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1 Aim 
 
The aim of this Lesson is to show how to estimate models incorporating unobserved 
heterogeneity (or ‘frailty’ as biostatisticians label it).  
 

2 Introduction 
 
The models considered in this Lesson are a generalisation of those that we considered 
in Lessons 5 and 6.  
 

2.1 Model specification 
 
For the continuous time parametric models that we estimated in Lesson 5, we now 
write the hazard rate for each observation as  

θv(t, X)  ≡  θ(t, X | v) = θ(t, X).v 
where θ(t, X) is the hazard function considered earlier (and assuming an absence of 
time-varying covariates for now). Thus unobserved differences between observations 
are introduced via a multiplicative scaling factor, v. This is a random variable taking 
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on positive values, with the mean normalised to one (for identification reasons) and 
finite variance σ2. A crucial assumption in these models is that v is distributed 
independently of X and t.  
 
It can be shown that the frailty survivor function is related to the non-frailty one by 
the relationship: 

Sv(t, X)  ≡  S(t, X | v)  =  [S(t, X)]v. 
Thus unobserved differences also imply a scaling of the non-frailty survivor function. 
 
Observe that, for proportional hazards models, the frailty hazard rate may be written 
as  

θv(t, X)  ≡  θ(t, X | β, v) = θ0(t).exp(β′X).v = θ0(t).exp(β′X + u)  
or  

ln[θv(t, X)]  =  ln[θ0(t)]  +  β′X  +  u 
where θ0(t) is the baseline hazard function and the ‘error’ term u ≡ ln(v) which is 
random variable with a mean of zero.  
 
The random variable v, or equivalently u, may be interpreted in several ways. The 
most common one is that it summarises the impact of ‘omitted variables’ on the 
hazard rate – whether the missing regressors are intrinsically unobservable or simply 
unobserved in the data set to hand. Alternative interpretations can be offered in terms 
of errors of measurement in recorded regressors or recorded survival times (see 
Lancaster 1990, Chapter 4).  
 
In the discrete time proportional hazards model, the model specification follows 
directly from above. The standard cloglog model generalises to: 

cloglog[p(t, X | β, v)] = D(t) + β′X + u 
where D(t) characterises the baseline hazard function. The logistic hazard regression 
model is typically generalised in an analogous way:  

logit[p(t, X | β, v)] = D(t) + β′X + e 
where the ‘error’ term e is a random variable with mean zero and finite variance. 
These are random intercept models where randomness is characterized using some 
parametric distribution (see below). 
 
To estimate these models requires expressions for survival and density functions that 
do not condition on the unobserved effects for, since each individual v is unobserved, 
how could one write down the likelihood contribution for each observation? The way 
forward to specify a distribution for the v, where the distribution is characterised in 
terms of parameters (that can be estimated), and the unconditional survivor function is 
written in terms of this. This is known as ‘integrating out’ the unobserved effect. 
Referring to the example above, one works with survivor function S(t, X | β, σ2) rather 
than S(t, X | β, v), and similarly for the density function.  
 
In principle, any continuous distribution with positive support, mean one and finite 
variance, is a suitable candidate to represent the frailty distribution. For tractability 
reasons, however, the choice of distribution is typically limited to those that provide a 
closed form expression for the frailty survivor function.  
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For continuous time models the Gamma and Inverse Gaussian distributions have been 
the two that have been most commonly used. For the Gamma mixture model, the 
survivor function is given by  

S(t, X | β, V) = ( 1 – V.ln[S(t)] )–1/V 

where V ≡ σ2 and the non-frailty survivor function is S(t). For the Weibull model, 
ln[S(t)] = –λtα where λ = exp(β′X), and so in this case, 

S(t, X | β, V) = ( 1 + V.λtα )–1/V 

and the median duration (integrating over the distribution of the frailty v) is [(2V–
1)/(Vλ)]1/α. One could derive predicted survival probabilities assuming that v took on a 
particular value, for example the mean v = 1. In this case, the formula for the median 
is the same as the standard non-frailty median formula, but of course evaluated using 
the parameters estimated from the model with unobserved heterogeneity. 
 
