EC968 Panel Data Analysis

Steve Pudney ISER

Lecture 3: Endogeneity and Instrumental Variables

Static models: types of endogeneity

- •Within- and between-group IV estimators
- •The Hausman-Taylor approach
- Dynamic regression
 - IV and GMM estimators

Endogeneity in static models

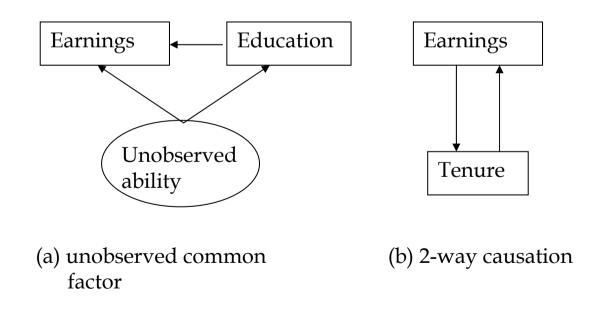
Example: an earnings model

 $y_{it} = \alpha_1 Educ_i + \alpha_2 Female + \beta_1 Age_{it} + \beta_2 Tenure_{it} + u_i + \varepsilon_{it}$

Two forms of endogeneity:

Two-way causation: experience is rewarded with high pay & workers tend to stay in high-paid jobs

Unobserved common factors: ability is rewarded with high pay & high-ability people stay longer in education



Example of endogeneity

Example: an earnings model

 $y_{it} = \alpha_1 Educ_i + \alpha_2 Female + \beta_1 Age_{it} + \beta_2 Tenure_{it} + u_i + \varepsilon_{it}$

(1) Two-way causation: workers tend to stay in high-paid jobs: Tenure model: $Tenure_{it} = \gamma y_{it} + v_{it}$ ($\gamma > 0$) $= \gamma (\alpha_1 Educ_i + ... + \beta_1 Age_{it} + \beta_2 Tenure_{it} + u_i + \varepsilon_{it}) + v_{it}$ $= [\gamma (\alpha_1 Educ_i + ... + \beta_1 Age_{it} + u_i + \varepsilon_{it}) + v_{it}] / (1 - \gamma \beta_2)$ $\Rightarrow cov(Tenure_{it}, u_i) = \gamma \sigma_u^2 / (1 - \gamma \beta_2)$ $cov(Tenure_{it}, \varepsilon_{it}) = \gamma \sigma_{\varepsilon}^2 / (1 - \gamma \beta_2)$

(2) Unobserved common factors: u_i represents ability & highability people stay longer in education: $Educ_i = \delta u_i + \text{other vars}$ $(\delta > 0)$ $\Rightarrow \qquad \cos(Educ_i, u_i) = \delta \sigma_u^2$ $\cos(Educ_i, \varepsilon_{it}) = 0$

Strategy for dealing with endogeneity

Type of endogeneity	Consequences	Method
2-way causation	$\operatorname{Cov}(x,u) \neq 0$	Within-group IV
(e.g. tenure \rightarrow wage & wage \rightarrow tenure)	$\operatorname{Cov}(x,\varepsilon) \neq 0$	(w-g to eliminate u_i and IV to deal with covariance with ε)
Common unobserved factor which persists over time (e.g. ability \rightarrow wage, ability \rightarrow education & education \rightarrow wage)	$Cov(x,u) \neq 0$ $Cov(x,\varepsilon) = 0$	Within-group regression (eliminates u_i) and Hausman-Taylor to estimate coefficients of \mathbf{z}_i
Common unobserved factor which does not persist over time (e.g. job loss → wage & job loss → tenure)	$\operatorname{Cov}(x,u) = 0$ $\operatorname{Cov}(x,\varepsilon) \neq 0$	Random-effects IV, using as IVs variables which are correlated with risk of job loss but not wages; no need to use within-group, since u_i isn't correlated with x
None	$Cov(x,u) = 0$ $Cov(x,\varepsilon) = 0$	GLS random effects regression

The Instrumental Variables principle

Simple example – a cross-section regression model:

$$y_i = x_i \beta + \varepsilon_i$$

Problem: simultaneous causation

$$\Rightarrow \operatorname{cov}(x_i, \varepsilon_i) \neq 0$$

 \Rightarrow OLS regression of y_i on x_i is biased

But assume there is another variable q_i with two properties:

