EC968 Panel Data Analysis

Steve Pudney ISER

Lecture 2: Linear regression for panel data

- Within-group ("fixed effects") regression
- Asymptotics for short panels
- Random effects regression
- Testing the zero covariance assumption

Linear regression for panel data

The "standard" panel data model is:

 $y_{it} = \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_i + \varepsilon_{it}$

We have observations indexed by $t = 1 \dots T_i$, $i = 1 \dots n$.

• A pooled regression of *y* on **z** and **x** ignores the individual effect *u*, and therefore isn't appropriate.

• The u_i can be captured using dummy variables. Construct a set of n dummy variables $D1_{it} \dots Dn_{it}$, where:

 $Dr_{it} = 1$ if i = r and 0 otherwise, for $r = 1 \dots n$ Thus Dr_{it} tells us whether observation i, t relates to person r. •The model is now:

 $y_{it} = \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_1 D \mathbf{1}_{it} + \dots + u_n D n_{it} + \varepsilon_{it}$ Thus $u_1 \dots u_n$ are now seen as the coefficients of a set of n dummy variables.

Shortcut calculation of the dummy variable regression

- The Frisch-Waugh theorem on partitioned regression tells us that a multiple regression of y on (\mathbf{z} , \mathbf{x}) and ($D1 \dots Dn$) can be done in two stages:
- **Stage 1**: regress *y* on (*D*1 ... *Dn*) and each of the variables in (**z** , **x**) on (*D*1 ... *Dn*); replace *y* and (**z** , **x**) by their residuals from these regressions \Rightarrow *y*^{*} and (**z**^{*} , **x**^{*}) **Stage 2**: regress *y*^{*} on (**z**^{*} , **x**^{*})

It can be shown that, in our case, the residuals y^* and $(\mathbf{z}^*, \mathbf{x}^*)$ are:

$$y_{it}^{*} = y_{it} - \overline{y}_{i}$$
$$\mathbf{x}_{it}^{*} = \mathbf{x}_{it} - \overline{\mathbf{x}}_{i}$$
$$\mathbf{z}_{i}^{*} = \mathbf{z}_{i} - \overline{\mathbf{z}}_{i} \equiv \mathbf{0}$$

Thus, least-squares dummy variables (LSDV) is equivalent to a regression of $y_{it} - \overline{y}_i$ on $\mathbf{x}_{it} - \overline{\mathbf{x}}_i$, with \mathbf{z} eliminated from the model (since \mathbf{z} is collinear with $D1 \dots Dn$).

University of Essex

Another interpretation of LSDV

Start differently, by thinking how we can cope with u_i We don't know its statistical properties, so let's try to eliminate it from the model. We can eliminate it in various ways, for example:

Time differencing: $y_{it} - y_{it-1} = (\mathbf{x}_{it} - \mathbf{x}_{it-1})\mathbf{\beta} + \varepsilon_{it} - \varepsilon_{it-1}$ or

Within-group transform: $y_{it} - \overline{y}_i = (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)\mathbf{\beta} + \varepsilon_{it} - \overline{\varepsilon}_i$

The Frisch-Waugh theorem tells us that the withingroup approach is the most efficient in the least squares sense

A note on terminology

Different names are commonly used for this one estimation method:

- Least squares dummy variables (LSDV)
- •Within-group regression
- Fixed-effects regression
- Covariance analysis regression
- •"LSDV" refers to the method of derivation using explicit dummy variables;
- "within-group" refers to the type of data transform implied by the method;

• "fixed effects" is common but very poor terminology which suggests (wrongly, in the case of sample survey data) that the u_i are fixed parameters

• "covariance analysis" reflects the origins of the method as a generalisation of analysis of variance used in agricultural experiments