For the Inverse Gaussian mixture model, the survivor function is given by  

S(t, X | β, V) = exp[ (1/V)(1 – {1 – 2V.ln[S(t)]}1/2) ]. 
For the Weibull model, the median duration (averaging over the frailty v) is [{ [1 + 
V.ln(2)]2 – 1}/(2Vλ)]1/α. Estimates of the median conditioning on particular frailty v 
values can also be derived, as for the Gamma model. 
 
For the discrete time PH model, the Gamma distribution has been the most popular 
distribution. For cloglog and logistic models, it also straightforward to assume a 
Normal (Gaussian) distribution for u and e, respectively. (In these latter two cases, 
closed form expressions are not available; numerical quadrature techniques are used 
for the integrating out.) Prediction of survivor functions is rather more complicated 
than for the continuous time case (as Lesson 6 showed), as the survivor function is a 
product of the complements of the period-specific hazard rates. And, with frailty, 
these hazard rates also depend on an unobserved individual error term. The most 
common empirical practice has been to calculate survivor functions conditioning on a 
particular error term value – using the estimates of covariate coefficients from the 
frailty model but setting the error term equal to its mean. 
 
There is also a literature, following the pioneering work of Heckman and Singer in the 
1980s, which eschewed parametric forms for the frailty distribution. Instead non-
parametric characterisations were proposed, by which an arbitrary distribution was 
fitted using a set of parameters representing a set of ‘mass points’ along the 
distribution’s support together with the probabilities of a subject being at each mass 
point. Consider for illustrative purposes a discrete time proportional hazards model. 
When there is no frailty, the discrete hazard rate in period t is 

ht = 1 –  exp(–exp(β0 + β′Xit)) 
where β0 is an intercept and the linear index function, β′Xit, incorporates the impact of 
covariates Xit. Suppose now that each individual belongs to one of a number of 
different types, and membership of each class is unobserved. This is parameterized by 
allowing the intercept term in the hazard function to differ across types. For example, 
for a model with types z = 1, ..., Z, the hazard function for an individual belonging to 
type z is:  

hzt = 1 –  exp(–exp(mz + β0 + β′Xit)) 
and the probability of belonging to type z is pz. The mz characterize the discrete points 
of support of a multinomial distribution (‘mass points’), with m1 normalized to equal 
zero and p1 = 1 – ∑z = 2,…,Z  (pz). Mass point z equals mz + β0. This is a random 
intercept model where randomness is characterized using a discrete distribution. 
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We focus mostly on parametric representations of unobserved heterogeneity in this 
lesson. The particular models considered are listed in the overview provided by 
Section 2.3 below. 
 

2.2 The implications of unobserved heterogeneity 
 
What happens to parameter estimates if one (mistakenly) ignores unobserved 
heterogeneity? The theoretical literature has suggested several results, typically 
derived with reference to a continuous time PH model: 
• The non-frailty model will over-estimate the degree of negative duration 

dependence in the (true) baseline hazard, and under-estimate the degree of 
positive duration dependence. (This is a selection effect. In the negative duration 
dependence case, observations with high v values fail faster, other things equal, so 
the survivors at any given survival time are increasingly composed of observations 
with relatively low v values and thence lower hazard rates.) 

• The proportionate effect of a given regressor on the hazard rate is no longer 
constant and independent of survival time (in the non-frailty PH model, the 
proportionate effect for regressor Xk is the fixed amount βk). 

• The presence of unobserved heterogeneity attentuates the proportionate response 
of the hazard to variation in each regressor at any survival time. In short the 
estimate of a positive (negative) βk derived from the (wrong) no-frailty model will 
underestimate (overrestimate) the ‘true’ estimate. (Lancaster, 1990, chapter 4, 
proves this for the case when v follows a Gamma distribution.) 

 
The empirical literature has generally confirmed these results. There has also been 
discussion of the magnitude of the effects and how ‘serious’ the biases are in practice. 
Verdicts have been contingent on the choice of shape of the non-frailty hazard 
function and the choice of the distribution for the unobserved heterogeneity. The 
results from several recent papers have suggested that if a fully flexible specification 
for the baseline hazard function is used, then the magnitude of the biases in the non-
frailty model (relative to the ‘true’ model) are diminished.  
 