Validity:	$\operatorname{cov}(q_i, \varepsilon_i) = 0$
Relevance:	$\operatorname{cov}(q_i, x_i) \neq 0$

The *validity* requirement says that the instrument must not suffer from the same endogeneity problem that x_i does;
The *relevance* requirement says that the instrument must be closely related to x_i

Motivation for the IV method

The assumption of instrument validity is a *moment condition* which states that a particular *moment*, $cov(q, \epsilon)$, must be equal to zero

But the model tells us that: $\varepsilon_i = y_i - x_i \beta$, so: $\operatorname{cov}(q_i, \varepsilon_i) = \operatorname{cov}(q_i, [y_i - x_i \beta])$ $= \operatorname{cov}(q_i, y_i) - \beta \operatorname{cov}(q_i, x_i)$ = 0 (instrument validity requirement)

Solve for β : $\beta = \operatorname{cov}(q_i, y_i) / \operatorname{cov}(q_i, x_i)$

So, if *q* is a valid instrument, β must be equal to the ratio of the population covariance between *q* and *y* and between *q* and *x*.

The simple Instrumental Variable (IV) estimator

The sample analogue of this moment condition provides an estimator:

$$\hat{\beta}_{IV} = \frac{\text{sample cov}(q, y)}{\text{sample cov}(q, x)} = \frac{\sum_{i=1}^{n} (q_i - \overline{q})(y_i - \overline{y})}{\sum_{i=1}^{n} (q_i - \overline{q})(x_i - \overline{x})}$$

This can be generalised to:

- More than one explanatory variable in $(\mathbf{z}_i, \mathbf{x}_{it})$
- More than one instrumental variable:

$$\hat{\boldsymbol{\beta}}_{IV} = \left(\mathbf{X}' \mathbf{Q} (\mathbf{Q}' \mathbf{Q})^{-1} \mathbf{Q}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{Q} (\mathbf{Q}' \mathbf{Q})^{-1} \mathbf{Q}' \mathbf{y}$$

• Require no. instruments \geq no. explanatory variables

Simultaneity: Within-group IV estimation

Model:

$$y_{it} = \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_i + \varepsilon_{it}$$

Partition \mathbf{x}_{it} :

$$\mathbf{x}_{it} = (\mathbf{x}_{1it}, \mathbf{x}_{2it}),$$

where: $\operatorname{cov}(\mathbf{x}_{1it}, \varepsilon_{it}) = 0$ and $\operatorname{cov}(\mathbf{x}_{2it}, \varepsilon_{it}) \neq 0$

Instruments \mathbf{q}_{2it} (at least as many as in \mathbf{x}_{2it}) Full IV vector $\mathbf{q}_{it} = (\mathbf{x}_{1it}, \mathbf{q}_{2it})$

Within-group transformation:

$$y_{it} - \overline{y}_i = (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)\mathbf{\beta} + \varepsilon_{it} - \overline{\varepsilon}_i$$

IV estimator:

$$\hat{\boldsymbol{\beta}}_{WIV} = \left(\mathbf{W}_{xq} \mathbf{W}_{qq}^{-1} \mathbf{W}_{qx} \right)^{-1} \mathbf{W}_{xq} \mathbf{W}_{qq}^{-1} \mathbf{W}_{qy}$$

Consistency

$$\underset{n \to \infty}{\operatorname{plim}} \hat{\boldsymbol{\beta}}_{WIV} = \boldsymbol{\beta} + \left(\underset{n \to \infty}{\operatorname{plim}} \frac{1}{n} \mathbf{W}_{xq} \left(\underset{n \to \infty}{\operatorname{plim}} \frac{1}{n} \mathbf{W}_{qq} \right)^{-1} \underset{n \to \infty}{\operatorname{plim}} \frac{1}{n} \mathbf{W}_{qx} \right)^{-1} \times \\ \left(\underset{n \to \infty}{\operatorname{plim}} \frac{1}{n} \mathbf{W}_{xq} \left(\underset{n \to \infty}{\operatorname{plim}} \frac{1}{n} \mathbf{W}_{qq} \right)^{-1} \underset{n \to \infty}{\operatorname{plim}} \frac{1}{n} \mathbf{W}_{q\varepsilon} \right) \\ = \boldsymbol{\beta}$$

This consistency property holds because:

