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Hazard rate models are widely used to model duration data in a wide range 
of disciplines, from bio-statistics to economics.  The aim of this insert 
is to supplement the portfolio of duration data analysis tools which Stata 
provides. 
 
pgmhaz estimates, by maximum likelihood, two discrete time (grouped 
duration data) proportional hazards regression models, one of which 
incorporates a gamma mixture distribution to summarize unobserved 
individual heterogeneity (or ‘frailty’).  Covariates may include regressor 
variables summarizing observed differences between persons (either fixed or 
time-varying), and variables summarizing the duration dependence of the 
hazard rate.  With suitable definition of covariates, models with a fully 
non-parametric specification for duration dependence may be estimated; so 
too may parametric specifications.  pgmhaz thus provides a useful 
complement to cox and st stcox, weibull and st stweib. 
 
The two models estimated are: (1) the Prentice-Gloeckler (1978) model; and 
(2) the Prentice-Gloeckler (1978) model incorporating a gamma mixture 
distribution to summarize unobserved individual heterogeneity, as proposed 
by Meyer (1990).  These are referred to as Model 1 and Model 2 respectively 
below.  The versions of the Prentice-Gloeckler-Meyer hazard models 
estimated are as described by Stewart (1996), and my exposition of the 
models draws heavily on his paper. 
 
The models 
 
Suppose there are individuals i = 1,...,N, who each enter a state (e.g. 
unemployment) at time t = 0.  The (instantaneous) hazard rate function for 
person i at time t > 0 is assumed to take the proportional hazards form 
 
(1) λit = λ0(t).exp(Xit′β) 
 
where λ0(t) is the baseline hazard function which may take a parametric or 
non-parametric form (see below); exp(.) is the exponential function; Xit is 
a vector of covariates summarizing observed differences between individuals 
at t; and β is a vector of parameters to be estimated.  The associated 
continuous time survivor function is  
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The underlying continuous durations are only observed in disjoint time 
intervals [0=a0,a1),[a1,a2),[a2,a3),...,[ak-1,ak=∞).  (Alternatively durations 
are intrinsically discrete.)  Covariates may vary between time intervals 
but are assumed to be constant within each of them.   
 
The probability of exit in the j-th interval for person i is 
 
(3) prob{T ∈ [aj-1,aj)} = S(aj-1;Xit) - S(aj;Xit) 
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and the survivor function at the start of the jth interval is 
 
(4) prob{T ≥ aj-1} = S(aj-1;Xit). 

 
The hazard of exit in the jth interval is thus given by 
 
(5) hj(Xit) ≡ prob{T ∈ [aj-1,aj)⎜T ≥ aj-1} = 1 - [S(aj;Xit)/S(aj-1;Xit)]. 
 
Given the proportional hazards assumption, the survivor function has the 
same form as (2).  This can be conveniently re-written in the discrete case 
as: 
 
(6) S(aj;Xit) = exp[-exp(Xit′β + δj)] where δj = log(Hit) for j = 1,...,k.  
 
To simplify, all intervals are now assumed to be of unit length (e.g. a 
week, or a month), so the recorded duration for each person i corresponds 
to the interval [ti-1,ti).  Persons are also recorded as either having left 
the state during the interval, or as still remaining in the state.  The 
former group, contributing completed spell data, are identified using with 
censoring indicator ci = 1.  For the latter group, contributing right-
censored spell data, ci = 0.  Observe that the number of intervals 
comprising a censored spell is defined here to include the last interval 
within which the person is observed. 
 
With these assumptions, the log-likelihood can be written 
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with S(.) as in (6).  This expression can be rewritten in terms of the 
hazard function as: 
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where the discrete time hazard in the jth interval is 
 

(9) hj(Xij) = 1 - exp[-exp(Xij′β + γj)] with . γ λj j

j
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This specification allows for a fully non-parametric baseline hazard with a 
separate parameter for each duration interval (depending on the duration 
data sample—see below), in which case the γj can be interpreted as the 
logarithm of the integral of the baseline hazard over the relevant 
interval.  Alternatively, the γj may be described by some semi-parametric 
or parametric function, call it θ(j).   
 
