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Lecture 3: Endogeneity and
Instrumental Variables

Static models: types of endogeneity
* Within- and between-group IV estimators
* The Hausman-Taylor approach

Dynamic regression
*IV and GMM estimators
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Endogeneity in static models

Example: an earnings model

vy, = oy Educ, + o, Female + B, Age,, + B, Tenure, + u. + ¢,

Two forms of endogeneity:
Two-way causation: experience is rewarded with high pay & workers tend
to stay in high-paid jobs

Unobserved common factors: ability is rewarded with high pay & high-ability
people stay longer in education

Earnings || Education Earnings

A

A 4

Tenure

Unobserved

ability

(a) unobserved common (b) 2-way causation
factor
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Example of endogeneity

Example: an earnings model
Yi = o Educ;+ o, Female + B, Age, + [, Tenure; + u; + &,

(1) Two-way causation: workers tend to stay in high-paid jobs:
Tenure model:  Tenure, = yy, + v, (y > 0)
= y(oq Educ; + .. .+ B Agey, + [, Tenure, + u; + &) + vy
= | 7(oq Educ;+.. .+ p Agey +u;+ &)+ v, ]/ (1-75)
= cov(Tenure,, u;) =yoc?/ (1-yp)
cov(Tenure,, &) =y o2/ (L-y /)

(2) Unobserved common factors: u; represents ability & high-
ability people stay longer in education:

Educ, = ou; + other vars (6 > 0)
= cov(Educ;, u;) =602
cov(Educ;, ¢,) =0

. [ ]
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Strategy for dealing with endogeneity

Type of endogeneity

Consequences

Method

2-way causation
(e.g. tenure — wage & wage — tenure)

Cov(x,u) =0
Cov(x,&) %0

Within-group IV
(w-g to eliminate u; and IV

to deal with covariance
with &)

Common unobserved factor which

Cov(x,u) =0

Within-group regression

persists over time Cov(x,&) =0 (eliminates u;) and

(e.g. ability — wage, ability — Hausman-Taylor to

education & education — wage) estimate coefficients of z;

Common unobserved factor which Cov(x,u) =0 Randome-effects IV, using as

does not persist over time Cov(x,&) # 0 IVs variables which are

(e.g. job loss — wage & job loss — correlated with risk of job

tenure) loss but not wages; no need
to use within-group, since u;
isn’t correlated with x

None Cov(x,u) =0 GLS random effects

Cov(x,&) =0 regression

15/02/2007 (5)
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The Instrumental Variables principle

Simple example - a cross-section regression model:
vi = 6Bt g

Problem: simultaneous causation
= cov(x;, &) =0
= OLS regression of y. on x; is biased

But assume there is another variable g, with two properties:

Validity: cov(g;, &) =0
Relevance: cov(q;, x;) #0

The validity requirement says that the instrument must not
suffer from the same endogeneity problem that x; does;

The relevance requirement says that the instrument must be
closely related to x;

|
.: University of Essex 15/ 02/2007 (6)

[ ]
fiser



Motivation for the IV method

The assumption of instrument validity is a moment condition
which states that a particular moment, cov(g, ¢), must be equal
to zero

But the model tells us that: &=y, - x;f, so:
cov(g,, &)  =cov(g;, [y;-x: A1)
= cov(q;, y;) - Beov(g;, x;)
= 0 (instrument validity requirement)
Solve for £

p=cov(q;,y;) / cov(yg;, x;)

So, if g is a valid instrument, f must be equal to the ratio of the
population covariance between g and y and between g and x.

. [ ]
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The simple Instrumental Variable (IV) estimator

The sample analogue of this moment condition provides an

estimator:

s sample COV(q, y) _ ;(qi _q)(yi - y)

sample cov(Q, X) Z”: (G —T)(X —X)

This can be generalised to:
* More than one explanatory variable in (z;, x;;)

e More than one instrumental variable:
~ - ' -1 ' ' - '
By =(XQQ'Q)'QX]'X'QQQ)'Qy
* Require no. instruments > no. explanatory variables

|
.: University of Essex 15/ 02/2007 (8)
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Simultaneity: Within-group IV estimation

Model:

Yy = z;0 + X, B+ u; + g,
Partition X .