- The within-group transform removes u_i , which may be correlated with \mathbf{x}_{2it}
- The instruments are uncorrelated with *ε*, so:

$$\underset{n\to\infty}{\text{plim}}\frac{1}{n}\mathbf{w}_{q\varepsilon} = \underset{n\to\infty}{\text{plim}}\frac{1}{n}\sum_{i=1}^{n}\sum_{t=1}^{T_{i}}\left(\mathbf{q}_{it}-\overline{\mathbf{q}}_{i}\right)'\left(\varepsilon_{it}-\overline{\varepsilon}_{i}\right) = \mathbf{0}$$

Between-group and random-effects IV estimators

Analogous to the regression case:

$$\hat{\boldsymbol{\beta}}_{BIV} = \left(\mathbf{B}_{x^*q} \mathbf{B}_{qq}^{-1} \mathbf{B}_{qx^*}\right)^{-1} \mathbf{B}_{x^*q} \mathbf{B}_{qq}^{-1} \mathbf{b}_{qy}$$
$$\hat{\boldsymbol{\beta}}_{REIV} = \left(\mathbf{R}_{x^*q} \mathbf{R}_{qq}^{-1} \mathbf{R}_{qx^*}\right)^{-1} \mathbf{R}_{x^*q} \mathbf{R}_{qq}^{-1} \mathbf{r}_{qy}$$

where
$$\mathbf{x}_{it}^* = (\mathbf{z}_i, \mathbf{x}_{it})$$
,

$$\mathbf{R}_{x^*q} = \sum_{i=1}^n \sum_{t=1}^{n_i} \left(\mathbf{x}_{it}^* - \theta_i \overline{\mathbf{x}}_i^* \right)' \left(\mathbf{q}_{it} - \theta_i \overline{\mathbf{q}}_i \right), \quad \text{etc.}$$

and
$$\theta_i = 1 - \sqrt{\sigma_{\varepsilon}^2 / (\sigma_{\varepsilon}^2 + T_i \sigma_u^2)}$$

If $cov(\mathbf{q}_{it}, u_i) \neq 0$, then both $\hat{\mathbf{\beta}}_{BIV}$ and $\hat{\mathbf{\beta}}_{REIV}$ are inconsistent \Rightarrow a stronger requirement for instrument validity

Simultaneity involving only individual effects: the Hausman-Taylor case

Model:

$$y_{it} = \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_i + \varepsilon_{it}$$

Partition \mathbf{x}_{it} and \mathbf{z}_i :

$$\mathbf{x}_{it} = (\mathbf{x}_{1it}, \mathbf{x}_{2it}), \quad \mathbf{z}_i = (\mathbf{z}_{1i}, \mathbf{z}_{2i}),$$

where:

$$E(u_i | \mathbf{x}_{1it}) = 0, E(u_i | \mathbf{z}_{1i}) = 0$$

$$E(u_i | \mathbf{x}_{2it}) \neq 0, E(u_i | \mathbf{z}_{2i}) \neq 0$$

But we must assume:

 $E(\varepsilon_{it} | \mathbf{x}_{it}) = 0, E(\varepsilon_{it} | \mathbf{z}_{i}) = 0$ for all x- and z-variables (no simultaneous determination of y_{it} and $(\mathbf{z}_i, \mathbf{x}_{it})$!!!!)

Identification condition: dim $(\mathbf{x}_{1it}) \ge \dim (\mathbf{z}_{2i})$ Method: use \mathbf{x}_{1it} as IVs for \mathbf{z}_{2i}

University of Essex

The Hausman-Taylor (1981) estimator

Step 1: compute the within-group estimator for β:

$$\Rightarrow \text{ regress } y_{it} - \overline{y}_i \text{ on } \mathbf{x}_{it} - \overline{\mathbf{x}}_i \Rightarrow \hat{\boldsymbol{\beta}}_W$$

Step 2: construct within-group residuals & estimate σ_{ε}^2 :

$$\hat{\varepsilon}_{it} = y_{it} - \overline{y}_i - (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)\boldsymbol{\beta}_W$$
$$\hat{\sigma}_{\varepsilon}^2 = \sum_{i=1}^n \sum_{t=1}^{T_i} \hat{\varepsilon}_{it}^2 / (n(\overline{T} - 1) - k_x)$$

