurs. Only the order of events a¤ects
the PL expression. Check this yourself: multiply all the survival times in the
table by two and repeat the derivations (you should �nd that the estimates of
the slope coe¢ cients in � are the same). What is the intuition? Remember that
the PH assumption means implies that the hazard function for two di¤erent in-
dividuals has the same shape, di¤ering only by a constant multiplicative scaling
factor that does not vary with survival time. To estimate that constant scaling
factor, given the common shape, one does not need the exact survival times.



Chapter 8

Unobserved heterogeneity
(�frailty�)

In the multivariate models considered so far, all di¤erences between individ-
uals were assumed to be captured using observed explanatory variables (the
X vector). We now consider generalisations of the earlier models to allow for
unobserved individual e¤ects. There are usually referred to as �frailty� in the
bio-medical sciences. (If one is modelling human survival times, then frailty is
an unobserved propensity to experience an adverse health event.) There are
several reasons why these variables might be relevant. For example:

� omitted variables (unobserved in the available data, or intrinsically unob-
servable such as �ability�)

� measurement errors in observed survival times or regressors (see Lancaster,
1990, chapter 4).

What if the e¤ects are important but �ignored�in modelling? The literature
suggests several �ndings:

� The �no-frailty�model will over-estimate the degree of negative duration
dependence in the hazard (i.e. under-estimate the degree of positive du-
ration dependence); * Insert �gure *

� The proportionate response of the hazard rate to a change in a regressor k
is no longer constant (it was given by �k in the models without unobserved
heterogeneity), but declines with time;

� one gets an under-estimate of the true proportionate response of the haz-
ard to a change in a regressor k from the no-frailty-model �k.

Let us now look at these results in more detail.
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8.1 Continuous time case

For convenience we suppress the subscript indexing individuals, and assume for
now that there are no time-varying covariates. We consider the model

� (t;X j v) = v� (t;X) (8.1)

where

�(t;X) is the hazard rate depending on observable characteristics X, and

v is an unobservable individual e¤ect that scales the no-frailty component.
Random variable v is assumed to have the following properties:

� v > 0
� E(v) = 1 (unit mean, a normalisation required for identi�cation)
� �nite variance �2 > 0, and is
� distributed independently of t and X.

This model is sometimes referred to as a �mixture�model �think of the two
components being �mixed�together �or as a �mixed proportional hazard�model
(MPH). It can be shown, using the standard relationship between the hazard
rate and survivor function (see chapter 3), that the relationship between the
frailty survivor function and the no-frailty survivor function is

S (t;X j v) = [S (t;X)]v (8.2)

Thus the individual e¤ect v scales no-frailty component survivor function. In-
dividuals with above-average values of v leave relatively fast (their hazard rate
is higher, other things being equal, and their survival times are smaller), and
the opposite occurs for individuals with below-average values of v.
If the no-frailty hazard component has Proportional Hazards form, then:

� (t;X) = �0 (t) e
�0X (8.3)

� (t;X j v) = v�0 (t) e
�0X (8.4)

log [� (t;X j v)] = log �0 (t) + �
0X + u (8.5)

where u � log (v) and E(u) = �: In the no-frailty model, the log of the hazard
rate at each survival time t equals the log of the baseline hazard rate at t
(common to all persons) plus an additive individual-speci�c component (�0X).
The frailty model for the log-hazard adds an additional additive �error� term
(u). Alternatively, think of this as a random intercept model: the intercept is
�0 + u:
How does one estimate frailty models, given that the individual e¤ect is

unobserved? Clearly we cannot estimate the values of v themselves since, by
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construction, they are unobserved. Put another way, there are as many indi-
vidual e¤ects as individuals in the data set, and there are not enough degrees
of freedom left to �t these parameters. However if we suppose the distribution
of v has a shape whose functional form is summarised in terms of only a few
key parameters, then we can estimate those parameters with the data available.
The steps are as follows:

� Specify a distribution for the random variable v, where this distribution
has a particular parametric functional form (e.g. summarising the variance
of v).

� Write the likelihood function so that it refers to the distributional para-
meter(s) (rather than each v), otherwise known as �integrating out� the
random individual e¤ect.

This means that one works with some survivor function

Sv(t;X) = S(t;Xj�; �2), (8.6)

and not S(t;Xj�; v): Then

Sv(t;X) =

Z 1

0

[S(t;X)]
v
g (v) dv (8.7)

where g (v) is the probability density function (pdf) for v: The g (v) is the
�mixing�distribution. But what shape is appropriate to use for the distribution
of v (among the potential candidates satisfying the assumptions given earlier)?
The most commonly used speci�cation for the mixing distribution is the

Gamma distribution, with unit mean and variance �2. Making the relevant
substitutions into Sv(t;X) and evaluating the integral implies a speci�c func-
tional form for the frailty survivor function:

S
�
t;X j �; �2

�
=

�
1� �2 lnS (t;X)

��(1=�2)
(8.8)

=
�
1 + �2H (t;X)

��(1=�2)
(8.9)

where S (t;X) is the no-frailty survivor function, and using the property that
the integrated hazard function H (t;X) = � lnS (t;X). (Note that lim�2!0

S
�
t;X j �; �2

�
= S (t;X).)

Now consider what this implies if the no-frailty part follows aWeibull model,
in which case: S (t) = exp(��t�), H(t) = �t�, � = exp(�0X), and so

S
�
t;X j �; �2

�
=
�
1 + �2�t�

��(1=�2)
(8.10)

for which one may calculate that the median survival time is given by

mv =

 
(2�

2 � 1)
�2�

! 1
�

: (8.11)
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This may be compared with the expression for the median in the no-frailty case
for the Weibull model, [(log(2)=�]1=�, which is the corresponding expression as
v ! 0.
This survivor function (and median) is an unconditional one, i.e. not condi-

tioning on a value of v (that has been integrated out). An alternative approach is
to derive the survivor function (and its quantiles) for speci�c values of v (these
are conditional survivor functions). Of the speci�c values, the most obvious
choice is v = 1 (the mean value), but other values such as the upper or lower
quartiles could also be used. (The estimates of the quartiles of the heterogeneity
distribution can be derived using the estimates of �2.)
An alternative mixing distribution to the Gamma distribution is the Inverse

Gaussian distribution. This is less commonly used (but available in Stata along
with the Gamma mixture model). For further discussion, see e.g. Lancaster
(1990), the Stata manuals under streg, or EC968 Web Lesson 8.

8.2 Discrete time case

Recall that in the continuous time proportional hazard model, then the log of
the frailty hazard is:

log [� (j;X j v)] = log [�0 (j)] + �0X + u: (8.12)

Recall too the discrete time model for the situation where survival times are
grouped (leading to the cloglog model). By the same arguments as those, one
can have a discrete time PH model with unobserved heterogeneity:

cloglog [h (j;X j v)] = D (j) + �0X + u (8.13)

where u � log (v), as above. D (j) characterises the baseline hazard function.
If v has a Gamma distribution, as proposed by Meyer (1990), there is a closed
form expression for the frailty survivor function: see (8:9) above. If we have
an in�ow sample with right censoring, the contribution to the sample likeli-
hood for a censored observation with spell length j intervals is S

�
j;X j �; �2

�
,

and contribution of someone who makes a transition in the jth interval is
S
�
j � 1; X j �; �2

�
� S

�
j;X j �; �2

�
, with the appropriate substitutions made.

