Identifying Neighborhood Effects on Unemployment in the French Case

Florence Goffette-Nagot

GATE - CNRS - Université de Lyon Claire Dujardin IWEPS

Workshop "Addressing Methodological Challenges in the Neighbourhood Effects Research"

Nuffield Foundation, London, 22nd March 2019

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Motivation

- Neighborhood composition (education, unemployment, ...) may impact individuals' labour market outcomes through lack of role models, role of social networks in the job search process, ...
- ⇒ Does living in a deprived neighborhood impact individual's unemployment risk?
 - Important in order to better design **public policies** aimed at fighting unemployment in deprived neighbourhoods
 - If there are NE, helping unemployed individuals move to other neighbourhoods could be efficient
 - If not, bringing new jobs into these neighborhoods might be better
 - Are urban renewal policies efficient tools to fight unemployment in these areas-?

< 日 > < 同 > < 三 > < 三 > <

Existing literature on neighbourhood effects

• **Mechanisms** behind neighborhood effects: see e.g. survey by Gobillon et al., Urban Studies, 2007

Existing evaluations:

no consistent evidence; clearly depends on the identification strategy and context $% \left({{{\boldsymbol{x}}_{i}}} \right)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Our contribution

• Two papers:

- Dujardin C., Goffette-Nagot F., 2010, Neighborhood effects on unemployment? A test à la Altonji, *Regional Science and Urban Economics*.
- Dujardin C., Goffette-Nagot F., 2009, Does public housing occupancy increase unemployment?, *Journal of Economic Geography*.

• Method:

- Estimate the effect of "living in deprived neighb." or "in public housing" (0/1) in a probit equation of unemployment (0/1).
 ⇒ probit estimates are biased.
- Use two different identification methods to obtain the causal impact
- Results:
 - No detrimental impact of public housing and living in a deprived neighbourhood on unemployment

< 日 > < 同 > < 三 > < 三 > <

Definition of deprived neighbourhoods in Lyon (1/2)

• Data and sample

- Urban agglomeration of Lyon
- French population census, 1999 (1:20th sample, detailed personal and household characteristics)
- Sample: male heads of couple households aged 19-64 (10,473 indiv.)

• Definition of deprived neighborhoods

- Basic spatial unit (neighbourhood): about 2000 inhabitants
- Deprivation continuous index: composite indicator based on a set of **socioeconomic indicators of population** (education, profession, unemployment, foreign nationality, single-mothers)
- ⇒ Deprivation binary variable: cut-off value to define the 25% most deprived neighbourhoods

- 4 目 ト 4 日 ト

Definition of deprived neighbourhoods in Lyon (2/2)

	Deprived	Others	Total
% Pub. housing	51.9	11.1	21.3
% Unemployed	20.3	9.6	12.3
% Foreigners	23.1	6.9	10.9
% University dip.	10.6	29.3	24.6
% Blue-collars	38.0	16.2	21.7

< □ > < 同 > < 回 > < 回 > < 回 >

Does living in one of these neighbourhoods increase per se unemployment probability?

Endogeneity issue: causes

- In the data, we observe a correlation between individual's unemployment probability and neighbourhood composition; three possible reasons:
 - **Reverse causality**: unemployed individuals are more likely to live in DN because of lower housing prices
 - **Sorting**: households' preferences for location may be correlated to preferences affecting outcomes on the labour market
 - Causal impact of neighbourhood quality on individual outcomes on the labour market
- Crucial to find a way to estimate the **causal impact**, not biased by the other two mechanisms

A (10) × (10)

Why looking for the causal impact?

- Crucial to be able to disentangle
 - Observing the **simultaneous variation of** *DN_i* **and** *U_i* with changes in unobserved characteristics (*u_i*)
 - Identifying the **causal effect** living in a deprived neighbourhood (DN_i) on the likelihood to be unemployed (U_i)
- Only the causal impact can be considered as valid for any individual and could be obtained for a different population
- To obtain the causal impact:

compare individuals with the same observed and unobserved characteristics (u_i) , in deprived/other neighbourhoods

・ 同 ト ・ ヨ ト ・ ヨ ト

Endogeneity issue: vocabulary

- Correlation between unobservables, or selection/sorting based on unobservables: individuals have unobserved traits (i.e. not observed in the data), that make them locate in deprived/undeprived neighb. and affect their outcome on the labour market
- Probit estimation gives a **naive estimate**: the model is estimated ignoring the correlation of unobservables affecting location and unemployment
- Unbiased estimate: reflects the causal impact of living in public housing on unemployment
- Identification strategy: a way to identify the causal impact

・ 同 ト ・ ヨ ト ・ ヨ ト

Three possible identification strategies

Take public housing tenants?