If one defines an indicator variable yit = 1 if person i exits the state 
during the interval [t-1,t], yit = 0 otherwise, then the log-likelihood in 
(8) can be re-written in sequential binary response form: 
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This is the version of the Model 1 log-likelihood which is estimated by 
pgmhaz. 
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Model 2 incorporates a Gamma distributed random variable to describe 
unobserved (or omitted) heterogeneity between individuals.  (For a 
discussion of and comparison with other mixed proportional hazards models, 
see Stewart, 1996.) 
 
The instantaneous hazard rate is now specified as (cf. (1)): 
 
(11) λit = λ0(t).εi.exp(Xit′β) = λ0(t).exp[Xit′β + log(εi)] 
 
where εi is a Gamma distributed random variate with unit mean and variance 
σ2 ≡ v, and the discrete-time hazard function corresponding to (11) is now 
 
(12)  hj(Xij) = 1 - exp{-exp[Xij′β + γj + log(εi)]}. 
 
Conveniently, the survivor function for the augmented model has a closed 
form expression (see Meyer 1990 for details), and thence so too does the 
log-likelihood function. 
 
The Model 2 log-likelihood function is: 
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where θ(j) is a function describing duration dependence in the hazard rate, 
including the non-parametric baseline hazard specification.  The functional 
form for θ(j) is chosen by the user and specified by defining appropriate 
covariates—see below.  Model 1’s log-likelihood function is the limiting 
case as v → 0. 
 
For suitably organised data, the log-likelihood function for Model 1 is the 
same as the log-likelihood for a generalized linear model of the binomial 
family with complementary log-log link: see Allison (1982) or Jenkins 
(1995).  Model 1 is estimated by ML using Stata’s glm command.  Model 2 is 
estimated using Stata’s ml deriv0 command, with starting values for β taken 
from Model 1’s estimates.  Given the potential fragility of models 
incorporating unobserved heterogeneity, estimates for both models are 
always reported. 

Syntax 

The syntax of pgmhaz is 
 
pgmhaz covariates [if exp] [in range], id(idvar) dead(deadvar) seq(seqvar) 
 [lnvar0(#) eform level(#) nolog trace nocons] 
 
Options 

 3



 
lnvar0(#) specifies the value for ln(v) which is used as the starting value 

in the maximization. The default is -1 (i.e. v ≈ 0.37). 
eform reports coefficients transformed to relative risk format, i.e. exp(β) 

rather than β. Standard errors and confidence intervals are similarly 
transformed.  eform may be specified at estimation or when 
redisplaying results. 

level(#) specifies the significance level, in percent, for confidence 
intervals of the parameters. 

nolog suppresses the iteration logs. 
trace reports the current value of the estimated parameters of Model 2 at 

each iteration. See [R] maximize. 
nocons specifies no intercept term in the index function Xij′β. 
 
Saved results include the global macros set by ml post 
plus  S_1 Model 2 log-likelihood value at maximum, and 
 S_2 Model 1 log-likelihood value at maximum. 
Access to estimated coefficients and standard errors is available in the 
ual way: see [U] 20.5 Accessing coefficients and [R] matrix get. us

 
Data organization and mandatory variables 
 
The data set must be organised before estimation so that, for each person, 
there are as many data rows as there are time intervals at risk of the 
event occuring for each person.  Given the definitions above, this means ti 
rows for each person i = 1,...,N.  In effect an unbalanced panel data set-
up is required.  This data organisation is closely related to that required 
for estimation of Cox regression models with time-varying covariates.  
expand is useful for putting the data in this form: see [R] expand, and the 
example below.  Also see the ‘data step’ discussion in Jenkins (1995). 
 
Three variables must be defined by the user: 
 
id(idvar) specifies the variable uniquely identifying each person, i. 
seq(seqvar) is the variable uniquely identifying each time period at risk 

for each person. For each i, seqvar is the integer sequence 1,2,..., 
ti.  

dead(deadvar) summarizes censoring status during each time interval at 
risk, and corresponds to the indicator variable yit described 
earlier.  If ci = 0, deadvar = 0 for all j = 1,2,...,ti; if ci = 1, 
deadvar = 0 for all j = 1,2,...,ti-1, and deadvar = 1 for j = ti. 

Examples of how to construct these variables are given below. 
 