Coefficient estimates

The within-group regression is:

$$\hat{\boldsymbol{\beta}} = \mathbf{W}_{xx}^{-1}\mathbf{W}_{xy} = \boldsymbol{\beta} + \mathbf{W}_{xx}^{-1}\mathbf{W}_{x\varepsilon}$$

where \mathbf{W}_{xx} , \mathbf{w}_{xy} and $\mathbf{w}_{x\varepsilon}$ are within-group moment matrices: $n T_i$

$$\mathbf{W}_{xx} = n^{-1} \sum_{i=1}^{n} \sum_{t=1}^{i} \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i} \right)' \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i} \right)$$
$$\mathbf{W}_{x\varepsilon} = n^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T_{i}} \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i} \right)' \left(\varepsilon_{it} - \overline{\varepsilon}_{i} \right)$$

If \mathbf{x}_{it} and ε_{it} are uncorrelated, $\mathbf{E}(\mathbf{w}_{x\varepsilon}) = \mathbf{0}$, so: $E\hat{\mathbf{\beta}} = \mathbf{\beta}$

Residuals

There are two residuals for the within-group regression:

$$\hat{e}_{i} = \overline{y}_{i} - \overline{\mathbf{x}}_{i}\hat{\mathbf{\beta}}$$
$$\hat{\varepsilon}_{it} = (y_{it} - \overline{y}_{i}) - (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i})\hat{\mathbf{\beta}} = y_{it} - \mathbf{x}_{it}\hat{\mathbf{\beta}} - \hat{e}_{i}$$

 \hat{e}_i is an estimate of $\mathbf{z}_i \alpha + u_i$; $\hat{\varepsilon}_{it}$ is an estimate of ε_{it}

Since $\hat{\mathcal{E}}_{it}$ is the residual from a multiple regression, its sample variance is an unbiased estimator of σ_{ε}^2 under the classical assumptions of independent sampling of individuals and:

$$E\varepsilon_{it} = 0; \quad E\varepsilon_{it}^{2} = \sigma_{\varepsilon}^{2}$$
$$E\mathbf{x}_{is}\varepsilon_{it} = \mathbf{0} \quad \text{for all } i, s, t$$
$$E\varepsilon_{is}\varepsilon_{it} = 0 \quad \text{for all } i, s \neq t$$

Estimation of α

The residual \hat{e}_i can be written:

$$\hat{e}_{i} = \overline{y}_{i} - \overline{\mathbf{x}}_{i}\hat{\boldsymbol{\beta}} = \left(\mathbf{z}_{i}\boldsymbol{\alpha} + \overline{\mathbf{x}}_{i}\boldsymbol{\beta} + u_{i} + \overline{\varepsilon}_{i}\right) - \overline{\mathbf{x}}_{i}\hat{\boldsymbol{\beta}}$$
$$= \mathbf{z}_{i}\boldsymbol{\alpha} + u_{i} + \overline{\varepsilon}_{i} - \overline{\mathbf{x}}_{i}\left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)$$

Since \hat{e}_i is an estimate of $\mathbf{z}_i \mathbf{\alpha} + u_i$, we could regress it on \mathbf{z}_i to estimate $\mathbf{\alpha}$. (Use T_i repeated observations on the group means for individual *i*, to weight individuals appropriately). This gives:

$$\hat{\boldsymbol{\alpha}} = \mathbf{B}_{zz}^{-1} \mathbf{b}_{z\hat{e}}$$

where \mathbf{B}_{xx} *etc.* are between-group cross-product matrices:

$$\mathbf{B}_{zz} = \sum_{i=1}^{n} \sum_{t=1}^{T_i} \overline{\mathbf{z}}' \overline{\mathbf{z}} = \sum_{i=1}^{n} T_i \overline{\mathbf{z}}' \overline{\mathbf{z}}; \quad \mathbf{b}_{z\hat{e}} = \sum_{i=1}^{n} \sum_{t=1}^{T_i} \overline{\mathbf{z}}' \hat{e}_i$$

Estimation of $\hat{\alpha}$

Rewrite $\hat{\boldsymbol{\alpha}}$ as:

$$\hat{\boldsymbol{\alpha}} = \mathbf{B}_{zz}^{-1} \mathbf{b}_{z\hat{e}} = \boldsymbol{\alpha} + \mathbf{B}_{zz}^{-1} \mathbf{b}_{zu} + \mathbf{B}_{zz}^{-1} \mathbf{b}_{z\varepsilon} - \mathbf{B}_{zz}^{-1} \mathbf{B}_{zx} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

But $\hat{\boldsymbol{\beta}}$ is unbiased and we assume \mathbf{z}_i is uncorrelated with ε_{it} , so:

$$E\hat{\boldsymbol{\alpha}} = \boldsymbol{\alpha} + E\left(\mathbf{B}_{zz}^{-1}\mathbf{b}_{zu}\right)$$

Thus $\hat{\boldsymbol{\alpha}}$ is only unbiased if u_i and \mathbf{z}_i are uncorrelated.