Step 3: estimate model for $\hat{e}_i = \overline{y}_i - \overline{\mathbf{x}}_i \hat{\boldsymbol{\beta}}_W$:

$$\hat{e}_i = \alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \text{residual}, \qquad i = 1 \dots n, \ t = 1 \dots T_i$$

use as IVs $\mathbf{q}_{it} = [\mathbf{x}_{1it}, \mathbf{z}_{1i}]$ so: $\hat{\boldsymbol{\alpha}} = (\mathbf{B}_{zq}\mathbf{B}_{qq}^{-1}\mathbf{B}_{qz})^{-1}\mathbf{B}_{zq}\mathbf{B}_{qq}^{-1}\mathbf{b}_{q\hat{e}}$

Step 4: Construct $\hat{e}_i^* = \overline{y}_i - \mathbf{z}_i \hat{\boldsymbol{\alpha}} - \overline{\mathbf{x}}_i \hat{\boldsymbol{\beta}}_W$; estimate σ_u^2 from $\hat{\varepsilon}_{it}$ and \hat{e}_i^* Step 5: Carry out the random effects transform and estimate:

$$(y_{it} - \theta_i \overline{y}_i) = \mathbf{z}_i (1 - \theta_i) \mathbf{a} + (\mathbf{x}_{it} - \theta_i \overline{\mathbf{x}}_i) \mathbf{\beta} + (\varepsilon_{it} - \theta_i \overline{\varepsilon}_i)$$

using as IVs $\mathbf{q}_{it} = [\mathbf{z}_{1i}, (\mathbf{x}_{it} - \overline{\mathbf{x}}_i), \overline{\mathbf{x}}_{1i}]$

(NB more elaborate IVs can be used, see Amemiya-MacCurdy, 1986).

Endogeneity: BHPS examples

Model:

 $Ln \ wage = \alpha_0 + \alpha_1 \ Female + \alpha_2 \ Education \ beyond \ GCSE \\ + \beta_1 \ Age + \beta_2 \ Job \ tenure + u + \varepsilon$

(1) Is job tenure jointly determined with the wage?

- Use the standard IV/2SLS estimator in w-g, b-g or r-e form
- Possible instruments: *Married, Spouse part-time, Spouse full-time, Dissatisfied with hours,*
- But are these valid instruments?
- (2) Is educational attainment influenced by the same unobservable factors as labour market success?
 - Use the Hausman-Taylor estimator
 - Instruments come from within the model
 - But is everything uncorrelated with ε ?

Within-group regression

. xtreg logearn age postGCSE tenure, fe

Fixed-effects (within) r Group variable (i): pid	egression			obs = groups =	= 38404 = 7700
<i>R-sq:</i> within = 0.0983 between = 0.0024 overall = 0.0038			Obs per g	group: min = avg = max =	5.0
corr(u_i, Xb) = -0.4195			F(3,30701 Prob > F		= 1115.13 = 0.0000
logearn Coef	. Std. Err.	t	P>/t/	[95% Conf.	Interval]
<i>2 1</i>		2.95 3.91	0.003 0.000	.0088413	.043852 .002523
·	9 4 (fraction c 				
<i>F</i> test that all u_i=0:	F(7699, 3070)1) =	14.66	Prob >	F = 0.0000

Within-group IV estimates

. xtivreg loge note: dumm6 dr				*), fe		
<i>Fixed-effects Group variable</i>		regression		Number of c Number of c		38404 7700
GIOUP VALIADIE			1	vulliber or g	jioups –	//00
R-sq: within	= 0.0974		(Obs per gro	oup: min =	1
	a = 0.0027				avg =	5.0
overall	= 0.0040				max =	11
			L	Wald chi2(3	3) = 2	.40e+06
corr(u_i, Xb)	= -0.4164			Prob > chi2		0.0000
logearn	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
tenure	.0039841	.007105	0.56	0.575	0099415	.0179097
age	.0243511	.0018121	13.44	0.000	.0207995	.0279027
postGCSE	.0279968	.0102783	2.72	0.006	.0078518	.0481418
_cons	.9909042	.0363862	27.23	0.000	.9195886	1.06222
+ sigma_u	.54731645					
sigma_e	.24934411					
rho	.82812356	(fraction d	of varia	ance due to	o u_i)	
F test that a	ull u_i=0:	F(7699,3070	01) =	14.63	Prob > F	= 0.0000
Instrumented: Instruments:	tenure age postGCS	E dumm1-dumr	 m12			
1115 CI UMEIICS.	age postets		1112			