Xy = (Xqi 7 Xoip)s

where: cov(x,;,, &) =0 and cov(x,;,, &;) #0

Instruments q,; (at least as many as in x,))
Full IV vector q; = (Xy;;, 9o;p)

Within-group transformation:
Vi = Yi = (Xit _ii)B T &y — &
IV estimator:

A | —1 -1
Ble :(quwqq qu) quwqq Way

[ ]
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Consistency

~1
plim ﬁW,V =P+ plimlW (phm : W, j plim— : W, | X

Nn—o0 N—o0 N—o0 n N—0o0 n

-1

plimlW (phm : W, j plim— : W,

N—o0 n—ooo n N—oo n
=P

This consistency property holds because:

* The within-group transform removes u,;, which may be
correlated with x,,

e The instruments are uncorrelated with &, so:

phmlw = plim— ZZ(q,t q,)(e‘,t—g) 0

n—)oon N—0o0 i=1 t=1

[ ]
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Between-group and random-effects IV estimators

Analogous to the regression case:

ﬁBIV :( x*qBa;qu*)_le*qB_lb

qq— qy
0 _ -1 1 -1
BREIV — (Rx*qququ*) RX*qqurqy

h *
where X, —(Zi,Xit),

Ryq = _ (XTt _eii;k)'(qit -0g;), etc.

and 6. 21—\/63/(6,92+Ti0uz)

If cov(q;, u;) # 0, then both g, and B., are
inconsistent = a stronger requirement for instrument
validity

. [ ]
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Simultaneity involving only individual effects:

the Hausman-Taylor case

Model:
Vi = ;0 + x, B+ u; + g
Partition x;, and z;:
Xip = (Xqie s Xoi) 2 = (245, Z),
where:
E(u; | x1) =0, E(u; | ;) =0
E(u; | x5;) 20, E(u; | z,;) #0
But we must assume:
E(g, | x;) =0, E(g, | z) =0 for all x- and z-variables

(no simultaneous determination of v, and (z;, x;) !!!!)
Identification condition: dim (x;;) = dim (z,)
Method: use x,;, as IVs for z,.

: University of Essex 15/()2/ 2007 (12)
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The Hausman-Taylor (1981) estimator
Step 1: compute the within-group estimator for f3:
= regress y. —y.on X;—X;= ﬁw
Step 2: construct within-group residuals & estimate o, :
Ev = Yi — ¥ — (X, _ii)ﬁw

n Ti

5-335 folr-1)-k)

i=l t=1
Step 3: estimate model for & =Y. —iiﬁw ;
e =, +z,0.+residual, I =1..n, t=1..T,

A -1 -1 -1
use as IVs q;; = [xq;;,2¢; ] sO: fl:(quququ) B, Bybe

Step 4: Construct € =Y, —z.d —iiﬁw ; estimate 0,2 from £ andé’
Step 5: Carry out the random effects transform and estimate:
(Vi =6Y:)=2,(1-6)a+(x, - 0%, )+ (5, — 6,5

using as IVs q; = 2, (x; =X, ). X, ]
(NB more elaborate IVs can be used, see Amemiya-MacCurdy, 1986). .
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Endogeneity: BHPS examples
Model:

Ln wage = oy + oy Female + o, Education beyond GCSE
+ B, Age + 3, Job tenure + u + ¢

(1) Is job tenure jointly determined with the wage?
* Use the standard IV/2SLS estimator in w-g, b-g or r-e form

* Possible instruments: Married, Spouse part-time, Spouse full-time,
Dissatisfied with hours,

e But are these valid instruments?
(2) Is educational attainment influenced by the same unobservable
factors as labour market success?
* Use the Hausman-Taylor estimator
e Instruments come from within the model

* Butis everything uncorrelated with ¢?