Estimation of σ_u^2

One way is to use the between-group regression. Replace each observation by the individual mean:

$$\overline{y}_{i} = \mathbf{z}_{i}\boldsymbol{\alpha} + \overline{\mathbf{x}}_{i}\boldsymbol{\beta} + u_{i} + \overline{\varepsilon}_{i}, \qquad i = 1...n; t = 1...T_{i}$$

Estimator: $\begin{pmatrix} \hat{\boldsymbol{\alpha}} \\ \hat{\boldsymbol{\beta}} \end{pmatrix} = \begin{pmatrix} \mathbf{B}_{zz} & \mathbf{B}_{zx} \\ \mathbf{B}_{xz} & \mathbf{B}_{xx} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{b}_{zy} \\ \mathbf{b}_{xy} \end{pmatrix}$

The residual variance is an estimate of $\overline{T}\sigma_u^2 + \sigma_{\varepsilon}^2$ so:

$$\hat{\sigma}_u^2 = \frac{s_B^2 - s_W^2}{\overline{T}}$$

where s_B^2 and s_W^2 are the b-g and w-g residual variances and \overline{T} is the mean no. of observations per individual.

Note that $\hat{\sigma}_u^2$ may be negative!

Asymptotics for short panels

For panel data arising from repeated surveys, *n* is usually much larger than $T = \max(T_i)$. This suggests using asymptotic theory based on $n \to \infty$, with all T_i fixed.

Incidental parameters problem: If we regard the unobserved effects $u_1 \dots u_n$ as parameters to be estimated, then the dimension of the parameter space $\rightarrow \infty$ as $n \rightarrow \infty$. Standard asymptotic theory doesn't work in this case.

Consistency of within-group estimator:

$$\lim_{n \to \infty} \hat{\boldsymbol{\beta}}_{W} = \boldsymbol{\beta} + \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T_{i}} \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i} \right)^{\prime} \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i} \right) \right)^{-1} \\ \times \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T_{i}} \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i} \right)^{\prime} \left(\varepsilon_{it} - \overline{\varepsilon}_{i} \right) \right) \\ = \boldsymbol{\beta} + \left(\lim_{n \to \infty} \mathbf{W}_{xx} \right)^{-1} \times \mathbf{0} = \boldsymbol{\beta}$$

Example of panel data estimation

The Stata command *xtreg* computes within-group and between-group regressions

Example: within- and between-group regressions of log earnings on age, year of birth and time, allowing for unobserved individual effects:

> gen age=year-cohort gen logearn=ln(w_hr) xtreg logearn age cohort year, fe xtreg logearn age cohort year, be

Stata output: within-group regression

. xtreg logearn age cohort year, fe

Fixed-effects Group variable	-	ression			obs groups		24 359
	= 0.1255 n = 0.0027 L = 0.0064			Obs per g	group: min avg max	= 3	1 8.6 11
corr(u_i, Xb)	= -0.4165			F(1,15264 Prob > F		= 2191. = 0.00	
logearn	Coef.	Std. Err.	t	P> t	[95% Con	f. Interva	.l]
age cohort year		.000647	46.81	0.000	.0290174	.03155	36
_cons		.0249395	36.10	0.000	.8515345	.94930	133
sigma_u sigma_e rho		(fraction o	of variar	nce due to	u_i)		
F test that a			17.98	Prob	> F = 0.00	00	
		08/	02/2007 (14)			ISE	<