In sum, the literature to date provides a number of important results and guidelines, 
but conclusions about the empirical relevance of unobserved heterogeneity are likely 
to differ from application to application. Moreover, frailty models can be relatively 
‘fragile’ in the statistical sense – they can be relatively hard to fit especially if the 
frailty variance is close to zero. 
 

2.3 Frailty models available in Stata – overview 
 
For continuous time models, Stata estimates frailty generalisations of all the non-
frailty parametric models that were cited in Lesson 5: Exponential, Weibull, 
Gompertz, Log-logistic, Lognormal, Gamma. As we shall see below, estimation is – 
in principle – as straightforward as adding a frailty(.) option to one’s streg command, 
and choosing between Gamma and Inverse Gaussian representations of the frailty. I 
say ‘in principle’ because the frailty models can sometimes be difficult to fit. 
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Several discrete time survival models with frailty can be estimated in Stata. The 
discrete time PH (cloglog) model with Gamma heterogeneity can be estimated using 
my program pgmhaz8. This can be downloaded for free from the SSC-IDEAS 
archive using the command ssc install pgmhaz8. The cloglog model with Normal 
distributed errors can be estimated using Stata’s xtcloglog command and the logistic 
model with Normal distributed errors can be estimated using xtlogit. (Note that a 
Normal distribution for u corresponds to a lognormal distribution for v.) 
 
Illustrations of the programs cited are provided below. Section 3 considers continuous 
time models and Section 4 discrete time models. 
 
Some discrete time models with Heckman and Singer-type non-parametric 
representations of frailty can be estimated using my program hshaz (for proportional 
hazard models, obtained via ssc install hshaz), or Sophia Rabe-Hesketh’s program 
gllamm (obtained via ssc install gllamm). Split-population (or ‘cure’) survival 
models can also be interpreted as models with a particular type of mover-stayer 
unobserved heterogeneity. See e.g. my program for discrete time data, spsurv. This is 
downloadable using ssc install spsurv. 
 
Two types of frailty are currently incorporated in the Stata streg programs. The first 
(and default) is known as observation level frailty – there is one value of v for each 
record in the data. This is what we focus on here. If there is multiple record data, e.g. 
because of episode splitting to incorporate time-varying covariates, then each separate 
record counts as an observation. This treatment of frailty may not be what you want. 
For example you may wish to have a single value of v that is common to a group of 
observations (e.g. the same individual or the same family). This is known as shared 
frailty. To incorporate this you need to specify the shared option in addition to the 
frailty(.) one. If there is only a single record per person (such as when there are no 
time-varying covariates), or there is non-informative episode splitting, then the two 
approaches are equivalent. 
 
The stcox command for Cox PL regression includes an option for estimating models 
with shared frailty, assuming a Gamma mixture. In the illustrative data that we use 
here, there is only a single record per person (see previous paragraph), and so the 
command is not applicable. 
 
The discrete time frailty models cited above all incorporate shared frailty rather than 
observation level frailty. 
 
 

3 Continuous time parametric models 
 
Let us now illustrate the frailty models available via streg. The discussion here draws 
heavily on that in the Stata 7 Reference Manual Volume 3, Q–St, pp. 359–363, and 
uses the same data set, the breast cancer data (bc.dta). These (hypothetical) data refer 
to survival times for 80 women with breast cancer. Covariates summarise patient’s 
age, whether she smokes, and average weekly calorific intake over the course of the 
study. 
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We shall first estimate a Weibull model without frailty but using all the covariates. 
(The data were in fact created by simulation from a Weibull distribution.) 
  
. use bc.dta, clear 
.  
. stset t, f(dead)  
 
     failure event:  dead ~= 0 & dead ~= . 
obs. time interval:  (0, t] 
 exit on or before:  failure 
 
------------------------------------------------------------------------------ 
       80  total obs. 
        0  exclusions 
------------------------------------------------------------------------------ 
       80  obs. remaining, representing 
       58  failures in single record/single failure data 
  1257.07  total analysis time at risk, at risk from t =         0 
                             earliest observed entry t =         0 
                                  last observed exit t =        35 
 