Example 
 
This illustration uses the Cancer data set (cancer.dta), supplied with 
Stata, and described in the Stata version 5.0 Reference Manual P-Z, p. 257. 
The data provides information about survival times for 48 participants in a 
cancer drug trial.  Of the 48 people, 28 receive the experimental drug 
treatment (drug = 1) and 20 receive the control treatment (drug = 0).  The 
participants range in age from 47 to 67  years.  We wish to analyse time 
until death, measured in months.  The variable studytim records either the 
month of their death or the last month that they were known to be alive 
(the maximum value in the data is 39).  The persons known to have died have 
variable died = 1 (contributing completed duration data); those still alive 
have died = 0 (contributing censored duration data).   
 
First we use the data and recode drug so that it matches the Manual 
example:  
 
. use cancer 
(Patient Survival in Drug Trial) 
. replace drug = 0 if drug == 1 
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(20 real changes made) 
. replace drug = 1 if drug > 1 
(28 real changes made) 
 
To run pgmhaz we must re-organise the data set and create the mandatory 
variables.  To understand what is going on, look at how the data for the 
first four people is currently organised, and compare this with their data 
in the re-organized data set later on. 
 
. ge id = _n  /* create unique person identifier */ 
. list id studytim died drug age in 1/4 
            id  studytim      died      drug       age   
  1.         1         1         1         0        61   
  2.         2         1         1         0        65   
  3.         3         2         1         0        59   
  4.         4         3         1         0        52 
 
Now expand the data set so that there’s one data row per person per month 
at risk of dying, and create seqvar and dead: 
 
. expand studytim 
(696 observations created) 
. sort id 
. quietly by id: ge seqvar = _n 
. quietly by id: ge dead = died & _n==_N 
 
Compare this data format with the earlier one, taking the same four 
persons: 
 
. list id studytim seqvar died dead age if id <= 4 
            id  studytim     seqvar      died       dead       age   
  1.         1         1          1         1          1        61   
  2.         2         1          1         1          1        65   
  3.         3         2          1         1          0        59   
  4.         3         2          2         1          1        59   
  5.         4         3          1         1          0        52   
  6.         4         3          2         1          0        52   
  7.         4         3          3         1          1        52 
 
At this stage, with the data re-organised into person-month form, it would 
be straightforward to generate time-varying covariates.  None are available 
in cancer.dta however.  The illustrative estimations use the fixed 
covariates drug and age, capturing observed heterogeneity, and use the 
gamma mixing distribution to capture unobserved heterogeneity. 
 
The first models estimated using pgmhaz assume duration dependence in the 
hazard rate is summarised by a parametric ‘Weibull’ specification.  This is 
achieved by including a covariate defined as the logarithm of seqvar.  (If 
the estimated coefficient on this regressor is greater than zero, the 
hazard increases monotonically; if less than zero, it decreases 
monotonically.)  The Model 1 estimates are precisely those which would be 
produced by the command 
 
. gen logd = ln(seqvar) 
. glm deadvar logd drug age, f(b) l(c) 
 
except that in pgmhaz I have added output giving log-likelihood values.  
[Incidentally, the logistic hazard counterpart to this proportional hazards 
model could have been estimated with logit applied to the same re-organised 
data set (Allison 1982, Jenkins 1995).]  
 
. pgmhaz logd drug age, id(id) s(seqvar) d(dead) 
  
(1) PGM hazard model without unobserved heterogeneity 
 
Iteration 1 : deviance =  298.3504 
Iteration 2 : deviance =  237.2426 
Iteration 3 : deviance =  224.1963 
Iteration 4 : deviance =  222.5673 
Iteration 5 : deviance =  222.5275 
Iteration 6 : deviance =  222.5274 
Iteration 7 : deviance =  222.5274 
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Residual df  =       740                                No. of obs =       744 
Pearson X2   =  650.3937                                Deviance   =  222.5274 
Dispersion   =  .8789105                                Dispersion =  .3007127 
 
Bernoulli distribution, cloglog link 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    logd |   .6402733   .2448109      2.615   0.009       .1604526    1.120094 
    drug |   -2.18907   .4125618     -5.306   0.000      -2.997676   -1.380463 
     age |    .119348   .0369335      3.231   0.001       .0469596    .1917364 
   _cons |  -9.928747   2.262543     -4.388   0.000      -14.36325   -5.494243 
------------------------------------------------------------------------------ 
Log likelihood (-0.5*Deviance) = -111.26371 
   Cf. log likelihood for intercept-only model (Model 0) = -128.86467 
   Chi-squared statistic for Model (1) vs. Model (0) = 35.201924 
   Prob. > chi2(3) = 1.104e-07 
  