[ ]
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. Xtreg logearn age postGCSE tenure, fe

Within-group regression

Fixed-effects (within) regression
(1): pid

Group variable

R-sq:

within
between
overall

0.0983
0.0024
0.0038

Number of obs
Number of groups

Obs per group:

F(3,30701)

Prob > F

age

postGCSE

_cons

sigma_u
sigma_e

|
+
|
|
tenure |
|
+
|
|
|

rho

-0249189
-0263467
.0016804
-9805382

-.0004778
.0089311
-0004299
-0174738
.54846498
-24922759
-82885214

= 38404

= 7700

min = 1

avg = 5.0

max = 11

= 1115.13

= 0.0000

[95% Conf. Interval]
.0239824 .0258554
.0088413 -043852
-.0008377 -002523
-9462889 1.014787

F test that all u_ 1=0:

W Universi

v of Essex

F(7699, 30701) =

15/02/2007 (15)

14.66

Prob > F = 0.0000
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Within-group IV estimates

. xtivreg logearn age postGCSE (tenure = dumm*), fe
note: dumm6é dropped due to collinearity

Fixed-effects (within) IV regression Number of obs = 38404
Group variable: pid Number of groups = 7700
R-sg: within = 0.0974 Obs per group: min = 1
between = 0.0027 avg = 5.0
overall = 0.0040 max = 11
Wald chi12(3) = 2.40e+06
corr(u_i, Xb) = -0.4164 Prob > chi2 = 0.0000
logearn | Coef. Std. Err. z P>]z| [95% Conf. Interval]
_____________ e
tenure | .0039841 -007105 0.56 0.575 -.0099415 .0179097
age | .0243511 .0018121 13.44  0.000 .0207995 .0279027
postGCSE | .0279968 .0102783 2.72 0.006 .0078518 .0481418
_cons | -9909042 .0363862 27.23 0.000 -9195886 1.06222
_____________ e
sigma u | .54731645
sigma e | .24934411
rho | .82812356 (fraction of variance due to u_1i)
F test that all u_i1=0: F(7699,30701) = 14.63 Prob > F = 0.0000
Instrumented: tenure
Instruments: age postGCSE dumml-dumml2

:. University of Essex 15/02/2007 (16) ﬁSER



Hausman test comparing w-g OLS & IV

. hausman olsfe 1vfe

--—- Coefficients —-—-
| (b) (B) (b-B) sgrt(diag(V_b-V_B))
| olsfe 1vfe Difference S.E.
_____________ o
age | .0249189 .0243511 .0005678 .
postGCSE | .0263467 -0279968 -.0016501
tenure | .0016804 .0039841 -.0023038

b = consistent under Ho and Ha; obtained from xtreg
B = 1nconsistent under Ha, efficient under Ho; obtained from xtivreg

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)"[(V_b-V_B)*(-1)](b-B)
= 0.11
Prob>chi2 = 0.9912

. [ ]
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Endogeneity of education: Hausman-Taylor

. Xthtaylor logearn age tenure postGCSE2 female cohort, endog(tenure postGCSE2)

Hausman-Taylor estimation Number of obs = 38404
Group variable (i1): pid Number of groups = 7700
Obs per group: min = 1
avg = 5.0
max = 11
Random effects u i1 ~ 1.1.d. Wald chi2(5) = 4111.99
Prob > chi2 = 0.0000
logearn | Coef. Std. Err z P>]z| [95% Conf. Interval]
_____________ e
TVexogenous |
age | .0253258 .0004155 60.95 0.000 .0245115 .0261402
TVendogenous |
tenure | .0016367 -.0003903 4.19 0.000 .0008717 .0024016
Tlexogenous |
female | -.1749879 .0436307 -4.01 0.000 -.2605026  -.0894732
cohort | .0115968 .0033232 3.49 0.000 .0050834 -0181102
Tlendogenous |
pOoStGCSE2 | 1.260647 .3184888 3.96 0.000 .6364202 1.884873
I
cons | -22.45571 6.338539 -3.54 0.000 -34.87902 -10.03241
_____________ e
sigma_ u | 1.7227596
sigma_e | -24925073
rho | .97949657 (fraction of variance due to u_ i)