This model can be estimated using my Stata program pgmhaz8 (or pgmhaz
for users of Stata versions 5�7). The data should be organized in person-period
form, as discussed in the previous chapter, and time-varying covariates may be
incorporated.
Alternatively, one may suppose that u has a Normal distribution with mean

zero. In this case, there is no convenient closed form expression for the sur-
vivor function and hence likelihood contributions: the �integrating out�must be
done numerically. Estimation may be done using the built-in Stata program
xtcloglog, using data organized in person-period form.
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For the logit model, one might suppose now that log odds of the hazard
takes the form

h (j;X j e)
1� h (j;X j e) =

�
h0 (j)

1� h0 (j)

�
exp

�
�0X + e

�
(8.14)

which leads to the model with

logit [h (j;X j e)] = D (j) + �0X + e (8.15)

and e is an �error� term with mean zero, and �nite variance. If one assumes
that e has a Normal distribution with mean zero, one has a model that can
be estimated using the Stata program xtlogit applied to data organized in
person-period form.
All the approaches mentioned so far use parametric approaches. A non-

parametric approach to characterising the frailty distribution was pioneered in
the econometrics literature by Heckman and Singer (1984). The idea is essen-
tially that one �ts an arbitrary distribution using a set of parameters. These
parameters comprise a set of �mass points�and the probabilities of a person be-
ing located at each mass point. We have a discrete (multinomial) rather than a
continuous mixing distribution. Sociologists might recognize the speci�cation as
a form of �latent class�model: the process describing time-to-event now di¤ers
between a number of classes (groups) within the population.
To be concrete, consider the discrete time proportional hazards model, for

which the interval hazard rate is given (see Chapter 3) by

h(j;X) = 1� exp[� exp(�0 + �1X1 + �2X2 + :::+ �KXK + j)]:

Suppose there are two types of individual in the population (where this feature
is not observed). We can incorporate this idea by allowing the intercept �0 to
vary between the two classes, i.e.

h1(j;X) = 1�exp[� exp(�1+�1X1+�2X2+:::+�KXK+j)] for Type 1 (8.16)

h2(j;X) = 1� exp[� exp(�2 + �1X1 + �2X2 + :::+ �KXK + j)] for Type 2.
(8.17)

If �2 > �1, then Type 2 people are fast exiters relatively to Type 1 people, other
things being equal. Once again we have a random intercept model, but the
randomness is characterised by a discrete distribution rather than a continuous
(e.g. Gamma) distribution, as earlier.
If we have an in�ow sample with right censoring, the contribution to the

sample likelihood for a person with spell length j intervals is the probability-
weighted sum of the contributions arising were he a Type 1 or a Type 2 person,
i.e.

L = �L(�1) + (1� �)L(�2) (8.18)

where

L1 =
�

h1(j;X)

1� h1(j;X)

�c jY
k=1

[1� h1(k;X)] (8.19)
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L2 =
�

h2(j;X)

1� h2(j;X)

�c jY
k=1

[1� h2(k;X)] (8.20)

where � is the probability of belonging to Type 1, and c is the censoring indica-
tor. Where there are M latent classes, the likelihood contribution for a person
with spell length j is

L =
MX
m=1

�mL(�m): (8.21)

The �m are theM �mass point�parameters describing the support of the discrete
multinomial distribution, and the �m are their corresponding probabilities, with
with

P
m �m = 1. The number of mass points to choose is not obvious a priori.

In practice, researchers have often used a small number (e.g. M = 2 or M
= 3) and conducted inference conditional on this choice. For a discussion of the
�optimal�number of mass points, using so-called Gâteaux derivatives, see e.g.
Lancaster (1990, chapter 9).
This model can be estimated in Stata using my program hshaz (get it by

typing ssc install hshaz in an up-to-date version of Stata) or using Sophia
Rabe-Hesketh�s program gllamm (ssc install gllamm).

8.3 What if unobserved heterogeneity is �impor-
tant�but ignored?

In this section, we provide more details behind the results that were stated at
the beginning of the chapter. See Lancaster (1979, 1990) for a more extensive
treatment (on which I have relied heavily).
We suppose that the �true�model, with no omitted regressors, takes the PH

form and there is a continuous mixing distribution:

� (t;X j v) = v�0 (t)�; � � e�
0X (8.22)

which implies
@ log [� (t;X j v)]

@Xk
= �k: (8.23)

I.e. the proportionate response of the hazard to some included variable Xk is
given by the coe¢ cient �k. This parameter is constant and does not depend on
t (or X). The model also implies

@ log [� (t;X) v]

@t
=
@ log �0 (t;X)

@t
: (8.24)

We suppose that the �observed�model, i.e. with omitted regressors, is

� (t;X j v) = v�0 (t)�1 (8.25)

where �1 = e�
0
1X1 , X1 is a subset of X:
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Assuming v � Gamma(1; �2), then

S1
�
t j �2

�
=
�
1� �2S (t)

�� 1
�2 =

�
1 + �2H (t)

�� 1
�2 (8.26)

and

�1
�
t j �2

�
=
�
S1
�
t j �2

���2
�0 (t)�1: (8.27)

8.3.1 The duration dependence e¤ect

Look at the ratio of the hazards from the two models:

�1
�

=
�0 (t)�1

�
S1
�
t j �2

���2
�0 (t) v

(8.28)

/
�
S1
�
t j �2

���2
(8.29)

which is monotonically decreasing with t, for all �2 > 0.
In sum, the hazard rate from a model with omitted regressors increases less

fast, or falls faster, that does the �true�hazard (from the model with no omitted
regressors).
The intuition is of a selection or �weeding out�e¤ect. Controlling for observ-

able di¤erences, people with unobserved characteristics associated with higher
exit rates leave the state more quickly than others. Hence �survivors�at longer
t increasingly comprise those with low v which, in turn, implies a lower hazard,
and the estimate of hazard is an underestimate of �true�one.
Bergström and Eden (1992) illustrate the argument nicely in the context of

a Weibull model for the non-frailty component. Recall that the Weibull model
in the AFT representation is written log T = ��0X + �u, with the variance of
the �residuals�given by �2var(u). If one added in (unobserved) heterogeneity
to the systematic part of the model, then one would expect the variance of
the residuals to fall correspondingly. This is equivalent to a decline in �. But
recall � � 1=� where � is the Weibull shape parameter we discussed earlier. A
decline in � is equivalent to a rise in �. Thus the �true�model exhibits more
positive duration dependence than the model without this extra heterogeneity
incorporated.

8.3.2 The proportionate response of the hazard to varia-
tions in a characteristic

We consider now the proportionate response of the hazard to a variation in Xk

where Xk is an included regressor (part of X1). We know that the proportionate
response in the �true�model is

@ log �

@Xk
= �k: (8.30)



88 CHAPTER 8. UNOBSERVED HETEROGENEITY (�FRAILTY�)

In the observed model, we have

@ log �1
@Xk

=
@
�
�2S1

�
t j �2

�
+ �01X1

�
@Xk

(8.31)

= �k +
�2

S1 (t j �2)
@
�
S1
�
t j �2

��
@Xk

: (8.32)

But

@
�
S1
�
t j �2

��
@Xk

= � 1

�2
[1 + �2H1(t)]

� 1
�2
�1�2

@ [H1 (t)]

@Xk
(8.33)

=
�S1

�
t j �2

�
1 + �2H1(t)

@ [H1 (t)]

@Xk
(8.34)

and
@ [H1 (t)]

@Xk
= �kH1 (t) (8.35)

so
�2

S1

@ [S1]

@Xk
= �2

��kH1 (t)

1 + �2H1(t)
: (8.36)

Hence, substituting back into the earlier expression, we have that

@ log �1
@Xk

= �k

�
1� �2H1 (t)

1 + �2H1(t)

�
(8.37)

=
�k

1 + �2H1(t)
(8.38)

= �k

h
S1
�
t j �2

��2i
: (8.39)

Note that 1 + �2H1(t) > 1 or, alternatively, that 0 � S1 � 1 and tends to zero
as t!1. The implications are two-fold:

1. Suppose one wants to estimate �k (with its nice interpretation as being
the proportionate response of the hazard in the �true�model), then the
omitted regressor model provides an under-estimate (in the modulus) of
the proportionate response.