(2) PGM hazard model with gamma distributed unobserved heterogeneity 
  
Iteration 0:  Log Likelihood = -112.22135 
Iteration 1:  Log Likelihood = -111.09624 
Iteration 2:  Log Likelihood = -111.08967 
Iteration 3:  Log Likelihood = -111.08965 
Iteration 4:  Log Likelihood = -111.08965 
 
PGM hazard model with gamma heterogeneity           Number of obs    =     744 
                                                    Model chi2(3)    =       . 
                                                    Prob > chi2      =       . 
Log Likelihood =   -111.0896470 
 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
hazard   | 
    logd |   .8664734   .4787207      1.810   0.070       -.071802    1.804749 
    drug |  -2.578879   .8275313     -3.116   0.002      -4.200811   -.9569476 
     age |    .141193   .0569466      2.479   0.013       .0295798    .2528062 
   _cons |  -11.29142   3.510489     -3.216   0.001      -18.17185   -4.410984 
---------+-------------------------------------------------------------------- 
ln_varg  | 
   _cons |  -1.247006   1.845572     -0.676   0.499      -4.864262    2.370249 
------------------------------------------------------------------------------ 
Gamma variance, exp(ln_varg) = .28736375; Std. Err. = .53035058; z = .54183734 
  
Likelihood ratio statistic for testing models (1) vs (2) = .34812954 
Prob. test statistic > chi2(1) = .55517386 
 
Comparing pgmhaz Model 1 and Model 2 estimates, we see that the duration 
dependence parameter is larger in the latter.  Moreover the coefficients in 
Model 2 on drug and age are slightly larger in absolute value.  These 
differences are not unexpected: not accounting for unobserved heterogeneity 
induces an under-estimate of the extent to which the hazard rate increases 
with duration (or an over-estimate of the decline), and attentuates the 
magnitude of the impact of covariates on the hazard rate (see Lancaster 
1990, chapter 4).   
 
The size of the variance of the gamma mixture distribution relative to its 
standard error suggests, however, that unobserved heterogeneity is not 
significant in this data set.  A likelihood ratio test of Model 2 versus 
Model 1 also suggests the same conclusion.  Users should be aware though 
that standard likelihood ratio tests cannot, strictly speaking, be used to 
choose between Models 1 and 2, because the former is not a nested version 
of the latter. 
 
The discrete time ‘Weibull’ estimates can be compared with estimates of a 
continuous time Weibull model derived using stweib: 
 
. stset seqvar dead, id(id) 
 
note:  making entry-time variable t0 
       (within id, t0 will be 0 for the 1st observation and the 
       lagged value of exit time seqvar thereafter) 
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   data set name:  cancer.dta 
              id:  id 
      entry time:  t0 
       exit time:  seqvar 
  failure/censor:  dead 
 
. stweib drug age, nohr 
 
<output omitted> 
 
Weibull regression -- entry time t0 
log relative hazard form 
 
No. of subjects =           48                    Log likelihood =  -42.931336 
No. of failures =           31                    chi2(2)        =       35.39 
Time at risk    =          744                    Prob > chi2    =      0.0000 
 
------------------------------------------------------------------------------ 
  seqvar |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |  -2.197157    .408785     -5.375   0.000      -2.998361   -1.395953 
     age |   .1202128   .0371591      3.235   0.001       .0473823    .1930433 
   _cons |  -10.58395   2.326241     -4.550   0.000       -15.1433   -6.024599 
------------------------------------------------------------------------------ 
    ln p |   .5203303   .1389099      3.746   0.000       .2480718    .7925887 
       p |   1.682583                                     1.281552    2.209108 
     1/p |   .5943242                                     .4526714    .7803039 
------------------------------------------------------------------------------ 
 
As it happens the coefficient estimates are very similar to corresponding 
estimates in the discrete time ‘Weibull’ model without unobserved 
heterogeneity.  The duration dependence parameters are similar too: compare 
1-p = 0.683 with the coefficient on logd, 0.640. 
 