:. University of Essex 15/02/2007 (18) ﬁSER



Dynamic models for continuous dependent
variables

Adjustment may be imperfect - how to model it? Any
conventional time-series model can be used, e.g. AR(1):

Yy = z;o + x;, B+ yy, tu + g, (1)

or static model with AR(1) errors:

Ve = ;0 + xy B+ ou; + g, (2)

&t = P& T My
= Yy = zi(L-p)a +(x;-pX1)B + pyyq + (-p)u; + 17 (2))
NB: model (1) implies gradual adjustment to change in x;
model (2) implies a full immediate response.

More general distributed lag models can be used (e.g. ECMs,
ARMA, etc.)

. [ ]
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W University of Essex

Within-group estimation
Within-group transformed model (e.g. AR(1)):
Yie — yi — (Xit _ii)B + 7(yit—1 — yi*)+git _a

where:

R I =
yl Ti ; ylt—l Ti ; ylt yl
NB we assume a compact panel (why?) and an observable

initial condition y,,

What are the statistical properties of a regression of
Yie = ¥i on (X —X;) and (Y, — ;)2

[ ]
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Properties of the within-group estimator

Consider the solved distributed lag form of (1):

-
Yie = ZVS(Zia"‘Xit—sB"‘Ui +gt—s)+7/tyi0
s=0
1_ t
= 1_77// (Zia"‘ui)"'Z?/SXit—sB"'[git + V€ +---"‘7/H‘9i1]+ 7 Yio

= v, isafunctionof g, ... &,

T,-1
= ¥V, =DV /Ti is a function of &1, ... &; and y,,
t=0

= Yi —Yi iscorrelated with & —&
= bias in within-group regression coefficients

. [ ]
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Bias-correction approaches

* Bias in the dynamic within-group regression
estimator:
= Complicated mathematical form (Nickell, 1981)

= generally negative for yfor small T (even if true yis zero)
= Pooled OLS, b-g & random effects also biased.

*It is possible to construct an (approximately) bias-
corrected within-group estimator, suitable even when
n is only moderately large:
* Bun & Kiviet (Ecs. Letters, 2003); Bruno (Ecs. Letters, 2005)
= Stata module xtlsdvc (http://ideas.repec.org/c/boc/bocode/s450101.html)

] °
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A simple IV estimator

The within-group transform complicates estimation with lagged
endogenous variables. Consider time-differencing;:

Ay, =Ax. B+yAY.  +Ag,, t=2..T. (D

The problem now is that the error term, A¢, = ¢, - &,; isa MA(1)

1

process which contains ¢, ; , which is correlated with Ay;, ; .

= Find a set of instruments correlated with Ay, ; but
uncorrelated with ¢,

= All lagged x;, and y,,, ... v,y are valid instruments if {g,} is
serially independent

= Simplest IV estimator (Anderson Hsiao) estimates (1), using
instruments (X, X1, X;10,Yiz.0)-

= We can only use observations t =2 ... T; . Each extra lag used
as an instrument loses us n observations.

= Once ﬁ,v is found, estimate a, by regressing y. — iiﬁ v — 7

Y y—i*

on z,

15/02/2007 (23)
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Problems with IV estimators

Suppose y;, is a random walk (e.g. Hall’s (1978) form of the
permanent income hypothesis: dynamic choice models
based on Euler conditions).