2. Variation in H1 causes equi-proportionate variation in the hazard rate at
all t in the �true�model. But with omitted regressors, the proportionate
e¤ect tends to zero as t!1.

The intuition is as follows. Suppose there are two types of person A, B. On
average the hazard rate is higher for A than for B at each time t. In general
the elasticity of the hazard rate at any t varies with the ratio of the average
group hazards, �A and �B . Group A members with high v (higher hazard) leave
�rst, implying that the average �A among the survivors falls and becomes more
similar to the average �B . Thus the ratio of �A to �B declines as t increases and
the proportionate response will fall. It is a �weeding out�e¤ect again.
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8.4 Empirical practice

These results suggest that taking accounting of unobserved heterogeneity is a
potentially important part of empirical work. It has often not been so in the
past, partly because of a lack of available software, but that constraint is now
less relevant. One can estimate frailty models and test whether unobserved
heterogeneity is relevant using likelihood ratio tests based on the restricted and
unrestricted models. (Alternatively there are �score�tests based on the restricted
model.)
Observe that virtually commonly-available estimation software programs as-

sume that one has data from a in�ow or population sample. To properly account
for left (or right) truncation requires special programs. For example, the �con-
venient cancelling�results used to derive an easy estimation method for discrete
time models no longer apply. The likelihood contribution for a person with a
left truncated spell still requires conditioning on survival up to the truncation
date, but the expression for the survivor function now involves factors related
to the unobserved heterogeneity.
The early empirical social science literature found that conclusions about

whether or not frailty was �important�(e¤ects on estimate of duration depen-
dence and estimates of �) appeared to be sensitive to choice of shape of distrib-
ution for v. Some argued that the choice of distributional shape was essentially
�arbitrary�, and this stimulated the development of non-parametric methods,
including the discrete mixture methods brie�y referred to.
Subsequent empirical work suggests, however, that the e¤ects of unobserved

heterogeneity are mitigated, and thence estimates more robust, if the analyst
uses a �exible baseline hazard speci�cation. (The earlier literature had typically
used speci�cations, often the Weibull one, that were not �exible enough.) See
e.g. Dolton and van der Klaauw (1995).
All in all, the topic underscores the importance of getting good data, includ-

ing a wide range of explanatory variables that summarize well the di¤erences
between individuals.
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Chapter 9

Competing risks models

Until now we have considered modelled transitions out the current state (exit
to any state from the current one). Now we consider the possibility of exit to
one of several destination states. For illustration, we will suppose that there
are two destination states A;B, but the arguments generalise to any number of
destinations. The continuous time case will be considered �rst, and then the
discrete time one (for both the interval-censored and �pure�discrete cases). We
shall see that the assumption of independence in competing risks makes several
of the models straightforward to estimate.

9.1 Continuous time data

De�ne

�A (t) : the latent hazard rate of exit to destination A, with survival times
characterised by density function fA (t), and latent failure time TA;

�B (t) : the latent hazard rate of exit to destination B, with survival times
characterised by density function fB (t), and latent failure time TB .

� (t) : the hazard rate for exit to any destination.

Each destination-speci�c hazard rate can be thought of as the hazard rate
that would apply were transitions to all the other destinations not possible. If
this were so, we would be able to link the observed hazards with that destination-
speci�c hazard. However, as there are competing risks, the hazard rates are
�latent�rather than observed in this way. What we observe in the data is either
(i) no event at all (a censored case, with a spell length TC), or (ii) an exit
which is to A or to B (and we know which is which). The observed failure
time T = min fTA; TB ; TCg : What we are seeking is methods to estimate the
destination-speci�c hazard rates given data in this form.
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Assume �A and �B are independent. This implies that

� (t) = �A (t) + �B (t) : (9.1)

I.e. the hazard rate for exit to any destination is the sum of the destination-
speci�c hazard rates. (Cf. probabilities: Pr(A or B) = Pr (A) + Pr (B) if A, B
independent. So � (t) dt = �A (t) dt+ �B (t) dt:)
Independence also means that the survivor function for exit to any destina-

tion can factored into a product of destination-speci�c survivor functions:

S (t) = exp

�
�
Z t

0

� (u) du

�
(9.2)

= exp

�
�
Z t

0

[�A (u) + �B (u)] du

�
(9.3)

= exp

�
�
Z t

0

�A (u) du

�
exp

�
�
Z t

0

�B (u) du

�
(9.4)

= SA (t)SB (t) : (9.5)

The derivation uses the property ea+b = eaeb:
The individual sample likelihood contribution in the independent competing

risk model with two destinations is of three types:

LA : exit to A, where LA = fA (T )SB (T )

LB : exit to B, where LB = fB (T )SA (T )

LC : censored spell, where LC = S (T ) = SA (T )SB (T )

In the LA case, the likelihood contribution summarises the chances of a
transition to A combined with no transition to B, and vice versa in the LB
case.
Now de�ne destination-speci�c censoring indicators

�A =

�
1 if i exits to A
0 otherwise (exit to B or censored)

(9.6)

�B =

�
1 if i exits to B
0 otherwise (exit to A or censored)

(9.7)

The overall contribution from the individual to the likelihood, L, is

L = (LA)�
A

(LB)�
B �
LC
�1��A��B

(9.8)

= [fA (T )SB (T )]
�A
[fB (T )SA (T )]

�B
[SA (T )SB (T )]

1��A��B (9.9)

=

�
fA (T )

SA (T )

��A
SA (T )

�
fB (T )

SB (T )

��B
SB (T ) (9.10)

=
n
[�A (T )]

�A
SA (T )

on
[�B (T )]

�B
SB (T )

o
(9.11)
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or

lnL =
n
�A ln �A (T ) + lnSA (T )

o
+
n
�B ln �B (T ) + lnSB (T )

o
: (9.12)

The log-likelihood for the sample as a whole is the sum of this expression over
all individuals in the sample.
In other words, the (log) likelihood for the continuous time competing risk

model with two destination states factors into two parts, each of which de-
pends only on parameters speci�c to that destination. Hence one can maximise
the overall (log)likelihood by maximising the two component parts separately.
These results generalize straightforwardly to the situation with more than two
independent competing risks.
This means that the model can be estimated very easily. Simply de�ne new

destination-speci�c censoring variables (as above) and then estimate separate
models for each destination state. The overall model likelihood value is the sum
of the likelihood values for each of the destination-speci�c models.
These results are extremely convenient if one is only interested in estimat-

ing the competing risks model. Often, however, one is also interested in testing
hypotheses involving restrictions across the destination-speci�c hazards. In par-
ticular one is typically interested in testing whether the same model applies for
transitions to each destination or whether the models di¤er (and how). But in-
troducing such restrictions means that, in principle, one has to jointly estimate
the hazards: under the null hypotheses with restrictions, the likelihood is no
longer separable.
Fortunately there are some simple methods for testing a range of hypothe-

ses that can be implemented using estimation of single-risk models, as long as
one assumes that hazard rates have a proportional hazard form. See Naren-
dranathan and Stewart (1991). The �rst hypothesis they consider is equality
across the destination-speci�c hazards of all parameters except the intercepts,
which is equivalent to supposing that the ratios of destination-speci�c hazards
are independent of survival time and the same for all individuals. The second,
and weaker, hypothesis is that the hazards need not be constant over t but
are equal across individuals. This is equivalent to supposing that conditional
probabilities of exit to a particular state at a particular elapsed survival time
are the same for all individuals. Implementation of the �rst test involves use of
likelihood values from estimation of the unrestricted destination-speci�c models
and the unrestricted single risk model (not distinguishing between exit types),
and the number of exits to each destination. Implementation of the second test
requires similar information, including the number of exits to each destination
at each observed survival time.