. streg age smoking dietfat, d(weib) nohr nolog 
 
         failure _d:  dead 
   analysis time _t:  t 
 
 
Weibull regression -- log relative-hazard form  
 
No. of subjects =           80                     Number of obs   =        80 
No. of failures =           58 
Time at risk    =      1257.07 
                                                   LR chi2(3)      =    250.96 
Log likelihood  =   -13.352142                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |    .559197   .0563239     9.93   0.000     .4488042    .6695899 
     smoking |   1.649311   .3276501     5.03   0.000     1.007128    2.291493 
     dietfat |   2.222411   .2404553     9.24   0.000     1.751128    2.693695 
       _cons |  -45.97988   4.634153    -9.92   0.000    -55.06265   -36.89711 
-------------+---------------------------------------------------------------- 
       /ln_p |   1.431728   .0978872    14.63   0.000     1.239872    1.623583 
-------------+---------------------------------------------------------------- 
           p |   4.185925   .4097485                      3.455172    5.071228 
         1/p |   .2388958   .0233848                      .1971909    .2894212 
------------------------------------------------------------------------------ 
 

We can see that higher hazard rates – shorter survival times – are positively associated 
with age, smoking, and dietary fat at conventional levels of statistical significance. Let 
us now drop the dietfat variable with the aim of introducing unobserved 
heterogeneity. We will use this next model as the reference non-frailty model: 
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. streg age smoking , d(weib) nohr nolog 
 
         failure _d:  dead 
   analysis time _t:  t 
 
 
Weibull regression -- log relative-hazard form  
 
No. of subjects =           80                     Number of obs   =        80 
No. of failures =           58 
Time at risk    =      1257.07 
                                                   LR chi2(2)      =    118.82 
Log likelihood  =   -79.419727                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .1644213   .0149837    10.97   0.000     .1350538    .1937888 
     smoking |   .9056537   .3061656     2.96   0.003     .3055801    1.505727 
       _cons |  -11.20242   .9989083   -11.21   0.000    -13.16024   -9.244594 
-------------+---------------------------------------------------------------- 
       /ln_p |   .3633523   .0955797     3.80   0.000     .1760195    .5506852 
-------------+---------------------------------------------------------------- 
           p |   1.438142   .1374573                      1.192461    1.734441 
         1/p |   .6953414   .0664605                      .5765546    .8386016 
------------------------------------------------------------------------------ 
 
Let us also predict median survival times. First we predict the median for the person 
with characteristics equal to the sample mean values on all covariates, and then we 
predict the median for each person in the sample. The first prediction has to be done 
‘manually’ but the second can be done directly using predict. 
 
. predict xb, xb 
 
. su xb 
 
    Variable |     Obs        Mean   Std. Dev.       Min        Max 
-------------+----------------------------------------------------- 
          xb |      80   -3.834933    1.93139  -6.927465  -.1026448 
 
. di "Pred. Median [at sample mean X] = "  (ln(2)*exp(-r(mean)))^(1/e(aux_p))  
Pred. Median [at sample mean X] = 11.153305 
 
. * median duration for each person in sample 
. * NB Stata allows you to generate these directly: 
. predict mediand, time 
(option median time assumed; predicted median time) 
 
. su mediand, de 
 
                     predicted median _t 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%     .8323699       .8323699 
 5%     1.109575       1.046216 
10%     1.707746       1.046216       Obs                  80 
25%     3.789622       1.046216       Sum of Wgt.          80 
 
50%      11.5727                      Mean           23.37674 
                        Largest       Std. Dev.      26.22382 
75%     34.23132       85.43642 
90%     67.97328       95.78455       Variance       687.6885 
95%     80.82134       95.78455       Skewness       1.359739 
99%     95.78455       95.78455       Kurtosis       3.853934 
 
. drop xb mediand 
 
So the median duration for the person with mean characteristics is 11.2, and the 
median among the sample as a whole is 11.6. 
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Now we allow for unobserved heterogeneity, first assuming a Gamma mixture 
distribution and then an Inverse Gaussian one. We shall also look at predicted median 
distributions. 
 