=V, 1s uncorrelated with Ay, ; and is not a valid
instrument

—IV methods based on a differenced model won’t work
well if there is a near-unit root

Any method based solely on the differenced equation
ignores potentially valuable information contained in the
initial condition y,,

What is the optimal point on the trade-off between the
number of lags used as instruments and the number of time
periods retained in the estimation sample?

[ ]
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System estimators

The time-differenced model:

Ay, = Ax, B+ Ay, +Asg, , t=2...T. (1)

This is a system of T'-1 linear equations with cross-correlated
errors (since Ag, is correlated with Ag, ; and Ag,,,)

There is also some (related) process generating the initial
conditions, y,, and y,;, which could provide further equations.

A different number of instruments is available for each of the
equations in (1):
E.g. the equation for t =2 has only (x;, ... X;7, ¥;);
the equation for t = T, has (x,y...X;7, Yio--- Yi7.0)-

NB it's assumed here that x,, is observable

[ ]
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Generalised method of moments
IV estimators are members of the class of GMM estimators
e.g. the 2SLS estimator, B, =(X'Q(Q'Q)"'Q'X)'X'Q(QQ)"'Qy
is the following M-estimator:

B, =arg min (y -XB)Q(Q'Q)'Q'(y - XB)

=arg min m(y,x,B)'V 'm(y,x,p)
B

where m is the “sample analogue”, n'Q’(y-XB), of a moment,
Eq’s assumed to be zero in the population.

V is a weighting matrix proportional to the asymptotic
covariance matrix of the moment condition (in this standard
2SLS example 0,°Q’Q, where ¢,? is the residual variance).

GMM can be extended to any number of moment conditions

[ ]
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Arellano-Bond GMM (1991)
We have T’-2 differenced equations (1).

The instruments for equation ¢ are:

di; = (Xio---Xi7» Yio---Yir0)
Full set of moment conditions:

Eq, Ag,=0 (I +1)k +1 conditions
Eqy Agy;=0 (T +1)k +2 conditions
Eq,; Aer=0 (I'+1)k +T-1 conditions

m is a [(T,+1)(T,-1)k, +T;(T;-1)/2] x 1 moment vector
The optimal choice for Vis Em.m,'

More conditions can be added (e.g. for z; and to impose the
homoskedasticity assumption on ¢;,). But GMM often works
badly in finite samples with many moment conditions.

[ ]
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Further developments: initial conditions

Arellano-Bond ignores the initial conditions y,, and y,; and
only uses moment conditions for Ay,,...Ay..

To progress further, we need additional assumptions about the
initial conditions. One possibility is:

Equilibrium initial values. If the process is homogeneous and
long-established:

o0

yiO_Zla—|_u +27/ (XI SB+8 s)
Y s=0

—Coefficient of u; in equation for y;, is (1- -7) 1

= But the quantity ZV Xi_s 1is unobserved

=Also, do people really have infinite pasts?

If lagged levels of y;, are poor instruments for Ay, ;, can we go
back to using the equations in level form?

. [ ]
:: University of Essex 15/02/2007 (28) ﬂSER



Extended system methods

Arellano & Bover (1995) and Blundell & Bond (1998) (see also
Bhargava & Sargan, 1983) suggested using the model in both
differenced and levels form to generate GMM moment
conditions.

Question: in the levels model

Yie = ;00 + Xy B+ yyu  toup g,
is there a good instrument for y;, ,? This instrument must be
uncorrelated with u; as well as g .

A&B suggested Ay, ,, etc. The instrument validity condition is

ElAy;, (u; + &,)] = 0, which in turn requires (see B&B, 1998):
Eu lyy,-u/(1-y)] =0 and Eu;Ag;, = 0

The former is a strong assumption but, if true, improves

estimation precision dramatically in highly-persistent models
(i.e. when y~ 1)

[ ]
15/02/2007 (29) ﬁSER



Example
Model:

Ln wage;, = oy + o Female; + o, Education beyond GCSE; + «, Cohort,
+ By Agey + [, Job tenure, + y Ln wage;,; + u; + &

Estimate by:
=  Within-group regression
= Arellano-Bond
= Blundell-Bond

Note: this is a poor model
= Significant differences between Arellano-Bond & Blundell-Bond
* Significant Sargan y? test for instrument validity for both

= Significant 2nd-order autocorrelation in Blundell-Bond

= Investigate higher-order dynamics, omitted variables,
endogenity issues?