Stata output: between-group regression

. xtreg logearn age cohort, be

Between regres Group variable		sion on group	p means)		of obs = of groups =	
betweer	= 0.1255 n = 0.0027 L = 0.0081			Obs per	group: min = avg = max =	3.6
sd(u_i + avg(e_i.))= .5556311				F(2,585 Prob > 1		7.92 0.0004
logearn		Std. Err.	t	P> t	[95% Conf.	Interval]
age cohort _cons	.0039101 .0010323 2244308	.0026781 .0024038 4.808276	1.46 0.43 -0.05	0.144 0.668 0.963	0013401 0036801 -9.650426	

Important points

• The within-group R^2 is much higher than the between-group R^2

⇒ the covariate *age* (and/or *year* and/or *cohort*) "explains" a reasonable amount of the pay variation over time for a given individual ⇒ but pay differences between individuals are not

 \Rightarrow but pay differences between individuals are not closely related to age and cohort

• The large coefficient differences between the withinand between-group age coefficients suggest that a single regression model with classical assumptions doesn't fit the evidence very well

'Random effects' GLS & ML estimation

• In general, since individuals are sampled at random from the population, u_i (and all other variables) are random: so "random effects" is tautological

• Extract the overall mean from u_i :

 $y_{it} = \alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_i + \varepsilon_{it}$

•We may choose to assume that u_i is mean-independent of \mathbf{z}_i and \mathbf{X}_i (implying also zero correlation):

 $\mathbf{E}(u_i \mid \mathbf{z}_i, \mathbf{X}_i) = \mathbf{0}$

• Assume homoskedasticity and uncorrelatedness

$$\mathbf{E}(u_i^2 \mid \mathbf{z}_i, \mathbf{X}_i) = \sigma_u^2 ; \mathbf{E}(u_i \varepsilon_{it} \mid \mathbf{z}_i, \mathbf{X}_i) = 0 \quad \forall t$$

• Then write the composite random disturbance as:

 $v_{it} = u_i + \varepsilon_{it}$

•What is the covariance matrix of the process $\{v_{it}\}$?

University of Essex

Random effects covariance structure

Variances & covariances (conditional on \mathbf{z}_i , \mathbf{X}_i) :

$$\operatorname{var}(v_{it}) = \sigma_u^2 + \sigma_\varepsilon^2; \quad \operatorname{cov}(v_{it}, v_{is}) = \sigma_u^2 \quad \forall \ s \neq t$$

Define the $T_i \times 1$ vector \mathbf{v}_i with elements $v_{i1} \dots v_{iT}$. Note that \mathbf{v}_i and \mathbf{v}_i are independent for $i \neq j$. The covariance matrix of \mathbf{v}_i is:

$$\mathbf{\Omega}_i = \sigma_{\varepsilon}^2 \mathbf{I} + \sigma_{u}^2 \mathbf{E}$$

where **I** is the identity matrix and **E** is a matrix with each element equal to 1, both of order $T_i \times T_i$.

Lemma: the inverse of Ω_i is:

$$\mathbf{\Omega}_{i}^{-1} = \frac{1}{\sigma_{\varepsilon}^{2}} \left(\mathbf{I} - \frac{T_{i}\sigma_{u}^{2}}{\sigma_{\varepsilon}^{2} + T_{i}\sigma_{u}^{2}} \left(T_{i}^{-1}\mathbf{E} \right) \right) = \frac{1}{\sigma_{\varepsilon}^{2}} \left(\mathbf{M}_{W} + \psi_{i}\mathbf{M}_{B} \right)$$

Within- and between-group transformations

$$\mathbf{\Omega}_{i}^{-1} = \frac{1}{\sigma_{\varepsilon}^{2}} \left(\mathbf{M}_{W} + \psi_{i} \mathbf{M}_{B} \right)$$

The **M**-matrices are:

$$\mathbf{M}_{W} = \mathbf{I} - T_{i}^{-1}\mathbf{E}$$
$$\mathbf{M}_{B} = T_{i}^{-1}\mathbf{E}$$

 \mathbf{M}_W is the $T_i \times T_i$ idempotent matrix that transforms a $T_i \times 1$ vector of data to within-group mean deviation form;

 \mathbf{M}_{B} is the idempotent transformation to a $T_{i} \times 1$ vector of repeated means (the between-group transform).

