EC968 Panel Data Analysis

Steve Pudney ISER

Lecture 4: Models for discrete variables

- Types of discreteness
- Linear regression
- Latent linear regression
- Binary models: conditional and random-effects logit

SER

• Dynamic discrete models

Discreteness

Inherent discreteness involves transitions between states

(*e.g.* employment & unemployment, married, unmarried)

Observational discreteness is an artefact of the observation process

(*e.g.* income questions based on ranges, Likert attitudinal questions)

Forms of discreteness

Censoring/corner solutions generate variables which are mixed discrete/continuous

(*e.g.* hours of work are 0 for non-employed, any positive value for employees) *Truncation* involves discarding part of the population

(*e.g.* low-income targeted samples, or earnings models for employees only)

Count variables are the outcome of some counting process

(*e.g.* the number of durables owned, or the number of employees of a firm)

Binary variables reflect a distinction between two states

(*e.g.* unemployed or not, married or not)

Ordinal variables are ordered variables, possibly taking more than two values

(*e.g.* happiness on a scale 1=miserable ... 5=ecstatic)

Unordered variables reflect outcomes which are discrete but with no natural ordering

(e.g. choice of occupation)

Binary models

We concentrate on binary models, with a dependent variable

 $y_{it} = 0 \text{ or } 1$

This describes:

- situations of choice between 2 alternatives
- sequences of events defining durations

E.g. suppose:

- $\mathbf{y}_i = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1)$ is a monthly panel observation
- 0 indicates unemployment, 1 indicates employment

Then \mathbf{y}_i represents a history of 4 months' unemployment followed by 3 months' employment, followed by 1 month's unemployment then 2 months' employment.

An alternative to modelling the sequence \mathbf{y}_i is to model the set of durations: (U4, E3, U1, E2) \Rightarrow survival analysis

An important issue concerns dynamics – how does the length of time already spent out of work affect this month's probability of finding work: *duration dependence*

Why are special methods needed?

Consider a binary variable, $y_{it} = 0$ or 1

Common practice is to use a linear probability model:

 $y_{it} = \alpha_0 + \mathbf{z}_i \alpha + \mathbf{x}_{it} \beta + u_i + \varepsilon_{it}$ (1) With panel data methods (*e.g.* within-group or random-effects) Linear model implies:

 $E(y_{it} \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i) = \Pr(y_{it} = 1 \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i) = P(\mathbf{z}_i, \mathbf{x}_{it}, u_i)$ Model (1) requires:

 $P(\mathbf{z}_i, \mathbf{x}_{it}, u_i) \approx \alpha_0 + \mathbf{z}_i \alpha + \mathbf{x}_{it} \beta + u_i$

But this may fall outside the admissible [0, 1] interval.

Moreover, $var(y_{it} | \mathbf{z}_i, \mathbf{x}_{it}, u_i) = P(\mathbf{z}_i, \mathbf{x}_{it}, u_i)[1-P(\mathbf{z}_i, \mathbf{x}_{it}, u_i)]$ is not constant \Rightarrow heteroskedasticity is a problem

University of Essex

Latent regression models: the binary case

Define a latent (unobservable) continuous counterpart, y_{it}^* (e.g. if $y_{it}=1$ defines employment, then:

 y_{it}^* = offered wage – reservation wage).

Let y_{it}^* be generated by a linear regression structure:

$$y_{it}^* = \alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_i + \varepsilon_{it}$$
(1)

Then employment is chosen whenever (offered wage-reservation wage) is positive:

$$y_{it} = 1(y_{it}^* > 0)$$

$$\Rightarrow \Pr(y_{it} = 1 \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i) = \Pr(-\varepsilon_{it} < [\alpha_0 + \mathbf{z}_i \alpha + \mathbf{x}_{it} \beta + u_i]) \\= F(\alpha_0 + \mathbf{z}_i \alpha + \mathbf{x}_{it} \beta + u_i)$$

where *F*(.) is the cdf of $-\varepsilon_{it}$

Probit model: $F(.) = \Phi(.) \Rightarrow$ cdf of the N(0,1) distribution Logit model: $F(s) = \frac{e^s}{[1+e^s]} \Rightarrow$ cdf of the logistic distribution

Conditional logit

Subsume \mathbf{z}_i in \mathbf{x}_{it} for notational simplicity.

If we try to estimate the u_i using individual-specific dummy variables, there is no simplification analogous to within-group regression. Moreover, the number of parameters $\rightarrow \infty$ with n, so the MLDV estimator is not consistent.