9.2 Intrinsically discrete time data

Recall that in the continuous time case, exits to only one destination are feasible
at any given instant. Hence, assuming independent risks, the overall (continuous
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time) hazard equals the sum of the destination-speci�c hazards. With discrete
time, things get more complicated, and the neat separability result that applies
in the continuous time case no longer holds. As before let us distinguish between
the cases in which survival times are intrinsically discrete and in which they
arise from interval censoring (survival times are intrinsically continuous, but
are observed grouped into intervals), beginning with the former.
In this case, there is a parallel with the continuous time case: the discrete

hazard rate for exit at time j to any destination is the sum of the destination-
speci�c discrete hazard rates. That is,

h (j) = hA (j) + hB (j) : (9.13)

Because survival times are intrinsically discrete, if there is an exit to one of the
destinations at a given survival time, then there cannot be an exit to the other
destination at the same survival time. However this property does not lead to a
neat separability result for the likelihood analogous to that for the continuous
time case. To see why, consider the likelihood contributions for the discrete time
model. There are three types: that for an individual exiting to A (LA), that for
an individual exiting to B (LB), and that for a censored case (LC). Supposing
that the observed survival time for an individual is j cycles, then:

LA = hA (j)S(j � 1) (9.14)

=

�
hA (j)

1� h (j)

�
S(j) (9.15)

=

�
hA (j)

1� hA (j)� hB (j)

�
S(j) (9.16)

Similarly,

LB = hB (j)S(j � 1) (9.17)

=

�
hB (j)

1� h (j)

�
S(j) (9.18)

=

�
hB (j)

1� hA (j)� hB (j)

�
S(j) (9.19)

and
LC = S(j): (9.20)

There is a common term in each expression summarising the overall probability
of survival of survival for j cycles, i.e. Si(j). In the continuous time case,
the analogous expression could be rewritten as the product of the destination-
speci�c survivor functions. But this result does not carry over to here:

S(j) =

jY
k=1

[1� h (k)] =
jY

k=1

[1� hA (k)� hB (k)] : (9.21)



9.2. INTRINSICALLY DISCRETE TIME DATA 95

The overall likelihood contribution for an individual with an observed spell
length of j cycles is:

L = (LA)�
A

(LB)�
B �
LC
�1��A��B

=

�
hA (j)

1� hA (j)� hB (j)

��A �
hB (j)

1� hA (j)� hB (j)

��B

�
jY

k=1

[1� hA (k)� hB (k)] (9.22)

Another way of writing the likelihood, which we refer back to later on, is

L = S(j)

�
h (j)

1� h (j)

��A+�B �
hA (j)

h (j)

��A �
hB (j)

h (j)

��B
: (9.23)

Although there is no neat separability result in this case, it turns out that
there is still a straightforward means of estimating an independent competing
risk model, as Allison (1982) has demonstrated. The �trick� is to assume a
particular form for the destination-speci�c hazards:

hA (k) =
exp(�0AX)

1 + exp(�0AX) + exp(�
0
BX)

(9.24)

hB (k) =
exp(�0BX)

1 + exp(�0AX) + exp(�
0
BX)

(9.25)

and hence

1� hA (k)� hB (k) =
1

1 + exp(�0AX) + exp(�
0
BX)

(9.26)

With destination-speci�c censoring indicators �A and �A de�ned as before, the
likelihood contribution for the individual with spell length j can be written:

L =

�
exp(�0AX)

1 + exp(�0AX) + exp(�
0
BX)

��A �
exp(�0BX)

1 + exp(�0AX) + exp(�
0
BX)

��B

�
�

1

1 + exp(�0AX) + exp(�
0
BX)

�1��A��B

�
j�1Y
k=1

�
1

1 + exp(�0AX) + exp(�
0
BX)

�
: (9.27)

However, as Allison (1982) pointed out, this likelihood has the same form as the
likelihood for a standard multinomial logit model applied to re-organised data.
To estimate the model, there are four steps:



96 CHAPTER 9. COMPETING RISKS MODELS

1. expand the data into person-period form (as discussed in Chapter 6 for
single-destination discrete time models).

2. Construct an dependent variable for each person-period observation. This
takes the value 0 for all censored observations in the reorganised data
set. (For persons with censored spells, all observations are censored; for
persons with a completed spell, all observations are censored except the
�nal one.) For persons with an exit to destination A in the �nal period
observed, set the dependent variable equal to 1, and for those with an exit
to destination B in the �nal period observed, set the dependent variable
equal to 2. (If there are more destinations, create additional categories of
the dependent variable.)

3. Construct any other variables required, in particular variables summaris-
ing duration-dependence in the destination-speci�c hazards. Other time-
varying covariates may also be constructed.

4. Estimate the model using a multinomial logit program, setting the refer-
ence (base) category equal to 0.

Observe that the particular values for the dependent variable that are chosen
do not matter. What is important is that they are distinct (and also that
one�s software knows which value corresponds to the base category). In e¤ect,
censoring is being treated as another type of destination, call it C. However
in the multinomial logit model, there is an identi�cation issue. One cannot
estimate a set of coe¢ cients (call them �C) for the third process in addition
to the other two sets of parameters (�A, �B). There is more than one set of
estimates that would led to the same probabilities of the outcomes observed. As
a consequence, one of the sets of parameters is set equal to zero. In principle, it
does not matter which, but in the current context it is intuitively appealing to set
�C = 0. The other coe¢ cients (�A, �B) then measure changes in probabilities
relative to the censored (no event) outcome.
The ratio of the probability of exit to destination A to the probability of

no exit at all is exp(�A), with an analogous interpretation for exp(�B). This is
what the Stata Reference Manuals (in the -mlogit- entry) refer to as the �relative
risk�. And as the manual explains, �the exponentiated value of a coe¢ cient is
the relative risk ratio for a one unit change in the corresponding variable, it
being understood that risk is measured as the risk of the category relative to
the base category�(no event in this case).
A nice feature of this �multinomial logit�hazard model is that it is straightfor-

ward to test hypotheses about whether the destination-speci�c discrete hazards
have common determinants. Using software packages such as Stata it is straight-
forward to apply Wald tests of whether, for example, corresponding coe¢ cients
are equal or not. One can also estimate models in which some components of
the destination-speci�c hazards, for example the duration-dependence speci�-
cations, are constrained to take the same form. One potential disadvantage of
estimating the model using the multinomial logit programs in standard software
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is that these typically require that the same set of covariates appears in each
equation.

9.3 Interval-censored data

We now consider the case in which survival times are generated by some contin-
uous time process, but observed survival times are grouped into intervals of unit
length (for example the �month�or �week�). One way to proceed would simply
be to apply the �multinomial logit�hazard model to these data, as described
above, i.e. making assumptions about the discrete time (interval) hazard and
eschewing any attempt to relate the model to an underlying process in contin-
uous time. The alternative is to do as we did in Chapter 3, and to explicitly
relate the model to the continuous time hazard(s). As we shall now see, the
models are complicated relative to those discussed earlier in this chapter, for
two related reasons. First, the likelihood is not separable as it was for the
continuous time case. Second, and more fundamentally, the shape of the (con-
tinuous time) hazard rate within each interval cannot be identi�ed from the
grouped data that is available. To construct the sample likelihood, assumptions
have to be made about this shape, and alternative assumptions lead to di¤erent
econometric models.
In the data generation processes discussed so far in this chapter, the overall

hazard was equal to the sum of the destination-speci�c hazards. This is not
true in the interval-censored case. With grouped survival times, more than one
latent event is possible in each interval (though, of course, only one is actually
observed). Put another way, when constructing the likelihood and considering
the probability of observing an exit to a speci�c destination in a given interval,
we have to take account of the fact that, not only was there an exit to that
destination, but also that that exit occurred before an exit to the other potential
destinations.
Before considering the expressions for the likelihood contributions, let us

explore the relationship between the overall discrete (interval) hazard and the
destination-speci�c interval hazards, and the relationship between these discrete
interval hazards and the underlying continuous time hazards. Using the same
notation as in Chapter 2, we note that the jth interval (of unit length) runs
between dates aj � 1 and aj . The overall discrete hazard for the jth interval is
given by

h(j) = 1� S(aj)