. streg age smoking , d(weib) nohr nolog frailty(gamma) 
 
         failure _d:  dead 
   analysis time _t:  t 
 
 
Weibull regression -- log relative-hazard form  
                      Gamma frailty 
 
No. of subjects =           80                     Number of obs   =        80 
No. of failures =           58 
Time at risk    =      1257.07 
                                                   LR chi2(2)      =    135.75 
Log likelihood  =   -68.135804                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .3893002   .0934984     4.16   0.000     .2060467    .5725537 
     smoking |   1.025521   .5225054     1.96   0.050     .0014291    2.049613 
       _cons |   -23.8082   5.204923    -4.57   0.000    -34.00966   -13.60674 
-------------+---------------------------------------------------------------- 
       /ln_p |   1.087761    .222261     4.89   0.000     .6521376    1.523385 
     /ln_the |   .3307466   .5250758     0.63   0.529     -.698383    1.359876 
-------------+---------------------------------------------------------------- 
           p |   2.967622   .6595867                       1.91964    4.587727 
         1/p |   .3369701   .0748953                      .2179729     .520931 
       theta |   1.392007   .7309092                      .4973889    3.895711 
------------------------------------------------------------------------------ 
Likelihood ratio test of theta=0: chibar2(01) =    22.57 Prob>=chibar2 = 0.000 
 

 
The ‘theta’ value reported in the output is the estimate of the frailty distribution 
variance. Note that the frailty model is preferred to the reference non-frailty model 
according to the relevant likelihood ratio test. The test is a ‘boundary’ test that takes 
account of the fact that the null distribution is not the usual chi-squared(d.f. = 1) but is 
rather a 50:50 mixture of a chi-squared(d.f. = 0) variate (which is a point mass at zero) 
and chi-squared(d.f. = 1) – hence the reference to ‘chibar2(01)’ in the output. Click on 
the blue ‘chibar2(01)’ in the output window for an explanation, or see Gutierrez et al. 
(2001) for more details (Gutierrez, R.G., Carter, S., and Drukker, D., ‘On boundary-
value likelihood-ratio tests’, insert sg160, Stata Technical Bulletin, STB-60, 
StataCorp, College Station TX.) The p-value = 0.000 in this case.  
 
The frailty has expected effects on model parameters. The estimated coefficients on 
the regressors age and smoking are larger in magnitude that the corresponding 
coefficients in the reference model. Also the Weibull distribution shape parameter p is 
larger in the frailty models than in the reference model – the baseline hazard slopes 
upwards to a greater extent. Observe too that with frailty present, an exponentiated 
coefficient is simply that, losing its interpretation in terms of a hazard ratio (a 
proportional change in the hazard for a one unit change in the relevant covariate). 
 
Now let us consider the predictions of median duration and compare them with those 
of the reference non-frailty model. Observe that because there are no time-varying 
covariates, observation-level and shared frailty models are equivalent. The former is 
the default. 
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. predict xb, xb 
(option unconditional assumed) 
 
. su xb 
 
    Variable |     Obs        Mean   Std. Dev.       Min        Max 
-------------+----------------------------------------------------- 
          xb |      80   -6.685866   4.461222   -13.6864   1.353928 
 
. di "Pred. Median [at sample mean X] = "  ((2^e(theta) - 1)/ 
(e(theta)*exp(r(mean))))^(1/e(aux_p)) 
Pred. Median [at sample mean X] = 10.023875 
 
. * median duration for each person in sample 
. * NB Stata allows you to generate these directly: 
. predict mediand, time 
(option unconditional assumed) 
(option median time assumed; predicted median time) 
 
. su mediand, de 
 
                        predicted _t 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%     .6675103       .6675103 
 5%      .867764       .8271137 
10%     1.107688       .8271137       Obs                  80 
25%     3.071027        .867764       Sum of Wgt.          80 
 
50%     10.94738                      Mean           24.43518 
                        Largest       Std. Dev.      29.05888 
75%     37.13202       93.01468 
90%      71.5497       106.0531       Variance       844.4185 
95%     87.29696       106.0531       Skewness       1.378743 
99%     106.0531       106.0531       Kurtosis       3.908608 

 
The median for the person with mean characteristics is now predicted to be 10.02. 
This is smaller than the corresponding value for the non-frailty model – as expected, 
perhaps, given the change in the coefficients and increase in duration dependence 
parameter. 
 