Log-likelihood for the logit model for individual *i* conditional on u_i :

$$L(\beta, u_1...u_n) = \sum_{t=1}^{T_i} y_{it} \ln\left(\frac{1}{1+e^{\mathbf{x}_{it}\beta+u_i}}\right) + \sum_{t=1}^{T_i} (1-y_{it}) \ln\left(\frac{e^{\mathbf{x}_{it}\beta+u_i}}{1+e^{\mathbf{x}_{it}\beta+u_i}}\right)$$

The statistic $\sum_{t} y_{it}$ is a sufficient statistic for u_i : $\Pr(\mathbf{y}_i \mid \sum_{t} y_{it})$ does not depend on u_i .

Example $T_i = 2$; $\sum_t y_{it}$ can take values 0, 1, 2. Conditional on $\sum_t y_{it} = 0$, $y_{i1} = y_{i2} = 0$ and, conditional on $\sum_t y_{it} = 2$, $y_{i1} = y_{i2} = 1$ with prob 1. So only cases with $\sum_t y_{it} = 1$ are of interest.

Conditional logit

Probability of the conditioning event:

$$Pr(\sum_{i} y_{ii} = 1) = Pr(y_{i1} = 1, y_{i2} = 0) + Pr(y_{i1} = 0, y_{i2} = 1)$$

$$= P_{i1}(1 - P_{i2}) + (1 - P_{i1})P_{i2}$$

$$= \frac{e^{\mathbf{x}_{i1}\mathbf{\beta} + u_{i}}}{(1 + e^{\mathbf{x}_{i1}\mathbf{\beta} + u_{i}})} \frac{1}{(1 + e^{\mathbf{x}_{i2}\mathbf{\beta} + u_{i}})} + \frac{1}{(1 + e^{\mathbf{x}_{i1}\mathbf{\beta} + u_{i}})} \frac{e^{\mathbf{x}_{i2}\mathbf{\beta} + u_{i}}}{(1 + e^{\mathbf{x}_{i2}\mathbf{\beta} + u_{i}})}$$

$$= \frac{e^{\mathbf{x}_{i1}\mathbf{\beta} + u_{i}}}{(1 + e^{\mathbf{x}_{i1}\mathbf{\beta} + u_{i}})(1 + e^{\mathbf{x}_{i2}\mathbf{\beta} + u_{i}})}$$

E.g. conditional probability of observing 1 then 0:

$$\Pr(y_{i1} = 1, y_{i2} = 0 \mid y_{i1} + y_{i2} = 1) = \frac{\Pr(y_{i1} = 1, y_{i2} = 0)}{\Pr(y_{i1} + y_{i2} = 1)}$$
$$= \frac{e^{\mathbf{x}_{i1}\mathbf{\beta} + u_{i}}}{e^{\mathbf{x}_{i1}\mathbf{\beta} + u_{i}} + e^{\mathbf{x}_{i2}\mathbf{\beta} + u_{i}}} = \frac{e^{\mathbf{x}_{i1}\mathbf{\beta}}}{e^{\mathbf{x}_{i1}\mathbf{\beta}} + e^{\mathbf{x}_{i2}\mathbf{\beta}}} = \frac{e^{(\mathbf{x}_{i1} - \mathbf{x}_{i2})\mathbf{\beta}}}{1 + e^{(\mathbf{x}_{i1} - \mathbf{x}_{i2})\mathbf{\beta}}}$$

 \Rightarrow u_i is eliminated by conditioning on $\sum_t y_{it}$

University of Essex

Conditional logit (continued)

With T = 2, the conditional log-likelihood is:

$$L(\boldsymbol{\beta}) = \sum_{i: \Sigma y=1} d_i (\mathbf{x}_{i1} - \mathbf{x}_{i2}) \boldsymbol{\beta} - \ln \left(1 + e^{(\mathbf{x}_{i1} - \mathbf{x}_{i2}) \boldsymbol{\beta}} \right)$$

where $d_i = 1$ if $y_{i1} = 1$, $y_{i2} = 0$ and 0 if $y_{i1} = 0$, $y_{i2} = 1$.

Note that, if \mathbf{x}_{it} contains time-invariant covariates (*i.e.* \mathbf{z}_i), these disappear from (\mathbf{x}_{i1} - \mathbf{x}_{i2}) $\Rightarrow \alpha$ cannot be estimated.

In general, conditional logit only uses data from individuals who experience change in y_{it} over time. This sacrifices sample variation. A Hausman test can be used to compare conditional logit estimates with random-effects logit which assumes independence between u_i and $(\mathbf{z}_i, \mathbf{X}_i)$

•The same conditioning approach does not work with probit and other functional forms, nor with general dynamic models

• But it can be generalised to:

- unordered multinomial logit models
- ordered logit models with more than two outcomes.