Hausman test comparing w-g OLS & IV

. hausman olsfe ivfe

	Coeffic	cients		
/	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
/	olsfe	ivfe	Difference	S.E.
+-				
age	.0249189	.0243511	.0005678	
postGCSE	.0263467	.0279968	0016501	
tenure	.0016804	.0039841	0023038	•

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtivreg

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 0.11 Prob>chi2 = 0.9912

Endogeneity of education: Hausman-Taylor

. xthtaylor lo Hausman-Taylor Group variable Random effects	estimation (i): pid	Number Number Obs per Wald ch	of obs = of groups = group: min = avg = max = i2(5) =	38404 7700 1 5.0 11 4111.99		
				Prob >	chi2 =	0.0000
logearn	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
TVexogenous						
aqe	.0253258	.0004155	60.95	0.000	.0245115	.0261402
TVendogenous			00.20	0.000		
tenure	.0016367	.0003903	4.19	0.000	.0008717	.0024016
<i>TIexogenous</i>	1					
female	1749879	.0436307	-4.01	0.000	2605026	0894732
cohort	.0115968	.0033232	3.49	0.000	.0050834	.0181102
TIendogenous						
postGCSE2	1.260647	.3184888	3.96	0.000	.6364202	1.884873
Gong	-22.45571	6.338539	-3.54	0.000	-34.87902	-10.03241
_cons	-22.455/1		-3.54	0.000	-34.0/902	-10.03241
sigma_u	1.7227596					
sigma_e	.24925073					
rho	.97949657	(fraction o	of varian	nce due t	o u_i)	

Dynamic models for continuous dependent variables

Adjustment may be imperfect – how to model it? Any conventional time-series model can be used, *e.g.* AR(1):

$$y_{it} = \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + \gamma y_{it-1} + u_i + \varepsilon_{it}$$
(1)

or static model with AR(1) errors:

$$y_{it} = \mathbf{z}_{i} \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_{i} + \varepsilon_{it}$$
(2)

$$\varepsilon_{it} = \rho \varepsilon_{it-1} + \eta_{it}$$
(2)

$$\Rightarrow y_{it} = \mathbf{z}_{i} (1-\rho) \boldsymbol{\alpha} + (\mathbf{x}_{it} - \rho \mathbf{x}_{it-1}) \boldsymbol{\beta} + \rho y_{it-1} + (1-\rho) u_{i} + \eta_{it}$$
(2')
NB: model (1) implies gradual adjustment to change in **x**;
model (2) implies a full immediate response.

More general distributed lag models can be used (e.g. ECMs, ARMA, etc.)

Within-group estimation

Within-group transformed model (e.g. AR(1)):

$$y_{it} - \overline{y}_i = (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)\mathbf{\beta} + \gamma(y_{it-1} - \overline{y}_i^*) + \varepsilon_{it} - \overline{\varepsilon}_i$$

where:

$$\overline{y}_{i}^{*} = \frac{1}{T_{i}} \sum_{t=1}^{T_{i}} y_{it-1} = \frac{1}{T_{i}} \sum_{t=0}^{T_{i}-1} y_{it} \neq \overline{y}_{i}$$

NB we assume a compact panel (why?) and an observable initial condition y_{i0}

What are the statistical properties of a regression of $y_{it} - \overline{y}_i$ on $(\mathbf{x}_{it} - \overline{\mathbf{x}}_i)$ and $(y_{it-1} - \overline{y}_i^*)$?

Properties of the within-group estimator

Consider the solved distributed lag form of (1):

$$y_{it} = \sum_{s=0}^{t-1} \gamma^{s} (\mathbf{z}_{i} \boldsymbol{\alpha} + \mathbf{x}_{it-s} \boldsymbol{\beta} + u_{i} + \varepsilon_{t-s}) + \gamma^{t} y_{i0}$$

$$= \frac{1 - \gamma^{t}}{1 - \gamma} (\mathbf{z}_{i} \boldsymbol{\alpha} + u_{i}) + \sum_{s} \gamma^{s} \mathbf{x}_{it-s} \boldsymbol{\beta} + [\varepsilon_{it} + \gamma \varepsilon_{it-1} + \dots + \gamma^{t-1} \varepsilon_{i1}] + \gamma^{t} y_{i0}$$