S(aj � 1)

= 1�
exp

�
�
R aj
0
[�A (t) + �B (t)]dt

�
exp

h
�
R aj�1
0

[�A (t) + �B (t)]dt
i

= 1� exp
"
�
Z aj

aj�1
[�A (t) + �B (t)]dt

#
(9.28)
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where we have used on the property � (t) = �A (t) + �B (t). The destination-
speci�c discrete hazards for the same interval are

hA(j) = 1� exp
"
�
Z aj

aj�1
�A (t) dt

#
(9.29)

and

hB(j) = 1� exp
"
�
Z aj

aj�1
�B (t) dt

#
: (9.30)

It follows that
h (j) = 1� f[1� hA (j)] [1� hB (j)]g (9.31)

or
1� h (j) = [1� hA (j)] [1� hB (j)] : (9.32)

Thus the overall discrete interval hazard equals one minus the probability of not
exiting during the interval to any of the possible destinations, and this latter
probability is the product of one minus the destination-speci�c discrete hazard
rates. Rearranging the expressions, we also have

h(j) = hA (j) + hB (j) + hA (j)hB (j) (9.33)

� hA (j) + hB (j) if hA (j)hB (j) � 0: (9.34)

This tells us that the overall interval hazard is only approximately equal to
the sum of the destination-speci�c interval hazards, with the accuracy of the
approximation improving the smaller that the destination-speci�c hazards are.
Now consider the relationship between the survivor function for exit to any

destination and the survivor functions for exits to each destination:

S (j) = (1� h1) (1� h2) (::::) (1� hj) (9.35)

= (1� hA1) (1� hB1) (1� hA2) (1� hB2)
�:::� (1� hA2) (1� hBj)

= (1� hA1) (1� hB2) (:::::) (1� hAj)
� (1� hB1) (1� hB2) (::::) (1� hBj) : (9.36)

In other words,
S (j) = SA (j)SB (j) (9.37)

so that there is a factoring of the overall grouped data survivor function, analo-
gous to the continuous time case. (The same factoring result can also be derived
by expressing the survivor functions in terms of the continuous time hazards,
rather than the discrete time ones.)
As before, there are three types of contribution to the likelihood: that for an

individual exiting to A (LA), that for an individual exiting to B (LB), and that
for a censored case (LC). The latter is straightforward (we have just derived
it). For a person with a censored spell length of j intervals,
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LC = S (j) = SA (j)SB (j)

=

jY
k=1

[1� hA(k)][1� hB(k)] (9.38)

What is the likelihood contribution if, instead of being censored, the individual�s
spell completed with an exit to destination A during interval j? We need to
write down the joint probability that the exact spell length lay between the
lengths implied by the boundaries of the interval and that latent exit time to
destination B was after the latent exit time to destination A. According to the
convention established in Chapter 2, the jth interval is de�ned as (aj � 1; aj ]:
I.e. the interval, of unit length, begins just after date aj � 1, and it �nishes at
(and includes) date aj , the start of the next interval. The expression for the
joint probability that we want is

LA = Pr(aj � 1 < TA � aj ; TB > TA) (9.39)

=

Z aj

aj�1

Z 1

u

f(u; v)dvdu (9.40)

=

Z aj

aj�1

Z 1

u

fA(u)fB(v)dvdu (9.41)

=

Z aj

aj�1

"Z aj

u

fA(u)fB(v)dv +

Z 1

aj

fA(u)fB(v)dv

#
du (9.42)

where f(u; v) is the joint probability density function for latent spell lengths
TA and TB , and the lower integration point in the second integral, u; is the
(unobserved) time within the interval at which the exit to A occurred. Be-
cause we assumed independence of competing risks, f(u; v) = fA(u)fB(v). We
cannot proceed further without making some assumptions about the shape of
the within-interval density functions or, equivalently, the within-interval hazard
rates.
Five main assumptions have been used in the literature to date. The �rst is

that transitions can only occur at the boundaries of the intervals. The second is
that the destination-speci�c density functions are constant within each interval
(though may vary between intervals), and the third is that destination-speci�c
hazard rates are constant within each interval (though may vary between in-
tervals). The fourth is that the the hazard rate takes a particular proportional
hazards form, and the �fth is that the log of the integrated hazard changes
linearly over the interval.

9.3.1 Transitions can only occur at the boundaries of the
intervals.

This was the assumption made by Narendrenathan and Stewart (1993). They
considered labour force transitions by British unemployed men using spell data
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grouped into weekly intervals. At the time, there was a requirement for un-
employed individuals to register (�sign on�), weekly, at the unemployment o¢ ce
in order to receive unemployment bene�ts, and so there is some plausibility in
the idea that transitions would only occur at weekly intervals. The assumption
has powerful and helpful implications. If transitions can only occur at interval
boundaries then, if a transition to A occurred in interval j = (aj � 1; aj ], it
occurred at date aj , and it must be the case that TB > aj (i.e. beyond the jth
interval). This, in turn, means that fB(v) = 0 between dates u and aj . This
allows substantial simpli�cation of (9.42):

LA =

Z aj

aj�1

Z 1

aj

fA(u)fB(v)dvdu (9.43)

=

Z aj

aj�1
fA(u)du

Z 1

aj

fB(v)dv (9.44)

= [FA(aj)� FA (aj � 1)] [1� FB (aj)] (9.45)

= hA (j)SA (j � 1)SB (j) (9.46)

=

�
hA (j)

1� hA (j)

�
SA (j)SB (j) : (9.47)

By similar arguments, we may write

LB =
�

hB (j)

1� hB (j)

�
SA (j)SB (j) : (9.48)

In both expressions, the Chapter 3 de�nitions of the discrete (interval) hazard
function (h) and survivor function (S) in the interval-censored case have been
used. Of course, empirical evaluation of the expressions also requires selection
of a functional form for the destination-speci�c continuous hazards. A natural
choice for these is a proportional hazard speci�cation, in which case hA (j) and
hB (j) would each take the complementary log-log form discussed in Chapter 3:

hA (j) = 1� exp[� exp
�
�0AX + Aj

�
] (9.49)

and
hB (j) = 1� exp[� exp

�
�0BX + Bj

�
] (9.50)

where Aj is the log of the integrated baseline hazard for destination A over the
jth interval, and Bj is interpreted similarly.
If we de�ne destination-speci�c censoring indicators �A and �B , as above,

then the overall likelihood contribution for the person with a spell length of j
intervals is given by

L = (LA)�
A

(LB)�
B �
LC
�1��A��B

=

�
hA (j)

1� hA (j)

��A
SA(j)

�
hB (j)

1� hB (j)

��B
SB(j): (9.51)
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Thus in the case where transitions can only occur at the interval boundaries,
the likelihood contribution partitions into a product of terms, each of which is a
function of a single destination-speci�c hazard only. In other words, the result
is analogous to that continuous time models (and also generalises to a greater
number of destination states). And, as in the continuous time case, one can
estimate the overall independent competing risk model by estimating separate
destination-speci�c models having de�ned suitable destination-speci�c censoring
variables.1

9.3.2 Destination-speci�c densities are constant within in-
tervals

This was the assumption made by, for example, Dolton and van der Klaauw
(1999). We begin again with (9.42), but now apply a di¤erent set of assumptions.
The assumption of constant within-interval densities (as used for the �acturial
adjustment�in the context of lifetables) implies that

fA(u)fB(v) = fAjfBj when aj � 1 < u � aj and aj � 1 < v � aj : (9.52)