We should be wary about drawing conclusions about duration dependence from 
parametric models like the ‘Weibull’ which tightly constrain the general 
shape of the baseline hazard function shape, when in fact it may be non-
monotonic.  Moreover it is well-known that conclusions about the 
significance of unobserved heterogeneity are more reliably drawn if a 
flexible specification for the baseline hazard has been used (for a recent 
discussion, see Dolton and van der Klaauw, 1995).   
 
Let us therefore compare some models which allow for more flexibility in 
the shape of the baseline hazard function.  One obvious reference point is 
the (continuous time) Cox model, estimates for which are are reported in 
Reference Manual P-Z, p. 257.  These are reproduced with the commands: 
 
. stcox drug age, nohr baseh(coxbaseh) 
 
<output omitted> 
 
Cox regression -- entry time t0 
 
No. of subjects =           48                    Log likelihood =  -83.323546 
No. of failures =           31                    chi2(2)        =       33.18 
Time at risk    =          744                    Prob > chi2    =      0.0000 
 
------------------------------------------------------------------------------ 
  seqvar | 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |  -2.254965   .4548338     -4.958   0.000      -3.146423   -1.363507 
     age |   .1136186   .0372848      3.047   0.002       .0405416    .1866955 
------------------------------------------------------------------------------ 
 
The Cox baseline hazard function is graphed on p. 279 of Stata 4.0 
Reference Manual Volume Two, and the figure suggests that the hazard 
increases non-monotonically with duration.  (The picture can be reproduced 
with the command gr coxbaseh studytim, xlab ylab.)  The estimates of the baseline 
hazard estimate are as follows, and there is clear evidence of non-
monotonicity: 
. 
. sort seqvar 
. list seqvar coxbaseh if coxbaseh~=. 
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        seqvar    coxbaseh   
 16.         1   .00013425   
 46.         1   .00013425   
 70.         2   .00007571   
112.         3   .00007924   
149.         4   .00018067   
151.         4   .00018067   
196.         5    .0002276   
201.         5    .0002276   
253.         6   .00026013   
255.         6   .00026013   
301.         7   .00013608   
306.         8   .00044866   
307.         8   .00044866   
335.         8   .00044866   
380.        10    .0001891   
404.        11   .00041499   
429.        11   .00041499   
433.        12   .00056331   
435.        12   .00056331   
476.        13   .00035089   
526.        15   .00038132   
532.        16   .00043044   
559.        17   .00047959   
639.        22   .00149966   
641.        22   .00149966   
652.        23   .00249846   
662.        23   .00249846   
672.        24   .00168347   
680.        25   .00189012   
705.        28   .00228993   
734.        33   .00437874 
 
Let us now compare the Cox model estimates with various discrete time 
proportional hazard model specifications.  One example of a flexible 
parametric specification for the baseline hazard function is a polynomial 
in duration.  One could 
 
. gen seqvar_2 = seqvar^2 
. gen seqvar_3 = seqvar^3 
 
and include seqvar, seqvar_2, and seqvar_3, as covariates instead of logd 
 order to specify a cubic baseline hazard function. in

 
pgmhaz also allows the estimation of fully non-parametric specifications 
for the baseline hazard (analogously to the Cox model).  The interval-
specific baseline hazard can only be identified for those duration 
intervals during which events (‘deaths’) occur, i.e. values of seqvar for 
which there are observations (person-months) with dead = 1.  If there are 
duration intervals for which this is not true, then either one must refine 
the grouping on the duration dimension—the piece-wise constant model is an 
example of this—or one must drop the relevant person months from the 
estimation. (Cf. the discussion of identification of the logit model in 
Reference Manual K-M, p. 371-375.) 
 