The scalar $\psi_i = \sigma_{\varepsilon}^2 / (\sigma_{\varepsilon}^2 + T_i \sigma_u^2)$ reflects the relative size of $T_i \sigma_u^2$ and σ_{ε}^2 .

Generalised Least Squares

For simplicity, subsume \mathbf{z}_i within \mathbf{x}_{it} . Then GLS is:

$$\hat{\boldsymbol{\beta}}_{GLS} = \left(\sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{\Omega}_{i}^{-1} \mathbf{X}_{i}\right)^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{\Omega}_{i}^{-1} \mathbf{y}_{i}$$

$$= \left(\sum_{i=1}^{n} \left[\mathbf{W}_{xxi} + \psi_{i} \mathbf{B}_{xxi}\right]\right)^{-1} \sum_{i=1}^{n} \left[\mathbf{w}_{xyi} + \psi_{i} \mathbf{b}_{xyi}\right]$$
where $\mathbf{W}_{xxi} = \sum_{t=1}^{T_{i}} \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}\right) \mathbf{x}_{it} - \overline{\mathbf{x}}_{i}, \quad \mathbf{B}_{xxi} = T_{i} \overline{\mathbf{x}}_{i} \mathbf{x}_{i}, \text{ etc.}$

So GLS uses both within-group and between-group variation, but weights them according to the relative sizes of $\sigma_{\varepsilon}^2 + T_i \sigma_{\mu}^2$ and σ_c^2 .

Note that $\lim_{T_i \to \infty} \psi_i = 0$, so between-group variation is unimportant in a long panel

University of Essex

Feasible GLS

Separate out z and x again. It can be shown that GLS is equivalent to the following procedure:

(1) Transform the data:

$$y_{it}^{+} = y_{it} - \theta_i \overline{y}_i; \quad \mathbf{z}_i^{+} = (1 - \theta_i) \mathbf{z}_i; \quad \mathbf{x}_{it}^{+} = \mathbf{x}_{it} - \theta_i \overline{\mathbf{x}}_i$$

where:

$$\theta_{i} = 1 - \sqrt{\frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} + T_{i}\sigma_{u}^{2}}}$$

(2) Regress y_{it}^+ on $(\mathbf{z}_i^+, \mathbf{x}_{it}^+)$, pooling all observations

The variance parameters σ_{ε}^2 and σ_{u}^2 can be estimated from the within-group and between-group regression residuals.

Maximum likelihood

The log-likelihood function is:

$$L(\alpha_0, \boldsymbol{\alpha}, \boldsymbol{\beta}, \sigma_{\varepsilon}^2, \sigma_u^2) = const - \frac{1}{2} \sum_{i=1}^n \ln \det \boldsymbol{\Omega}_i - \frac{1}{2} \sum_{i=1}^n \mathbf{v}_i ' \boldsymbol{\Omega}_i^{-1} \mathbf{v}_i$$

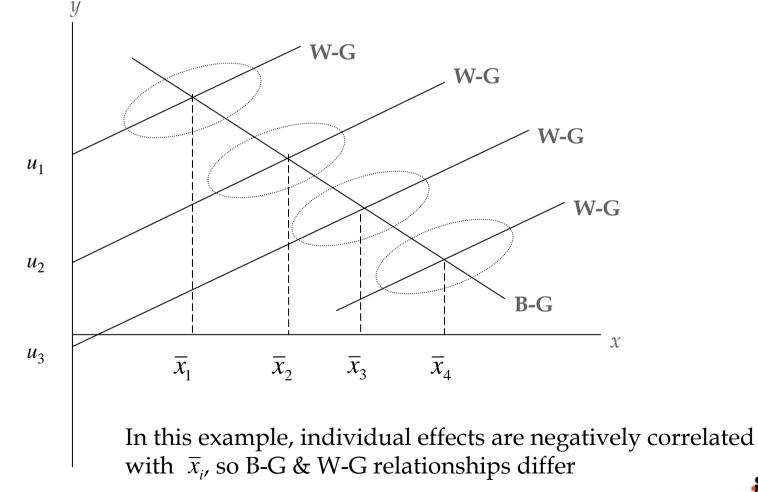
This can be maximised numerically to estimate all parameters simultaneously

ML and feasible GLS are asymptotically equivalent as $n \rightarrow \infty$, with each T_i fixed.