Substituting this result into (9.42), we derive

LA =
Z aj

aj�1

"Z aj

u

fAjfBjdv +
1

2

Z 1

aj

fA(v)fB(u)dv +
1

2

Z 1

aj

fA(v)fB(u)dv

#
du:

(9.53)
Now, evaluating the �rst term of the three within the square brackets,Z aj

u

fAjfBjdv = fAjfBj [aj � u] (9.54)

and then substituting back into LA, we get

LA =

Z aj

aj�1
fAjfBj [aj � u]du

+
1

2

Z aj

aj�1

Z 1

aj

fA(u)fB(v)dvdu+
1

2

Z aj

aj�1

Z 1

aj

fA(u)fB(v)dvdu:(9.55)

The �rst term in (9.55) isZ aj

aj�1
fAjfBj [aj � u]du = fAjfBj [aj �

1

2
(aj)

2 +
1

2
(aj � 1)2]

=
1

2
fAjfBj (9.56)

=
1

2

Z aj

aj�1

Z aj

aj�1
fAjfBjdvdu (9.57)

1 In an earlier version of these Lecture Notes, I claimed (incorrectly) that this result held
universally for interval-censored spell data. I am grateful for clari�catory discussions with
Paul Allison, Chandra Shah, Mark Stewart, Peter Dolton, and especially Wilbert van der
Klaauw. My derivations reported for case (2) are based on unpublished notes by Wilbert.
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Now, substituting this back into (9.55), the expression for LA, we can combine
the �rst two terms in square brackets, to derive

LA =
1

2

Z aj

aj�1

Z 1

aj�1

fA(u)fB(v)dvdu+
1

2

Z aj

aj�1

Z 1

aj

fA(u)fB(v)dvdu (9.58)

=
1

2
Pr(aj � 1 < TA � aj ; TB > aj � 1) +

1

2
Pr(aj � 1 < TA � aj ; TB > aj):(9.59)

This is the result cited by Dolton and van der Klaauw (1999, footnote 9). Since
survival times TA and TB are independent (by assumption), the joint probabil-
ities can be calculated using expressions for the marginal probabilities. That
is,

LA =
1

2
[Pr(aj � 1 < TA � aj) Pr(TB > aj � 1)]

+
1

2
[Pr(aj � 1 < TA � aj) Pr(TB > aj)] (9.60)

= Pr(aj � 1 < TA � aj)�
1

2
[Pr(TB > aj � 1) + Pr(TB > aj)](9.61)

=

�
hA (j)

1� hA (j)

�
SA(j)�

1

2
[SB(j � 1) + SB(j)] (9.62)

=

�
hA (j)

1� hA (j)

�
SA(j)�

SB(j)

2

�
1

1� hB (j)
+ 1

�
(9.63)

=

�
hA (j)

1� hA (j)

�
SA(j)SB(j)

�
1� hB (j) =2
1� hB (j)

�
: (9.64)

Similarly, the expression for the likelihood contribution for the case when there
is a transition to destination B in interval j is

LB =
1

2
[Pr(aj � 1 < TB � aj) Pr(TA > aj � 1)]

+
1

2
[Pr(aj � 1 < TB � aj) Pr(TA > aj)] (9.65)

=

�
hB (j)

1� hB (j)

�
SB(j)�

1

2
[SA(j � 1) + SA(j)] (9.66)

=

�
hB (j)

1� hB (j)

�
SB(j)SA(j)

�
1� hA (j) =2
1� hA (j)

�
: (9.67)

Thus the constant within-interval densities assumption leads to expressions for
the likelihood contributions that have rather nice interpretations. The two com-
ponent probabilities comprising equation (9.60), and similarly in (9.65), provide
bounds on the joint probability of interest and, with the assumption, we simply
take the average of them. This in turn involves a simple averaging of survival
functions that refer to the beginning and end of the relevant interval: see equa-
tions (9.62) and (9.66). The averaging property also holds when there are more
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than two destinations. If there were three destinations, call them A, B, and D,
then expression corresponding to (9.66) is

LB =

�
hB (j)

1� hB (j)

�
SB(j)

�1
3
[SA(j � 1)SD(j � 1)]�

2

3
[SA(j)SD(j)] : (9.68)

It is as if, with a greater number of competing risks, the fact that a transition to
B rather than the other destinations occurred, suggests that the transition times
for the other risks were more likely to have been after the end of the interval. The
likelihood contribution gives greater weight to end-of-interval survival functions.
To sum up, with two destinations A, B, the overall likelihood contribution

for an individual with a spell of j intervals is

L = (LA)�
A

(LB)�
B �
LC
�1��A��B

=

�
hA (j)

1� hA (j)

��A �
1� hB (j) =2
1� hB (j)

��A
SA(j) (9.69)

�
�

hB (j)

1� hB (j)

��B �
1� hA (j) =2
1� hA (j)

��B
SB(j): (9.70)

where the precise speci�cation depends on the choice of functional form for the
discrete (interval) hazard, for example the cloglog form as in (9.49) and (9.50)
above. Whichever is used, the expression is not separable into destination-
speci�c components that can be maximized separately. That is, to estimate
the independent competing risk model in this case, one could not use standard
single-risk model software �special programs are required.
On the other hand, equations (9.64) and (9.67) imply that, if one did (in-

correctly) use the single risk approach as in Case 1, then computations of the
individual likelihood contributions would be under-estimates, with the magni-
tude of the error depending on the size of the destination-speci�c hazard rates.

If the hazard rate hA (j) = 0:1, then
�
1�hA(j)=2
1�hA(j)

�
� 1:06, whereas if the hazard

equalled 0.01, the ratio is about 1.01. In other words, as the destination-speci�c
hazards become in�nitesimally small, then we have the likelihood contributions
tend to expressions that are the same as those derived for the case when tran-
sitions could only occur at the interval boundaries. The size of the discrete
hazards will depend on the application in question, and how wide the intervals
are (for example are they one week or one year?).

9.3.3 Destination-speci�c hazard rates are constant within
intervals

With this assumption, the distribution of survival times for each destination
(and overall) takes the Exponential form within each interval. Let
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�A(t) = �Aj if aj � 1 < t � aj , and (9.71)

�B(t) = �Bj if aj � 1 < t � aj , implying (9.72)

�(j) = �Aj + �Bj ; if aj � 1 < t � aj : (9.73)

One obvious parameterisation would be �Aj = exp(�0Aj + �1AX1 + �2AX2 +

:::+�KAXK), and �Bj = exp(�0Bj+�1BX1+�2BX2+ :::+�KBXK). I.e. each
destination-speci�c hazard rate has a piece-wise constant exponential (PCE)
form.
Given these assumptions, the destination-speci�c interval hazards are, mak-

ing the appropriate substitutions into (9.29) and (9.30),

hA(j) = 1� exp
�
��Aj

�
(9.74)

hB(j) = 1� exp
�
��Bj

�
(9.75)

h(j) = 1� exp
�
��j

�
: (9.76)

Now consider the likelihood contribution for an individual who made a tran-
sition to destination A during interval j. We have explicit functional forms
for the density functions within the relevant interval: fA(u) = �AjSA(u) =
�AjSA(j � 1) exp

�
�Aj(aj � 1� u)

�
when aj � 1 � u < aj , and similarly for

fB(v). These can be substituted into (9.42), and the expression evaluated.
There are two terms in the double integral. The second is

LA(second term) =

Z aj

aj�1

Z 1

aj

fA(u)fB(v)dvdu

= hA(j)SA(j � 1)SB(j)

=
hA(j)

1� hA(j)
SA(j)SB(j) (9.77)