To estimate the non-parametric baseline model, first one has to create 
binary dummy variables corresponding to each duration interval.  It is the 
user’s responsibility to do this and also to check identifiability.  This 
is straightforward.  We can create duration-specific dummy variables, one 
for each spell month at risk (the maximum number is 39 here), with the 
following command: 
 
. quietly for 1-39, ltype(numeric): ge byte d@ = seqvar== @ 
 
Next we check identifiability of the baseline hazard at each duration 
interval with: 
 
. tab seqvar dead 
           | dead 
    seqvar |         0          1 |     Total 
-----------+----------------------+---------- 
         1 |        46          2 |        48  
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         2 |        45          1 |        46  
         3 |        44          1 |        45  
         4 |        42          2 |        44  
         5 |        40          2 |        42  
         6 |        38          2 |        40  
         7 |        36          1 |        37  
         8 |        33          3 |        36  
         9 |        32          0 |        32  
        10 |        30          1 |        31  
        11 |        27          2 |        29  
        12 |        24          2 |        26  
        13 |        23          1 |        24  
        14 |        23          0 |        23  
        15 |        22          1 |        23  
        16 |        20          1 |        21  
        17 |        19          1 |        20  
        18 |        18          0 |        18  
        19 |        18          0 |        18  
        20 |        16          0 |        16  
        21 |        15          0 |        15  
        22 |        13          2 |        15  
        23 |        11          2 |        13  
        24 |        10          1 |        11  
        25 |         9          1 |        10  
        26 |         8          0 |         8  
        27 |         8          0 |         8  
        28 |         7          1 |         8  
        29 |         6          0 |         6  
        30 |         6          0 |         6  
        31 |         6          0 |         6  
        32 |         6          0 |         6  
        33 |         3          1 |         4  
        34 |         3          0 |         3  
        35 |         2          0 |         2  
        36 |         1          0 |         1  
        37 |         1          0 |         1  
        38 |         1          0 |         1  
        39 |         1          0 |         1  
-----------+----------------------+---------- 
     Total |       713         31 |       744 
 
There are no deaths during months 9, 14, 18-21, 26, 27, 29-32, 34-39, and 
so a month-specific hazard rate cannot be estimated for these intervals. 
 
The non-parametric baseline model is estimated by including all the 
relevant duration dummies, excluding observations to ensure identifiability 
(if necessary), and excluding the intercept using the nocons option.  (An 
alternative estimation strategy would be to include the intercept term and 
exclude one of the interval-specific duration dummy variables.) 
 
. pgmhaz d1-d8 d10-d13 d15-d17 d22-d25 d28 d33 drug age  /* 
>         */ if (seqvar>=1 & seqvar<=8) | (seqvar>=10 & seqvar<=13) /* 
>         */ | (seqvar>=15 & seqvar<=17) | (seqvar>=22 & seqvar<=25) /* 
>         */ | seqvar==28 | seqvar==33 , /* 
>         */ i(id) s(seqvar) d(dead) nocons 
  
(1) PGM hazard model without unobserved heterogeneity 
 
Iteration 1 : deviance =  255.2345 
Iteration 2 : deviance =  206.7409 
Iteration 3 : deviance =  195.2580 
Iteration 4 : deviance =  193.6490 
Iteration 5 : deviance =  193.5947 
Iteration 6 : deviance =  193.5944 
Iteration 7 : deviance =  193.5943 
Iteration 8 : deviance =  193.5943 
 
Residual df  =       550                                No. of obs =       573 
Pearson X2   =  590.1132                                Deviance   =  193.5943 
Dispersion   =  1.072933                                Dispersion =  .3519897 
 