$$\Rightarrow y_{it}$$
 is a function of $\varepsilon_{it} \dots \varepsilon_{i1}$

$$\Rightarrow \overline{y}_{i}^{*} = \sum_{t=0}^{T_{i}-1} y_{it} / T_{i} \text{ is a function of } \varepsilon_{iT-1} \dots \varepsilon_{i1} \text{ and } y_{i0}$$
$$\Rightarrow y_{it} - \overline{y}_{i}^{*} \text{ is correlated with } \varepsilon_{it} - \overline{\varepsilon}_{i}$$
$$\Rightarrow \text{ bias in within-group regression coefficients}$$

Bias-correction approaches

- Bias in the dynamic within-group regression estimator:
 - Complicated mathematical form (Nickell, 1981)
 - generally negative for γ for small *T* (even if true γ is zero)
 - Pooled OLS, b-g & random effects also biased.
- It is possible to construct an (approximately) biascorrected within-group estimator, suitable even when *n* is only moderately large:
 - Bun & Kiviet (Ecs. Letters, 2003); Bruno (Ecs. Letters, 2005)
 - Stata module xtlsdvc (http://ideas.repec.org/c/boc/bocode/s450101.html)

A simple IV estimator

The within-group transform complicates estimation with lagged endogenous variables. Consider time-differencing:

$$\Delta y_{it} = \Delta \mathbf{x}_{it} \mathbf{\beta} + \gamma \Delta y_{it-1} + \Delta \varepsilon_{it} , \qquad t = 2 \dots T_i \qquad (1)$$

The problem now is that the error term, $\Delta \varepsilon_{it} = \varepsilon_{it} - \varepsilon_{it-1}$ is a MA(1) process which contains ε_{it-1} , which is correlated with Δy_{it-1} .

 \Rightarrow Find a set of instruments correlated with Δy_{it-1} but uncorrelated with ε_{it-1}

⇒ All lagged \mathbf{x}_{it} and $y_{it-2} \dots y_{i0}$ are valid instruments if { ε_{it} } is serially independent

⇒ Simplest IV estimator (Anderson Hsiao) estimates (1), using instruments (\mathbf{x}_{it} , \mathbf{x}_{it-1} , \mathbf{x}_{it-2} , y_{it-2}).

⇒ We can only use observations $t = 2 \dots T_i$. Each extra lag used as an instrument loses us *n* observations.

 $\Rightarrow \text{ Once } \hat{\boldsymbol{\beta}}_{IV} \text{ is found, estimate } \boldsymbol{\alpha} \text{ by regressing } \overline{y}_i - \overline{\mathbf{x}}_i \hat{\boldsymbol{\beta}}_{IV} - \hat{\gamma} \overline{y}_i^* \text{ on } \mathbf{z}_i$

Problems with IV estimators

Suppose y_{it} is a random walk (e.g. Hall's (1978) form of the permanent income hypothesis: dynamic choice models based on Euler conditions).

 $\Rightarrow y_{it-2}$ is uncorrelated with Δy_{it-1} and is not a valid instrument

 \Rightarrow IV methods based on a differenced model won't work well if there is a near-unit root

Any method based solely on the differenced equation ignores potentially valuable information contained in the initial condition y_{i0}

What is the optimal point on the trade-off between the number of lags used as instruments and the number of time periods retained in the estimation sample?

System estimators

The time-differenced model:

$$\Delta y_{it} = \Delta \mathbf{x}_{it} \mathbf{\beta} + \gamma \Delta y_{it-1} + \Delta \varepsilon_{it} , \qquad t = 2 \dots T_i$$
(1)

This is a system of T_i -1 linear equations with cross-correlated errors (since $\Delta \varepsilon_{it}$ is correlated with $\Delta \varepsilon_{it-1}$ and $\Delta \varepsilon_{it+1}$)

There is also some (related) process generating the initial conditions, y_{i0} and y_{i1} , which could provide further equations.

A different number of instruments is available for each of the equations in (1):

E.g. the equation for
$$t = 2$$
 has only $(\mathbf{x}_{i0} \dots \mathbf{x}_{iT}, y_{i0})$;
the equation for $t = T_i$ has $(\mathbf{x}_{i0} \dots \mathbf{x}_{iT}, y_{i0} \dots y_{iT-2})$.