We can also see what the median is for the case in which we condition on frailty v = 1 
(the mean value): 
 
. predict mediand2, time alpha1 
(option median time assumed; predicted median time) 
 
. su mediand2, de 
 
                     predicted median _t 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%     .5600455       .5600455 
 5%     .7280598       .6939539 
10%     .9293576       .6939539       Obs                  80 
25%     2.576612       .7280598       Sum of Wgt.          80 
 
50%     9.184921                      Mean           20.50128 
                        Largest       Std. Dev.      24.38059 
75%     31.15401       78.03993 
90%     60.03067       88.97925       Variance       594.4133 
95%     73.24273       88.97925       Skewness       1.378743 
99%     88.97925       88.97925       Kurtosis       3.908608 
 
.  
. drop mediand mediand2 xb 
 
It turns out that the median is a little bit smaller than before, at all corresponding 
points of the sample distribution. 
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Now let us repeat the analysis for the Inverse Gaussian frailty model. 
 
. streg age smoking , d(weib) nohr nolog frailty(invgauss) 
 
         failure _d:  dead 
   analysis time _t:  t 
 
 
Weibull regression -- log relative-hazard form  
                      Inverse-Gaussian frailty 
 
No. of subjects =           80                     Number of obs   =        80 
No. of failures =           58 
Time at risk    =      1257.07 
                                                   LR chi2(2)      =    125.44 
Log likelihood  =   -73.838578                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .2500841   .0360754     6.93   0.000     .1793777    .3207906 
     smoking |   1.066574   .4311907     2.47   0.013     .2214561    1.911692 
       _cons |  -16.01035   2.097075    -7.63   0.000    -20.12054   -11.90015 
-------------+---------------------------------------------------------------- 
       /ln_p |   .7173904   .1434382     5.00   0.000     .4362567    .9985241 
     /ln_the |   .2374778   .8568064     0.28   0.782    -1.441832    1.916788 
-------------+---------------------------------------------------------------- 
           p |   2.049079   .2939162                      1.546906    2.714273 
         1/p |   .4880241   .0700013                      .3684228    .6464518 
       theta |   1.268047   1.086471                      .2364941    6.799082 
------------------------------------------------------------------------------ 
Likelihood ratio test of theta=0: chibar2(01) =    11.16 Prob>=chibar2 = 0.000 

 
It turns out that frailty is again statistically significant, and again the parameters of the 
model change in the expected direction. The improvement in log-likelihood relative to 
the no-frailty model is largest for the Gamma mixture model, but choice between the 
Gamma and Inverse Gaussian specifications is complicated by the fact that the two 
models are non-nested. 
 
How do model predictions differ between the two frailty specifications? We explore 
this using predict after the estimation command. 
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. predict xb, xb 
(option unconditional assumed) 
 
. su xb 
 
    Variable |     Obs        Mean   Std. Dev.       Min        Max 
-------------+----------------------------------------------------- 
          xb |      80   -4.893819   2.902277  -9.508158   .5614455 
 
. di "Pred. Median [at sample mean X] = "  ( ((1+e(theta)*ln(2))^2 - 
1)/(2*e(theta)*exp(r(mean))) )^(1/e( 
> aux_p)) 
Pred. Median [at sample mean X] = 10.883087 
 
. * median duration for each person in sample 
. * NB Stata allows you to generate these directly: 
. predict mediand, time 
(option unconditional assumed) 
(option median time assumed; predicted median time) 
 
. su mediand, de 
 
                        predicted _t 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%     .7595033       .7595033 
 5%     1.032402       .9694791 
10%     1.454846       .9694791       Obs                  80 
25%     3.711818       .9694791       Sum of Wgt.          80 
 
50%     11.31624                      Mean           24.43678 
                        Largest       Std. Dev.      28.26338 
75%     36.10971       91.56709 
90%     71.73492       103.4532       Variance       798.8188 
95%     86.30687       103.4532       Skewness       1.382187 
99%     103.4532       103.4532       Kurtosis       3.930592 
 
. drop xb mediand 
 
The predicted median for the person with ‘average’ characteristics is now 10.9. 
 