LA(second term) is the likelihood contribution if one knew that no transitions
to B could have occurred within the interval. But we have to allow for this
possibility; hence the adjustment summarised in the �rst double integral term
in the expression for LA. Tedious manipulations show that

LA(�rst term) = S(j � 1)h(j)
�
�Aj

�j
� hA(j)

h(j)
exp[��Bj ]

�
: (9.78)

The �rst two terms in (9.78) represent the probability of survival to beginning
of the jth interval followed by exit to any destination within interval j. This
probability is then multiplied by a term (in the square brackets), which is the
di¤erence between two components. The �rst component is the ratio of the
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destination-speci�c instantaneous hazard to the overall instantaneous hazard.
The second component is the ratio of the destination-speci�c discrete hazard to
the overall discrete hazard, scaled by a factor (exp[��Bj ]) which is a destination-
speci�c conditional probability of survival (non-exit to B) over an interval of
unit length.Observe that if �Bj = 0, then the term in square brackets is equal
to zero, and LA takes the same form as we derived when transitions could only
occur at the boundaries of intervals.
Combining LA(�rst term) and LA(second term), further manipulations re-

veal that

LA = S(j � 1)h(j)
�

�Aj

�Aj + �Bj

�
= S(j)

�
h(j)

1� h(j)

��
�Aj

�Aj + �Bj

�
(9.79)

The contribution in this case is the probability of survival to the beginning of
interval j, multiplied by the probability that an event of any type occurred
within the interval conditional on survival to the beginning of the interval (i.e.
h(j)), multiplied by the relative chance that the event was A rather than B at
each instant during the interval.
The overall likelihood in this case is

L3 = S(j)

�
h(j)

1� h(j)

��A+�B �
�Aj

�Aj + �Bj

��A �
�Bj

�Aj + �Bj

��B

= S(j � 1) [1� h(j)]1��
A��B

[h(j)]
�A+�B

�
�Aj

�j

��A �
�Bj

�j

��B
(9.80)

which corresponds to equation 4 of Røed and Zhang (2002a, p. 14). The expres-
sion generalises straightforwardly when there are more than two potential des-
tinations. Whatever the number of destinations, observe that the expression for
the likelihood contribution is not separable into destination-speci�c components
that can be maximized separately. Observe also that as the destination-speci�c
hazards become in�nitesimally small, then we have the likelihood contributions
tend to expressions that are the same as those derived for the case when tran-
sitions could only occur at the interval boundaries. The size of the interval
hazards will depend on the application in question, and how wide the intervals
are.
There is also a connection between the expression L3 and the expression

(9.23) describing the likelihood in the �multinomial�case. Recall that this was:

L = S(j)

�
h (j)

1� h (j)

��A+�B �
hA (j)

h (j)

��A �
hB (j)

h (j)

��B
: (9.81)

If intervals are short, or interval-hazards are relatively small then, the more
likely it is that hA (j) � �Aj , hB (j) � �Bj , In this case, the �multinomial
model�will provide estimates that are similar to the interval-censoring model
assuming a constant hazard within intervals (and also assuming that each uses
the same speci�cation for duration dependence in the discrete hazard).
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9.3.4 Destination-speci�c proportional hazards with a com-
mon baseline hazard function

This assumption underlies the derivation of competing risks models presented
by, for example, Hamerle and Tutz (1989). Let us consider the case with two
potential destinations A and B. The authors assume that the destination-
speci�c continuous time hazards have the following proportional hazards forms:

�A(t) = �0(t)�A, where �A = exp(�A�X) (9.82)

�B(t) = �0(t)�B , where �B = exp(�B�X) (9.83)

where baseline hazard function �0(t) is common to each destination-speci�c
hazard. This is an example of a �proportional intensity�model. These models
have the property that, conditional on exit being made at a particular time, the
probability that it is to one speci�c state rather than any other one does not
depend on survival time (Lancaster, 1990, pp. 103�4).
To aid our subsequent derivations, also de�ne the integrated baseline hazard

function

H(t) =

Z t

0

�0(t)dt (9.84)

which means that the continuous time hazards can be re-written in terms of the
derivative of the integrated hazard function:

�A(t) = �AH�(t) (9.85)

�B(t) = �BH�(t): (9.86)

The survivor function can also be written in terms of the integrated hazard:

S(t) = exp

�
�
Z t

0

�(t)dt

�
= exp[�(�A + �B)H(t)]: (9.87)

The discrete time (interval) hazard rate for the jth interval is

h(j) = 1�
�

S(aj)

S(aj � 1)

�
(9.88)

= 1� exp[�(�A + �B)(H(aj)�H(aj � 1))] (9.89)

= 1� exp[�(e�Aj + e�Bj)] (9.90)

where

e�Aj = exp(j + �A�X) = exp(j)�A (9.91)e�Bj = exp(j + �B�X) = exp(j)�B (9.92)
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and the j � log[H(aj)]�H(aj�1)] are interval-speci�c parameters. Similarly,
we may de�ne destination-speci�c interval hazard rates

hA(j) = 1� exp(�e�Aj) (9.93)

hB(j) = 1� exp(�e�Bj) (9.94)

and survivor functions:

SA(t) = exp[��AI(t)] (9.95)

SB(t) = exp[��BI(t)] (9.96)

Using arguments similar to those developed earlier for the other cases, the
likelihood contribution for an individual with exit to destination A in interval j
is

LA =

Z aj

aj�1

Z aj

u

�A(u)SA(u)�B(u)SB(u)dvdu

+

Z aj

aj�1

Z 1

aj

fA(u)fB(v)dvdu: (9.97)

LA(second term) = hA(j)SA(j � 1)SB(j), but what is LA(�rst term)? We can
rewrite it in terms of �A, �B , and the integrated baseline hazard function:

LA(�rst term) =
Z aj

aj�1

Z aj

u

�AH�(u) exp[��AH(u)]�BH�(v) exp[��AH(u)]dvdu:

(9.98)
Using derivations similar to those for Case 3, one can show that this expression
can be written as:

LA = S(j � 1)h(j)
 e�Aje�Aj + e�Bj

!
= S(j � 1)h(j)

�
�Aj

�Aj + �Bj

�
: (9.99)

The overall likelihood contribution is given by

L4 = S(j)

�
h(j)

1� h(j)

��A+�B �
�Aj

�Aj + �Bj

��A �
�Bj

�Aj + �Bj

��B

= S(j � 1) [1� h(j)]1��
A��B

[h(j)]
�A+�B

�
�Aj
�j

��A �
�Bj
�j

��B
(9.100)

This corresponds to the expression derived by Hamerle and Tutz (1989,
pp. 85�7). Clearly the likelihood contribution has a very similar shape that
derived for the case where hazards were assumed to be constant within each
interval. (Indeed Model 3 can be derived from Model 4. Suppose that �0(t) in
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the Proportional Intensities model is time-invariant, in which case j = , for
all j. Now let the intercept terms in �A and �B be interval-speci�c, in which
case Model 3 is what results.)
In sum, the proportional intensity model adds some generality (weaker as-

sumptions about the shape of the baseline hazard within intervals) at the cost
of forcing a common baseline hazard function for the di¤erent latent risks. Ana-
lysts would typically like to allow the shapes of the baseline hazards to di¤er for
the various destination types, and to test for equality rather than imposing it
from the very start. The PCE model allows each of the baseline hazards to vary
in a �exible manner with survival time, and may provide information about
whether it is appropriate to make the proportionate intensities assumption.

9.3.5 The log of the integrated hazard changes at a con-
stant rate over the interval

This assumption about the linearity of the within-interval log of the baseline
hazards was made by Han and Hausman (1990) and Sueyoshi (1992). We shall
not consider it as it has been used relatively rarely and is, in any case, rather
complicated to explain. As Sueyoshi (1992, Appendix B) explains, the assump-
tion implies that the hazard increases within each interval. The assumption of
a constant density within each interval (case 2 above) also implies that hazards
rise within each interval, and contrasts with the assumption of a constant hazard
made in the last subsection.