Bernoulli distribution, cloglog link 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      d1 |  -9.321505   2.325432     -4.009   0.000      -13.87927   -4.763742 
      d2 |  -9.888197   2.408603     -4.105   0.000      -14.60897   -5.167421 
      d3 |  -9.841984   2.411291     -4.082   0.000      -14.56803   -5.115941 
      d4 |  -9.008131   2.296365     -3.923   0.000      -13.50892   -4.507338 
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      d5 |  -8.758806   2.240112     -3.910   0.000      -13.14934   -4.368267 
      d6 |  -8.617634   2.211921     -3.896   0.000      -12.95292    -4.28235 
      d7 |  -9.269882    2.31374     -4.006   0.000      -13.80473   -4.735034 
      d8 |  -8.075462   2.152716     -3.751   0.000      -12.29471   -3.856216 
     d10 |  -8.931846   2.322521     -3.846   0.000       -13.4839   -4.379788 
     d11 |  -8.144971   2.201254     -3.700   0.000      -12.45935   -3.830592 
     d12 |  -7.819553   2.202429     -3.550   0.000      -12.13624   -3.502872 
     d13 |   -8.27514   2.282109     -3.626   0.000      -12.74799   -3.802288 
     d15 |  -8.190081   2.265841     -3.615   0.000      -12.63105   -3.749113 
     d16 |  -8.068544   2.291659     -3.521   0.000      -12.56011   -3.576975 
     d17 |  -7.959319   2.257287     -3.526   0.000      -12.38352   -3.535118 
     d22 |  -6.799641   2.161635     -3.146   0.002      -11.03637   -2.562914 
     d23 |  -6.231227    2.12435     -2.933   0.003      -10.39488   -2.067578 
     d24 |  -6.597669   2.287659     -2.884   0.004       -11.0814    -2.11394 
     d25 |  -6.481679   2.285573     -2.836   0.005      -10.96132   -2.002038 
     d28 |  -6.293319   2.302273     -2.734   0.006      -10.80569   -1.780946 
     d33 |  -5.654198   2.350609     -2.405   0.016      -10.26131    -1.04709 
    drug |   -2.45515   .4668781     -5.259   0.000      -3.370214   -1.540086 
     age |   .1208959    .037461      3.227   0.001       .0474738     .194318 
------------------------------------------------------------------------------ 
Log likelihood (-0.5*Deviance) = -96.797174 
   Cf. log likelihood for intercept-only model (Model 0) = -120.56974 
   Chi-squared statistic for Model (1) vs. Model (0) = 47.545131 
   Prob. > chi2(22) = .0012454 
  
(2) PGM hazard model with gamma distributed unobserved heterogeneity 
  
Iteration 0:  Log Likelihood =   -97.7371 
(nonconcave function encountered) 
Iteration 1:  Log Likelihood = -97.178695 
Iteration 2:  Log Likelihood = -96.672111 
Iteration 3:  Log Likelihood =  -96.66698 
Iteration 4:  Log Likelihood = -96.666692 
Iteration 5:  Log Likelihood = -96.666692 
 
PGM hazard model with gamma heterogeneity           Number of obs    =     573 
                                                    Model chi2(23)   =       . 
                                                    Prob > chi2      =       . 
Log Likelihood =    -96.6666923 
 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
hazard   | 
      d1 |  -10.80181   3.943248     -2.739   0.006      -18.53043   -3.073185 
      d2 |  -11.30775   3.896149     -2.902   0.004      -18.94406   -3.671436 
      d3 |  -11.24518   3.875214     -2.902   0.004      -18.84046   -3.649898 
      d4 |  -10.35178   3.703692     -2.795   0.005      -17.61088   -3.092676 
      d5 |  -9.991745   3.504439     -2.851   0.004      -16.86032    -3.12317 
      d6 |   -9.78455   3.385348     -2.890   0.004      -16.41971    -3.14939 
      d7 |  -10.42769   3.437018     -3.034   0.002      -17.16412   -3.691257 
      d8 |  -9.193994   3.290664     -2.794   0.005      -15.64358   -2.744411 
     d10 |  -10.01127   3.344376     -2.993   0.003      -16.56612   -3.456411 
     d11 |  -9.191331   3.235603     -2.841   0.005        -15.533   -2.849666 
     d12 |  -8.820771   3.177368     -2.776   0.006       -15.0483   -2.593245 
     d13 |  -9.261921   3.224425     -2.872   0.004      -15.58168   -2.942165 
     d15 |  -9.145481   3.191924     -2.865   0.004      -15.40154   -2.889424 
     d16 |  -8.978681   3.134165     -2.865   0.004      -15.12153    -2.83583 
     d17 |  -8.819529   3.071867     -2.871   0.004      -14.84028   -2.798779 
     d22 |  -7.626859   2.946399     -2.589   0.010      -13.40169   -1.852023 
     d23 |  -7.076276   2.946105     -2.402   0.016      -12.85053   -1.302017 
     d24 |  -7.436352    3.02082     -2.462   0.014      -13.35705   -1.515653 
     d25 |  -7.276834    2.97176     -2.449   0.014      -13.10138   -1.452292 
     d28 |  -7.038744   2.933167     -2.400   0.016      -12.78765   -1.289843 
     d33 |  -6.276739   2.859726     -2.195   0.028       -11.8817   -.6717789 
    drug |  -2.863101   .9693994     -2.953   0.003      -4.763088   -.9631126 
     age |   .1468383   .0667209      2.201   0.028       .0160677    .2776089 
---------+-------------------------------------------------------------------- 
ln_varg  | 
   _cons |  -1.114756   2.041279     -0.546   0.585      -5.115589    2.886076 
------------------------------------------------------------------------------ 
Gamma variance, exp(ln_varg) = .32799525; Std. Err. = .66952971; z = .48988902 
  