- Motivation: PH tenants do not choose their housing unit, so its exact location is not correlated with their unobserved characteristics
- But, not all eligible households apply to PH; moreover, when people are offered a dwelling, they can refuse it if they dislike the location
- In the end, the location of PH tenants is likely to be correlated with their unobservables (preference for the present, ...)
- \Rightarrow Not a valid identification strategy in the French case

Three possible identification strategies

Take public housing tenants?: no

- Use an instrumental variable method: find something that produces a shift in location choices, but without impacting labour market outcomes: individuals at the margin will shift between deprived/other neighborhoods when this variable changes; allows to compare individuals affected and not affected by this shift
- Altonji's method: Make hypotheses on the strength of sorting into locations and look at the impacts on the estimated effect

< □ > < 同 > < 回 > < 回 > < 回 >

Three possible identification strategies

Take public housing tenants?: no

- Use an instrumental variable method: find something that produces a shift in location choices, but without impacting labour market outcomes: individuals at the margin will shift between deprived/other neighborhoods when this variable changes; allows to compare individuals affected and not affected by this shift
- Altonji's method: Make hypotheses on the strength of sorting into locations and look at the impacts on the estimated effect

- 4 回 ト 4 三 ト 4 三 ト

Identification strategy 1: Instrumental variables

• Use an instrumental variable method: find a variable that impacts the likelihood for households to live in PH or DN, without being correlated to unemployment probability

• Three different instruments

• On a national sample: the **share of PH** varies widely across cities in France; it impacts significantly the probability to be in PH, and there is no reason for it to be correlated to individual unobservables

• On Lyon sample:

- Having **2 children of mixed gender** decreases the probability to have a 3rd child, hence the probability to live in PH (priority given to large families) and therefore in DN
- **Spouse's workplace**: when the spouse works in the eastern part of Lyon (where most of PH is located), the household is more likely to live in PH and DN

э

(日)

Identification strategy 1: Instrumental variables

• Use an instrumental variable method: find a variable that impacts the likelihood for households to live in PH or DN, without being correlated to unemployment probability

• Three different instruments

• On a national sample: the **share of PH** varies widely across cities in France; it impacts significantly the probability to be in PH, and there is no reason for it to be correlated to individual unobservables

• On Lyon sample:

- Having **2 children of mixed gender** decreases the probability to have a 3rd child, hence the probability to live in PH (priority given to large families) and therefore in DN
- **Spouse's workplace**: when the spouse works in the eastern part of Lyon (where most of PH is located), the household is more likely to live in PH and DN

э

イロト イボト イヨト イヨト

Identification strategy 1: Instrumental variables

• Use an instrumental variable method: find a variable that impacts the likelihood for households to live in PH or DN, without being correlated to unemployment probability

• Three different instruments

• On a national sample: the **share of PH** varies widely across cities in France; it impacts significantly the probability to be in PH, and there is no reason for it to be correlated to individual unobservables

• On Lyon sample:

- Having **2 children of mixed gender** decreases the probability to have a 3rd child, hence the probability to live in PH (priority given to large families) and therefore in DN
- **Spouse's workplace**: when the spouse works in the eastern part of Lyon (where most of PH is located), the household is more likely to live in PH and DN

< □ > < 同 > < 回 > < 回 > < 回 >

Identification strategy 2: Assumptions on selection into locations ("à la" Altonji)

Altonji et al.'s method

- The bias is due to correlation between unobservables that influence residential location and unemployment
- We don't know the actual **strength of this correlation** (i.e. sorting into locations) as it is by definition unobserved, but we can **make hypotheses**
- Assuming different correlation levels give different values for the impact of DN on U
 - Assume a zero correlation (probit estimate): higher bound of the estimated NE (i.e. there is no sorting, what we observe is indeed the results of NE)
 - Assume a large correlation (i.e. individuals in DN differ a lot in terms of unobservables impacting labour market outcomes): lower bound of the estimated NE

< 日 > < 同 > < 三 > < 三 > <

Identification with instruments - PH impact - First stage

	Lyon sample Population Census			
	(1)	(2)	(3)	
Probits models of public housing				
Girl+boy Four children or more	-0.1283 (0.0542)**	-0.1217 (0.0543)** 0.3438 (0.0737)***	-0.1289 (0.0544)**	
Moved within municipality Percentage of public housing in the urban unit			0.2557 (0.0528)***	
Log likelihood	-1944	-1934	-1932	
Pseudo R ²	0.255	0.259	0.259	
Number of observations	4849	4849	4849	
Test on instruments from GMM estima H0: all instruments zero	tion of linear probability	models		
1st stage F-test	5.13	14.41	13.89	
[p-value]	(0.024)	(0.000)	(0.000)	
H0: instruments orthogonal to error	term			
2nd stage overid, test Hansen J	_	0.771	1.466	
[p-value]		(0.379)	(0.266)	

Table 3. Coefficients estimated from probit models of public housing accommodation

Identification with instruments - Results for NE

Explained variable: dummy for being unemployed						
	All individuals		>= 2 children			
	Probit	Bivariate probit	Probit	Bivariate probit		
Deprived neighborhood	0.0213***	-0.0329	0.0265***	0.0026		
	(0.0063)	(0.0304)	(0.0082)	(0.0306)		
Instruments						
Spouse workplace		0.1123***		0.1335***		
		(0.0.212)		(0.0281)		
Girl-Boy				-0.0231*		
				(0.0136)		
Tests on instruments						
1st stage F [p-value]		28.57 [0.000]		12.25 [0.000]		
Overid. Hansen J [p-value]				0.530 [0.466]		
Correlation of residuals		0.301		0.133		
		(0.1932)		(0.1802)		