NB it's assumed here that \mathbf{x}_{i0} is observable

Generalised method of moments

IV estimators are members of the class of GMM estimators *e.g.* the 2SLS estimator, $\hat{\boldsymbol{\beta}}_{IV} = (\mathbf{X}'\mathbf{Q}(\mathbf{Q}'\mathbf{Q})^{-1}\mathbf{Q}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Q}(\mathbf{Q}'\mathbf{Q})^{-1}\mathbf{Q}'\mathbf{y}$ is the following M-estimator:

$$\hat{\mathbf{B}}_{IV} = \arg\min_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' \mathbf{Q} (\mathbf{Q}'\mathbf{Q})^{-1} \mathbf{Q}' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
$$= \arg\min_{\boldsymbol{\beta}} \hat{\mathbf{m}} (\mathbf{y}, \mathbf{x}, \boldsymbol{\beta})' \mathbf{V}^{-1} \hat{\mathbf{m}} (\mathbf{y}, \mathbf{x}, \boldsymbol{\beta})$$

where $\hat{\mathbf{m}}$ is the "sample analogue", $n^{-1}\mathbf{Q}'(\mathbf{y}-\mathbf{X}\boldsymbol{\beta})$, of a moment, $E\mathbf{q}'\varepsilon$, assumed to be zero in the population.

V is a weighting matrix proportional to the asymptotic covariance matrix of the moment condition (in this standard 2SLS example $\sigma_{\varepsilon}^{2}\mathbf{Q'Q}$, where σ_{ε}^{2} is the residual variance).

GMM can be extended to any number of moment conditions

University of Essex

Arellano-Bond GMM (1991)

We have T_i -2 differenced equations (1). The instruments for equation t are:

 $\mathbf{q}_{it} = (\mathbf{x}_{i0}...\mathbf{x}_{iT}, y_{i0}...y_{it-2})$ Full set of moment conditions:

$$E \mathbf{q}_{i2} \Delta \varepsilon_{i2} = 0 \qquad (T_i + 1)k_x + 1 \text{ conditions} \\ E \mathbf{q}_{i3} \Delta \varepsilon_{i3} = 0 \qquad (T_i + 1)k_x + 2 \text{ conditions}$$

 $E \mathbf{q}_{iT} \Delta \varepsilon_{iT} = 0$ $(T_i + 1)k_x + T_i - 1$ conditions

 $\hat{\mathbf{m}}$ is a $[(T_i+1)(T_i-1)k_x + T_i(T_i-1)/2] \times 1$ moment vector The optimal choice for **V** is $E\hat{\mathbf{m}}_i\hat{\mathbf{m}}_i$ '

More conditions can be added (*e.g.* for z_i and to impose the homoskedasticity assumption on ε_{it}). *But* GMM often works badly in finite samples with many moment conditions.

University of Essex

Further developments: initial conditions

Arellano-Bond ignores the initial conditions y_{i0} and y_{i1} and only uses moment conditions for $\Delta y_{i2} \dots \Delta y_{iT}$.

To progress further, we need additional assumptions about the initial conditions. One possibility is:

Equilibrium initial values. If the process is homogeneous and long-established:

$$y_{i0} = \frac{\mathbf{Z}_i \boldsymbol{\alpha} + \boldsymbol{u}_i}{1 - \gamma} + \sum_{s=0}^{\infty} \gamma^s \left(\mathbf{X}_{i,-s} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{i,-s} \right)$$

 \Rightarrow Coefficient of u_i in equation for y_{i0} is $(1-\gamma)^{-1}$ \Rightarrow But the quantity $\sum_{s=0} \gamma^s \mathbf{x}_{i,-s}$ is unobserved \Rightarrow Also, do people really have infinite pasts?

If lagged levels of y_{it} are poor instruments for Δy_{it-1} , can we go back to using the equations in level form? University of Essex

Extended system methods

Arellano & Bover (1995) and Blundell & Bond (1998) (see also Bhargava & Sargan, 1983) suggested using the model in *both* differenced and levels form to generate GMM moment conditions.

Question: in the levels model

$$y_{it} = \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + \gamma y_{it-1} + u_i + \varepsilon_{it}$$
,

is there a good instrument for y_{it-1} ? This instrument must be uncorrelated with u_i as well as ε_{it} .