9.4 Extensions

9.4.1 Left-truncated data

The derivations so far has assumed that analyst has access to a random sample
of spells. The models can all be easily adapted to the case in which the interval-
censored survival time data are subject to left truncation, also known as �delayed
entry�. Suppose that the data for a given subject are truncated at a date within
the ith interval, where i < j: As we have seen in earlier chapters, to derive the
correct likelihood contributions in this case, one needs to condition on survival
up to the truncation date. This means dividing the likelihood contribution
expression for the random sample of spells case (as considered earlier) by S(i).
Now, each of the likelihood expressions for interval-censored data considered
earlier (L1;L2;L3;L4) is of the form L = S(j)Z, and so the likelihood expression
for the left truncation case is simply L = S(j)Z=S(i). But, given the relationship
between the survivor function and the interval hazard, there is a convenient
cancelling result: S(j)=S(i) =

Qj
k=i(1� hk): This has a convenient implication

for empirical researchers. Software programs for maximizing logL are typically
applied to data sets organised so that there is one row for each interval that
each subject is at risk of experiencing a transition. In the random sample of
spells case, a subject with j contributes j data rows and the log-likelihood
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contribution is log[S(j)Z] =
Pj
k=1 log(1 � hk) + log(Z): With left-truncated

data, a subject contributes j� i data rows and the log-likelihood contribution is
log[S(j)Z=S(i)] =

Pj
k=i+1 log(1� hk) + log(Z): Thus, ICR models for interval-

censored and left-truncated survival data can be easily-estimated using the same
programs as for random samples of spells, applied to data sets in which data
rows corresponding to the intervals prior to the truncation point have been
excluded: see Chapter 6.

9.4.2 Correlated risks

The models may also be extended to allow for correlated rather than indepen-
dent risks.2 Suppose that each destination-speci�c hazard rate now depends on
individual-speci�c unobserved heterogeneity in addition to, but independent of,
observed heterogeneity (X). Speci�cally, the hazard for transtions to destina-
tion A is rewritten to be a function of �A�X+�A (rather than of �A�X as before),
and X no longer includes an intercept term. Similarly, the hazard of transition
to destination A is rewritten to be a function of �B�X + �B . The latent dura-
tions TA; TB are now assumed to be independent conditional on the unobserved
heterogeneity components. But, by allowing �A and �B to be correlated, the
unconditional latent durations may be correlated.
Perhaps the most straightforward means of estimating the extended model

is to suppose that �A and �B have a discrete distribution with M points of
support, and these mass points are estimated together with the probabilities
�m for m = 1; : : :M , of the di¤erent combinations of �A and �B . That is,
letting the likelihood contribution for each combination of mass points be given
by Lm(# j�A; �B), where regression parameters be represented by the vector #,
the overall likelihood contribution for each person is now

L� =
MX
m=1

�mLm(# j�A; �B) with
MX
m=1

�m = 1: (9.101)

This is similar to the discussion of discrete mixing distributions to characterize
unobserved heterogeneity (see the previous chapter). The di¤erence is that
here the distribution is multivariate � the points of support refer to a joint
distribution rather than a marginal distribution. Rather than using a discrete
mixture distribution, one could assume a continuous distribution, e.g. supposing
that the heterogeneity distribution is multivariate normal (cf. Schneider and
Uhlendor¤, 2004).

2See e.g. Dolton and van der Klaauw (1999), Røed and Zhang (2002a), Han and Hausman
(1990), Sueyoshi (1992), and Van den Berg and Lindeboom (1998). Conditions for identi�ca-
tion of proportional hazards models with regressors for dependent competing risks are given
by Abbring and van den Berg (2003), Han and Hausman (1990), and Heckman and Honoré
(1989).
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9.5 Conclusions and additional issues

Our analysis of competing risks models has shown that, if we assume indepen-
dence in competing risks, then estimation can be straightforward for several
important types of data generation process. Extensions to allow for correlated
risks have been introduced in the literature, but have not been used much in
applied work yet.
If we have continuous time data, the independent competing risks model can

be estimated using standard single-risk models, as discussed elsewhere in this
book. Some complications arise with discrete-time data. If the data are gen-
uinely discrete, one cannot use a single-risk model approach, but the �multinom-
inal logit�model is easy to estimate nonetheless.
With interval-censored data, if one is prepared to assume that transitions

can only occur at the interval boundaries, then the modelling can be undertaken
straightforwardly, in a manner analogous to that for continuous time data. But
in other situations, one cannot avoid modelling the destination-speci�c models
jointly, with di¤erent speci�cations arising depending on the assumptions made
about the shape of the hazard (or density) function within each interval. Since
alternative assumptions are possible (and each is intrinsically non-testable), this
raises the question of whether the estimates derived are sensitive to the choice
made. There can be no de�nitive answer to this question �it depends on the
context. Nonetheless the situations in which transitions occur only at the inter-
val boundaries are perhaps relatively rare. Regarding the other alternatives, we
may note that Han and Hausman (1990) and Dolton and van der Klaauw (1995)
suggested that their estimates were relatively robust to alternative choices. By
constrast, Sueyoshi (1992) emphasised that robustness can depend on the width
of the intervals, particularly when the models include time-varying covariates.
Finally, a cautionary note about the interpretation of coe¢ cient estimates

from destination-speci�c hazard regressions. In the standard single-risk and
given the parameterizations used earlier, if the coe¢ cient estimate associated
with a particular explanatory variable X is positive, then there is a straight-
forward interpretation. For example, with a proportional hazards model, larger
values of X imply a larger hazard rate, and shorter survival times. In compet-
ing risks, interpretations of coe¢ cients are not always so straightforward. For
example, one may be interested in more than simply how a covariate impacts on
the destination-speci�c latent hazard. One may be also interested in estimating
the (unconditional) probability of exiting to a particular destination A (say), or
the (conditional) probability of exit to A conditional on exiting at a particular
survival time, or expected spell length in the state conditional on exit to A:
It turns out that all these quantities depend on all the parameters in the

competing risk model, not only those in the destination-speci�c model of exit
to A, as Thomas (1996) explains. He also shows that if each hazard takes the
proportional hazard form, then an increase in X will increase the conditional
probability of exit to A if its estimated coe¢ cient in the equation for the hazard
of exit via A is larger than the corresponding coe¢ cients in the hazards for
all other risks. The same issues arise in the intrinsically discrete �multinomial
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logit� competing risks model. For multinomial logit models, it is well-known
that increases in a variable with a positive coe¢ cient in the equation for one
outcome need not lead to an increase in the probability of that outcome, as
the probability of another outcome may increase by even more. Simulating the
predicted values of interest for di¤erent values of the explanatory variables is
one way of addressing the issues raised in this paragraph.

The estimation of unconditional probabilities of exit to a particular desti-
nation is known in the biostatistics literature as the estimation of cumulative
incidence. See e.g. Gooley et al. (1999). A Stata program stcompet is pro-
vided by Coviello and Boggess (2004).
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Chapter 10

Additional topics

Nothing on this at present �something for the future.
Potential topics might include:

� Estimation using repeated spells and multi-state transition models, and
correlated competing risks (both are essentially an extension to the chapter
on unobserved heterogeneity). For a helpful introduction to the topic, see
Allison (1984). For an extensive, but more advanced, discussion based
extensively on the application of mixture models, see Van den Berg (2001).

� Simulation of survival time data

113
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Appendix

Nothing here at present. Future versions may contain appendices about e.g.
Maximum Likelihood, and more about Partial Likelihood, or more about the
details of statistical testing in general (Wald and likelihood ratio), and residual
analysis.
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