э

イロト イポト イヨト イヨト

Identification with instruments - Results for NE

Explained variable: dummy for being unemployed						
	All individuals		>= 2 children			
	Probit	Bivariate probit	Probit	Bivariate probit		
Deprived neighborhood	0.0213***	-0.0329	0.0265***	0.0026		
	(0.0063)	(0.0304)	(0.0082)	(0.0306)		
Instruments				· · · · ·		
Spouse workplace		0.1123***		0.1335***		
		(0.0.212)		(0.0281)		
Girl-Boy				-0.0231*		
				(0.0136)		
Tests on instruments						
1st stage F [p-value]		28.57 [0.000]		12.25 [0.000]		
Overid. Hansen J [p-value]				0.530 [0.466]		
Correlation of residuals		0.301		0.133		
		(0.1932)		(0.1802)		

э

イロト イポト イヨト イヨト

Identification with instruments - Results for NE

Explained variable: dummy for being unemployed						
	All individuals		>= 2 children			
	Probit	Bivariate probit	Probit	Bivariate probit		
Deprived neighborhood	0.0213***	-0.0329	0.0265***	0.0026		
	(0.0063)	(0.0304)	(0.0082)	(0.0306)		
Instruments						
Spouse workplace		0.1123***		0.1335***		
		(0.0.212)		(0.0281)		
Girl-Boy				-0.0231*		
				(0.0136)		
Tests on instruments						
1st stage F [p-value]		28.57 [0.000]		12.25 [0.000]		
Overid. Hansen J [p-value]				0.530 [0.466]		
Correlation of residuals		0.301		0.133		
		(0.1932)		(0.1802)		

э

イロト イポト イヨト イヨト

Identification à la Altonji - Results

1. Sensitivity analysis: how does the estimated effect react to different assumptions on ρ (i.e. intensity of sorting, or correlation of the unobserved parts of the two outcomes)?

$$\left(\begin{array}{ccc} U &=& 1(\alpha DN + X'\beta_1 + u_1 > 0) \\ DN &=& 1(X'\beta_2 + u_2 > 0) \\ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} &\sim & N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & \rho \\ \rho & 0 \end{bmatrix} \right) \end{array}$$

Hyp. on ρ	0.00	0.05	0.10	0.15	0.20
Result for $\hat{\alpha}$	0.0213***	0.0106*	0.0007	-0.0085*	-0.0172***
	(0.0063)	(0.0058)	(0.0054)	(0.0050)	(0.0045)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Identification à la Altonji - Results for NE

2. Selection on observables = selection on unobservables

$$\begin{cases} U = 1(\alpha DN + X'\beta_1 + u_1 > 0) \\ DN = 1(X'\beta_2 + u_2 > 0) \\ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & \rho \\ \rho & 0 \end{bmatrix}\right) \quad \text{with } \rho = \frac{Cov(X'\beta_2, X'\beta_1)}{Var(X'\beta_1)} \\ \hline \frac{Hyp. \text{ of equal selection}}{\hat{\alpha} & -0.1321^{***}} \\ \hat{\rho} & 0.8137 \end{cases}$$

- Observables (education, age, nationality) are important determinants of unemployment \rightarrow extreme hypothesis on the value of ρ
- $\Rightarrow\,$ Negative and unrealistic impact of DN
 - Bounds for the causal impact: [-0.1321 (equal sorting); 0.0213 (no sorting)]

Identification à la Altonji - Results for NE

3. Amount of selection required to entirely explain the probit estimate (in terms of sorting due to unobservables relative to sorting on observables)

$$\begin{cases} y_1 = 1(\alpha y_2 + X'\beta_1 + u_1 > 0) \\ y_2 = 1(X'\beta_2 + u_2 > 0) \\ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & \rho \\ \rho & 0 \end{bmatrix}\right) \\ \frac{E(u_1|y_2=1) - E(u_1|y_2=0)}{var(u_1)} = \lambda \frac{E(X'\beta_1|y_2=1) - E(X'\beta_1|y_2=0)}{var(X'\beta_1)} \end{cases}$$

Compute λ so that $\hat{\alpha} = 0$

Result $\lambda = 5.5\%$ is enough to explain the naive probit effect i.e. a low level of sorting is enough to produce the estimated effect

ヘロト ヘヨト ヘヨト

Conclusion

- Different identification methods. A choice to be made **depending on the context**.
- Altonji's method: no single impact, but gives bounds for the causal estimate; useful when no other identification method available, or to confirm the result of another method
- Heterogenous treatment effects: NE are likely to be more or less strong depending on individuals' characteristics. E.g. the impact might depend on individual's educational level.
- Instrumental variable estimates give a value for the Local Average Treatment Effect (LATE): the impact for individuals who are indeed likely to be affected by the instrument.
 - In our case: families with children, and not singles or elderly.
- Our results tend to show that in France, residential situation has no impact on unemployment probability. This does not rule out any other impact (crime, health, ...).