In Stata, the command *xtreg* has various options:

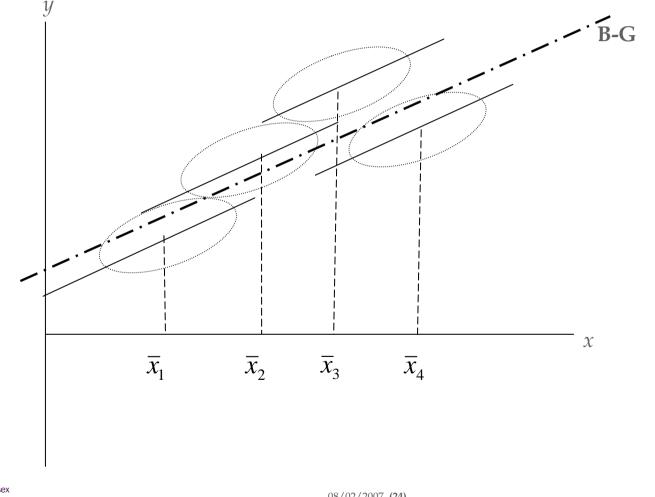
,fe for within-group *,be* for between-group *,re* for random effects (feasible GLS) *,mle* for random effects (ML)

Within- & between-group relationships: correlated individual effects



08/02/2007 (23)

Within- & between-group relationships: uncorrelated individual effects



ISER

Testing the hypothesis of uncorrelated effects

The random effects estimator (and any estimator that uses between-group variation) is only consistent as $n \rightarrow \infty$ if the following hypothesis is true:

$$H_0: \quad \mathbf{E}(u_i \mid \mathbf{z}_i, \mathbf{X}_i) = 0$$

$$H_1: \quad \mathbf{E}(u_i \mid \mathbf{z}_i, \mathbf{X}_i) \neq 0$$

It is important to test H_0 . There are many equivalent ways of doing so:

(1) Hausman parameter contrast test: $(\hat{\boldsymbol{\beta}}_{W} - \hat{\boldsymbol{\beta}}_{GLS})' [cov(\hat{\boldsymbol{\beta}}_{W}) - cov(\hat{\boldsymbol{\beta}}_{GLS})]^{-1} (\hat{\boldsymbol{\beta}}_{W} - \hat{\boldsymbol{\beta}}_{GLS})$ $\sim \chi^{2}(k_{x})$ under H_{0}

(2) Mundlak approach: estimate the model

$$y_{it} = \alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + \overline{\mathbf{x}}_i \boldsymbol{\gamma} + u_i + \varepsilon_{it}$$

by GLS and test H_0 : $\boldsymbol{\gamma} = \mathbf{0}$. (NB: $\hat{\boldsymbol{\beta}}_{GLS} \equiv \hat{\boldsymbol{\beta}}_W$ in this case)

University of Essex

Example: BHPS feasible GLS RE model

. xtreg logearn age cohort, re

Random-effects Group variable	-	lon			of obs of groups		
	= 0.1255 = 0.0011 = 0.0131			Obs per			3.6
Random effects corr(u_i, X)							2109.10 0.0000
logearn	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
age cohort _cons	.0288609 .0226111 -43.445		26.88	0.000		27	.0242595
sigma_u sigma_e rho	.24397993	(fraction	of variar	nce due to			

Example: BHPS Hausman test

. hausman within re

Coefficients						
	(b) within	(B) re	(b-B) Difference	<pre>sqrt(diag(V_b-V_B)) S.E.</pre>		
age	.0302855	.0288609	.0014245	.0001446		
В				obtained from xtreg obtained from xtreg		

Test: Ho: difference in coefficients not systematic

chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 97.05 Prob>chi2 = 0.0000