A&B suggested Δy_{it-1} , *etc*. The instrument validity condition is $E[\Delta y_{it-1} (u_i + \varepsilon_{it})] = 0$, which in turn requires (see B&B, 1998):

$$E u_i [y_{i0} - u_i/(1-\gamma)] = 0$$
 and $E u_i \Delta \varepsilon_{it} = 0$

The former is a strong assumption but, if true, improves estimation precision dramatically in highly-persistent models (*i.e.* when $\gamma \approx 1$)

Example

Model:

 $Ln \ wage_{it} = \alpha_0 + \alpha_1 \ Female_i + \alpha_2 \ Education \ beyond \ GCSE_i + \alpha_2 \ Cohort_i \\ + \beta_1 \ Age_{it} + \beta_2 \ Job \ tenure_{it} + \gamma \ Ln \ wage_{it-1} + u_i + \varepsilon_{it}$

Estimate by:

- Within-group regression
- Arellano-Bond
- Blundell-Bond

Note: this is a poor model

- Significant differences between Arellano-Bond & Blundell-Bond
- Significant Sargan χ^2 test for instrument validity for both
- Significant 2nd-order autocorrelation in Blundell-Bond
- ⇒ Investigate higher-order dynamics, omitted variables, endogenity issues?

Within-group regression

xtreg logearn l.logearn age postGCSE2 tenure female cohort, fe

Fixed-effects Group variable		ression		Number c Number c	of obs = of groups =	= 25419 = 5798
betweer	= 0.1407 n = 0.1217 l = 0.1337			Obs per	group: min = avg = max =	4.4
corr(u_i, Xb)	= -0.0940			F(3,1961 Prob > F		= 1070.88 = 0.0000
logearn	Coef.	Std. Err.	t	P>/t/	[95% Conf.	Interval]
logearn L1. age postGCSE2 tenure female cohort _cons	.1918289 .0209275 (dropped) .0001329 (dropped) (dropped) .797273	.006843 .0005674 .0004798 .0220869	28.03 36.88 0.28 36.10	0.000 0.782	.178416 .0198154 0008076 .7539808	.2052417 .0220397 .0010734 .8405652
sigma_u sigma_e rho		(fraction d	of variar	nce due to	o u_i)	

Arellano-Bond

. xtabond2 logearn l.logearn age tenure, gmm(l.logearn) iv(age tenure) noleveleq Favoring speed over space. See help matafavor.

Arellano-Bond dynamic panel-data estimation, one-step difference GMM results

Group variable Time variable Number of inst Wald chi2(3) Prob > chi2	: year cruments = 38 = 563.04			Number	of obs = of groups = group: min = avg = max =	4658 1 3.60
/ /	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
logearn	,					
L1.	.1265653	.0209072	6.05	0.000	.0855879	.1675427
age	.02477	.0014812	16.72	0.000	.0218669	.0276731
tenure	0001292	.0006587	-0.20	0.844	0014203	.0011618
Sargan test of	overid. rest	rictions: ci	 hi2(35) =	155.31	Prob > chi	2 = 0.000
Arellano-Bond Arellano-Bond		-				

Blundell-Bond

. xtabond2 logearn l.logearn age tenure, gmm(l.logearn) iv(age tenure) Favoring speed over space. See help matafavor.

Arellano-Bond dynamic panel-data estimation, one-step system GMM results

Group variable	: pid			Number	of obs =	25419
Time variable	: year			Number	of groups =	5798
Number of inst	ruments = 46			Obs per	group: min =	- 1
Wald chi2(3)	= 221.24				avg =	4.38
Prob > chi2	= 0.000				max =	. 9
/	Coef.	Std. Err.	 Z	 P> z	[95% Conf.	Interval]
, +						
logearn						
L1. /	.2873673	.0199367	14.41	0.000	.248292	.3264426
age	1.08e-06	.00028	0.00	0.997	0005477	.0005498
tenure	0017568	.0005668	-3.10	0.002	0028677	0006458
_cons	1.449055	.0395529	36.64	0.000	1.371533	1.526578
Sargan test of	overid. rest	crictions: c	 hi2(42) =	= 131.85	Prob > chi	.2 = 0.000
Arellano-Bond	test for AR(2	1) in first (differend	ces: z =	-38.07 Pr >	z = 0.000

Arellano-Bond test for AR(2) in first differences: z = 2.84 Pr > z = 0.005