[ ]
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Within-group regression

xtreg logearn lI.logearn age postGCSE2 tenure female cohort, fe

15/02/2007 (31)

Fixed-effects (within) regression Number of obs = 25419
Group variable (i): pid Number of groups = 5798
R-sq: within = 0.1407 Obs per group: min = 1
between = 0.1217 avg = 4.4
overall = 0.1337 max = 9
F(3,19618) = 1070.88
corr(u_i, Xb) = -0.0940 Prob > F = 0.0000
logearn | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ o
logearn |
L1. | .1918289 .006843 28.03 0.000 .178416 .2052417
age | .0209275 .0005674 36.88 0.000 .0198154 .0220397
postGCSE2 | (dropped)
tenure | -0001329 -0004798 0.28 0.782 -.0008076 .0010734
female | (dropped)
cohort | (dropped)
_cons | . 797273 .0220869 36.10 0.000 . 7539808 .8405652
_____________ e
sigma u | -45773502
sigma_e | .22598029
rho | .80403163 (fraction of variance due to u_ i)



Arellano-Bond

. xtabond2 logearn 1.logearn age tenure, gmm(l.logearn) i1v(age tenure)
noleveleq Favoring speed over space. See help matafavor.

Arellano-Bond dynamic panel-data estimation, one-step difference GMM results

Group variable: pid Number of obs = 16769

Time variable : year Number of groups = 4658

Number of instruments = 38 Obs per group: min = 1

Wald chi2(3) = 563.04 avg = 3.60

Prob > chi2 = 0.000 max = 7

| Coef. Std. Err. z P>]z| [95% Conf. Interval]
_____________ e

logearn |

L1. | .1265653 .0209072 6.05 0.000 .0855879 .1675427

age | .02477 .0014812 16.72 0.000 .0218669 .0276731

tenure | -.0001292 .0006587 -0.20 0.844 -.0014203 .0011618

Sargan test of overid. restrictions: chi2(35) = 155.31 Prob > chi2 = 0.000

Arellano-Bond test for AR(1) in first differences: z = -25.72 Pr > z =
Arellano-Bond test for AR(2) i1n fTirst differences: z = 1.72 Pr >z = 0.085
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Blundell-Bond

. Xtabond2 logearn l.logearn age tenure, gmm(l.logearn) iv(age tenure)
Favoring speed over space. See help matafavor.

Arellano-Bond dynamic panel-data estimation, one-step system GMM results

Group variable: pid Number of obs = 25419

Time variable : year Number of groups = 5798

Number of Instruments = 46 Obs per group: min = 1

Wald chi2(3) = 221.24 avg = 4_38

Prob > chi2 = 0.000 max = 9

| Coef. Std. Err. z P>]z]| [95% Conf. Interval]
_____________ P

logearn |

L1. | .2873673 .0199367 14.41 0.000 .248292 .3264426

age | 1.08e-06 .00028 0.00 0.997 -.0005477 -.0005498

tenure | -.0017568 .0005668 -3.10 0.002 -.0028677 -.0006458

_cons | 1.449055 .0395529 36.64 0.000 1.371533 1.526578

Sargan test of overid. restrictions: chi2(42) = 131.85 Prob > chi2 = 0.000

Arellano-Bond test for AR(1) i1n first differences: z = -38.07 Pr > z =
Arellano-Bond test for AR(2) i1n first differences: z = 2.84 Pr >z = 0.005
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