A discrete-time split population survival ('cure') model for Stata 6 or Stata 7: spsurv

Stephen P. Jenkins Institute for Social and Economic Research University of Essex Email: stephenj@essex.ac.uk

UK Stata User Group Meeting

Outline

- The model
- **spsurv** syntax
- Illustration using the cancer data (cancer.dta)
- Reflections
 - heterogeneity in the cure probability?
 - maximisation issues ('backing up')
 - robust option is infeasible

Thanks to StataCorp Technical Support for their help!

Overview

- **spsurv** estimates what economists refer to as split population survival models (Schmidt and Witte, 1989) and biostatisticians refer to as cure models, for the case where
- survival time metric is intrinsically discrete or survival times are grouped into intervals.
- Cf. the continuous time lognormal cure model Incure by Mario Cleves (st compatible, most streg features and options, but particular parametric hazard shape)
- ml, method d0 (can't use lf)

The model

- Standard survival models assume that prob(eventual failure) > 0 for all individuals; split population models suppose that a proportion, *c*, never fail ('cured').
- Likelihood contribution for person *i* with survival time *t*:

 $lnL_{i} = d_{i}.ln[(1-c).(h_{it}).(S_{it-1})] + (1-d_{i})ln[c + (1-c).S_{it}]$ where d_{i} is a binary censoring indicator (=1 if failure, 0 if right-censored), S_{it} is the discrete-time survivor function, and the (cloglog) discrete-time hazard rate $h_{it} = 1 - exp[-exp(I_{it})];$ $I_{it} = f(t) + b' X_{it}$ spsurv depvar varlist [if <exp>] [in
<range>] , id(idvar) seq(seqvar)
[nocons] [cpr0(#) eform level(#)
mlopts]

- Data organised in person-month form (**expand**)
- depvar event indicator in each period at risk of event (derive from censoring indicator)
- varlist covariates, including duration dependence
- idvar person identifier
- sequar spell interval identifier for each i(1,...,t)
- cpr0(#)value of logit(c) used as starting value (default = -4, i.e. a cure probability of about 0.018)

Illustration (i): set up the data

. use cancer

(Patient Survival in Drug Trial)

- . ge id = _n /* create unique person identifier */
- . expand studytim /* 1 obs/month at risk of death */
 (696 observations created)
- . sort id
- . quietly by id: ge t = _n /*spell month id, by i */
- . quietly by id: ge dead = died & _n==_N /* depvar */
- . * drug = 1 (placebo); drug =2,3 (receives drug)
- . recode drug 1=0 2/3=1

(744 changes made)

- . lab var drug "1=receives,0=placebo"
- . ge logt = ln(t) /* duration dependence */

Illustration (ii): cloglog model, used to derive starting values

. cloglog dead drug age logt

Iteration 0:	log like	elihood = -1	11.3772			
Iteration 1:	log like	elihood = -	111.264			
Iteration 2:	log likelihood = -111.26371					
Iteration 3:	log likelihood = -111.26371					
Complementary log-log regression				Number of obs =		744
Zero					utcomes =	713
Nonzero outcomes						31
				LR chi2(3) =		35.20
Log likelihood = -111.26371				Prob > chi2 =		0.0000
					[95% Conf	. Interval]
-		4110076				1 202252
•					-2.994787	
1		.0371648			.0465064	
•					.1592017	
_cons -9	9.928747	2.272995	-4.368	0.000	-14.38374	-5.473759

15 May 2001

UK Stata User Group Meeting

Illustration (iii): spsurv

. spsurv dead drug age logt, id(id) seq(t)

Iteration 0: log likelihood = -111.60074 Iteration 1: log likelihood = -111.26779 <snip> Iteration 5: log likelihood = -111.26372 Iteration 6: log likelihood = -111.26371 Number of obs = 744 Split population survival model LR chi2(4) = 35.20Log likelihood = -111.26371Prob > chi2 = 0.0000 dead | Coef. Std. Err. z P>|z| [95% Conf. Interval] hazard | drug | -2.189079 .4110974 -5.325 0.000 -2.994815 -1.383343 age | .1193277 .037166 3.211 0.001 .0464837 .1921717 logt | .6401813 .2454488 2.608 0.009 .1591105 1.121252 _cons | -9.927432 2.273042 -4.367 0.000 -14.38251 -5.47235 cure_p _cons | -16.43746 325.1069 -0.051 0.960 -653.6352 620.7603 Pr(never fail) = 7.266e-08; Std.Err. = .00002362; z = .00307591; P>|z| = 0.998

15 May 2001

UK Stata User Group Meeting

Other issues

• Heterogeneity in the cure probability, c?

– OK to program, but hard to derive signif. estimates

- 'Backing up' in maximization with some test data sets ('true' maximum overshot)
- S_E globals get zapped by **ml** in version 6 but not version 5 or 7!
- Robust option -- requires d1 -- 'infeasible' (true for other programs with data in groups): likelihood not of the linear form such that can take derivative w.r.t. to Xbeta (1 score vector per equation). Harder than Gould/Sribney ML book examples might suggest!

15 May 2001