Random effects logit/probit

If we want to:

- estimate the coefficients of **z**_{*i*}
- use a non-logistic form
- allow for dynamic adjustment,

then conditional likelihood is not available. The random effects approach is a natural solution.

Consider a dynamic example - a simple model displaying *state dependence*.

Latent regression:

$$y_{it}^{*} = \alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + \gamma y_{it-1} + u_i + \varepsilon_{it}$$
$$y_{it} = 1(y_{it}^{*} > 0)$$

Note the initial condition problem: what are the properties of y_{i0} ? Make standard random effects assumptions (including independence of (\mathbf{z}_i , \mathbf{x}_{it}) and u_i).

Assume $Pr(y_{i0} | \mathbf{z}_i, \mathbf{X}_i, u_i)$ has a known parametric form.

The random effects likelihood function

Construct a likelihood by sequential conditioning:

$$Pr(y_{i0} | \mathbf{z}_{i}, \mathbf{X}_{i}, u_{i}) = P_{i0}(u_{i})$$

$$Pr(y_{i1} | y_{i0}, \mathbf{z}_{i}, \mathbf{x}_{i1}, u_{i}) = P_{i1}(y_{i0}, u_{i})$$

$$Pr(y_{iT} | y_{iT-1}, \mathbf{z}_i, \mathbf{x}_{iT}, u_i) = P_{iT}(y_{iT-1}, u_i)$$

The probabilities P_{it} are of the form:

or
$$F(\alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + \gamma y_{it-1} + u_i) \text{ for } y_{it} = 1$$
$$1 - F(\alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + \gamma y_{it-1} + u_i) \text{ for } y_{it} = 0.$$

Likelihood function for individual *i*, conditional on u_i : $L_i(u_i) = P_{i0}(u_i) \prod_{t=1}^{T_i} P_{it}(y_{it-1}, u_i)$

N.B. alternative treatment of initial conditions: model $u_i | y_{i0}, \mathbf{z}_i, \mathbf{X}_i$ rather than $y_{i0} | \mathbf{z}_i, \mathbf{X}_i$ (Wooldridge 2005)

Integrating out the random effects

Marginalise with respect to u_i :

$$L_{i} = E\left(P_{i0}(u_{i})\prod_{t=1}^{T_{i}}P_{it}(y_{it-1},u_{i})\right)$$
$$= \int_{-\infty}^{\infty}P_{i0}(u)\prod_{t=1}^{T_{i}}P_{it}(y_{it-1},u)g(u)du$$
(1)

where g(u) is an assumed density for u (*e.g.* Gaussian: $g(u) = \sigma_u^{-1}\phi(u/\sigma_u)$)

Evaluation of the likelihood function requires the integral in (1) to be approximated numerically by a quadrature algorithm.

This is implemented in Stata, but computing run times can be quite long

Example: Conditional (fixed effects) logit

- . gen lowpay=w_hr<5
- . clogit lowpay age tenure postGCSE2 female cohort, group(pid)

Static random effects logit (NB no initial conditions problem)

. xtlogit lowpay age tenure postGCSE2 female cohort

Random-effects logistic regression					of obs	=	38404
Group variable (i): pid					of grou	ps =	7700
Random effects u_i ~ Gaussian					group:	min =	1
						avg =	5.0
						max =	11
				Wald ch	i2(5)	=	1723.72
Log likelihood	Prob > chi2 =		0.0000				
lowpay	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
age	1722222	.0066515	-25.89	0.000	185	2588	1591855
tenure	0601414	.005933	-10.14	0.000	071	7698	048513
postGCSE2	-2.548309	.0975108	-26.13	0.000	-2.73	9427	-2.357192
female	1.98682	.0918006	21.64	0.000	1.80	6894	2.166746
cohort	1454163	.0069869	-20.81	0.000	159	1105	1317222
_cons	290.0056	13.88017	20.89	0.000	262	.801	317.2102
/lnsig2u	2.220962	.0337331			2.15	4846	2.287078
sigma_u	3.035818	.0512038			2.93	7101	3.137853
rho	.736938	.0065395			.723.	9217	.7495531

Likelihood-ratio test of rho=0: chibar2(01) = 1.1e+04 Prob >= chibar2 = 0.000

Hausman test comparing fixed & random effects logit

. hausman clogit relogit, equations(1:1)

	Coeffi			
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	clogit	relogit	Difference	S.E.
age tenure	+ 1943886 0526074	1722222 0601414	0221664 .007534	.0025122 .0034645

b = consistent under Ho and Ha; obtained from clogit
B = inconsistent under Ha, efficient under Ho; obtained from xtlogit

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 79.72 Prob>chi2 = 0.0000

No huge coefficient differences, but highly significant test result