Likelihood ratio statistic for testing models (1) vs (2) = .26096361 
Prob. test statistic > chi2(1) = .60945891 
 
 
The results suggest that unobserved heterogeneity is not significant in 
this context, so our preferred specification is Model 1.  Parameter 
estimates for this model correspond quite closely to the Cox ones.  In 
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particular, there is a close match in the pattern of variation of the 
baseline hazard with duration: compare the duration dummy variable 
coefficient estimates with the Cox model estimates listed earlier).  The 
coefficients on drug and age are each somewhat larger in absolute value in 
the discrete time model compared to the Cox model. 
 
The earlier tablulation showed that, even for the months in which there 
were deaths, the number of deaths was relatively small.  Some additional 
grouping of duration intervals might therefore be considered desirable.  A 
model with a piece-wise constant baseline hazard is an example of a 
compromise model which allows some non-parametric flexibility in the 
duration dependence specification, but may help estimation precision when 
there are few spell endings per duration interval.  To specify a baseline 
hazard which is constant within six month intervals but allowed to vary 
between these, one would simply: 
 
. ge dur1 = d1+d2+d3+d4+d5+d6 
. ge dur2 = d7+d8+d9+d10+d11+d12 
. ge dur3 = d13+d14+d15+d16+d17+d18 
. ge dur4 = d19+d20+d21+d22+d23+d24 
. ge dur5 = d25+d26+d27+d28+d29+d30 
. ge dur6 = d31+d32+d33+d34+d35+d36+d37+d38+d39 
 
and use the command 
 
. pgmhaz dur1-dur6 drug age, i(id) s(seqvar) d(dead) nocons 
 
Estimates of Models 1 and 2 for this case (not shown here) indicate that 
unobserved heterogeneity is not significant and there is evidence of a non-
monotonic increase in the baseline hazard with duration.  The coefficients 
on age and drug are similar to those estimated by both the Cox model and 
the discrete time proportional hazards model with non-parametric baseline 
hazard. 
 
Computational and other issues  
 
pgmhaz can be slow, or rather estimation of Model 2 can be.  This is partly 
because the maximization procedure uses numerical derivatives, and also 
partly because re-organized data sets can be relatively ‘large’.  Models 
with fully non-parametric baseline hazard function specifications also take 
significantly longer to estimate than models with parsimonious parametric 
baseline specifications.  Using a Pentium P-120 PC with 32MB RAM, running 
Stata 5.0 for Windows 3.11 for Workgroups, the ‘Weibull’ pgmhaz model took 
about one minute to run, and the non-parametric baseline model about seven 
minutes.  Using a different dataset from cancer.dta, one with 7410 person-
months, a model with one covariate and thirteen duration dummy variables 
took about 30 minutes to complete. 
 
The log-likelihood function for Model 2 is not globally concave, but 
convergence is usually achieved without problems.  If there are 
maximization difficulties, users may find the trace option useful for 
diagnosing problems.  Setting different starting values for the logarithm 
of the gamma variance with the lnvar0(#) option may also be helpful.  
 
A warning.  Because of the particular ordered sequence person-month 
structure of the data, the if option should be used with great care (and 
the in option should probably never be used).  An if expression which 
refers to all the data rows for each person will be handled correctly: e.g. 
selection of an estimation sub-sample according to values of a fixed 
covariate.  Do not select cases using an expression referring to a 
duration-varying variable or the results may be unpredictable.  One 
exception to this rule arises when some observations need to be excluded to 
ensure identifiability of a model with a non-parametric baseline hazard 
function—as illustrated earlier.  (In this context, there is one situation 
I am aware of in which the program will be incorrect if this strategy is 
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followed.  This is when the data contain a person contributing s > 1 
intervals to the analysis who ‘dies’ in the s-th interval, and there are no 
‘deaths’ observed for any person in the sample during any of the duration 
intervals before s.  This situation is likely to be rare.) 
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