What happens if we re-estimate the models but now re-introduce dietfat as a 
regressor? Here are the estimates from the model with Gamma frailty. 
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. streg age smoking dietfat, d(weib) nolog frailty(gamma) nohr 
 
         failure _d:  dead 
   analysis time _t:  t 
 
 
Weibull regression -- log relative-hazard form  
                      Gamma frailty 
 
No. of subjects =           80                     Number of obs   =        80 
No. of failures =           58 
Time at risk    =      1257.07 
                                                   LR chi2(3)      =    245.32 
Log likelihood  =   -13.352142                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .5592066   .0563201     9.93   0.000     .4488212    .6695919 
     smoking |   1.649354   .3276412     5.03   0.000     1.007188    2.291519 
     dietfat |   2.222451   .2404404     9.24   0.000     1.751196    2.693706 
       _cons |  -45.98067   4.633832    -9.92   0.000    -55.06281   -36.89852 
-------------+---------------------------------------------------------------- 
       /ln_p |   1.431747   .0978783    14.63   0.000     1.239909    1.623585 
     /ln_the |  -15.92927   6628.419    -0.00   0.998    -13007.39    12975.53 
-------------+---------------------------------------------------------------- 
           p |   4.186005   .4097189                      3.455299    5.071237 
         1/p |   .2388912   .0233823                      .1971906    .2894106 
       theta |   1.21e-07   .0008006                             0           . 
------------------------------------------------------------------------------ 
Likelihood ratio test of theta=0: chibar2(01) =     0.00 Prob>=chibar2 = 1.000 
 
Here are the estimates from the model with Inverse Gaussian frailty. 
 
. streg age smoking dietfat, d(weib) nolog frailty(invg) nohr 
 
         failure _d:  dead 
   analysis time _t:  t 
 
 
Weibull regression -- log relative-hazard form  
                      Inverse-Gaussian frailty 
 
No. of subjects =           80                     Number of obs   =        80 
No. of failures =           58 
Time at risk    =      1257.07 
                                                   LR chi2(3)      =    246.41 
Log likelihood  =   -13.352142                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .5592044   .0563229     9.93   0.000     .4488136    .6695952 
     smoking |   1.649341   .3276494     5.03   0.000      1.00716    2.291522 
     dietfat |   2.222442   .2404515     9.24   0.000     1.751166    2.693718 
       _cons |  -45.98049   4.634064    -9.92   0.000    -55.06309   -36.89789 
-------------+---------------------------------------------------------------- 
       /ln_p |   1.431742   .0978845    14.63   0.000     1.239892    1.623592 
     /ln_the |    -14.424   2866.444    -0.01   0.996    -5632.551    5603.703 
-------------+---------------------------------------------------------------- 
           p |   4.185987   .4097431                      3.455242    5.071276 
         1/p |   .2388923   .0233838                       .197189    .2894154 
       theta |   5.44e-07   .0015598                             0           . 
------------------------------------------------------------------------------ 
Likelihood ratio test of theta=0: chibar2(01) =     0.00 Prob>=chibar2 = 1.000 
 
For both models, we now see that there is negligible unobserved heterogeneity – 
observe the near-zero frailty variances, and the p-values for the likelihood ratio test 
equal to one. The coefficients on the covariates are almost exactly the same as those 
in the corresponding model without unobserved heterogeneity that we estimated at the 
very start. 
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4 Discrete time models  
 
We will now repeat our analysis of the same data but use discrete time models 
instead. To facilitate comparability with the Weibull models of Section 3, we shall use 
proportional hazards models with a log(time) specification for duration dependence.  
 
One initial minor complication is that survival times in bc.dta are non-integer. We 
therefore need to create a new survival time variable (‘td’ below, rather than ‘t’), in 
addition to doing the usual episode-splitting to form a data set organised in person-
month form. We use the ceil() function to round up the survival times to the nearest 
integer. 
 
use bc, clear 
 
. * convert survival times to discrete integers 
. ge td = ceil(t)  // has same effect as: ge td = round(t+.49,1) 
 
. su t td 
 
    Variable |     Obs        Mean   Std. Dev.       Min        Max 
-------------+----------------------------------------------------- 
           t |      80    15.71337   13.59278        .33         35 
          td |      80     16.0875   13.40243          1         35 
.  
. sort t 
.  
. ge id = _n 

 
Now we do the episode-splitting to derive the data organised in person-month form, 
and create the appropriate spell month identifier. Then we create the variable to 
summarize duration dependence in the discrete hazard, log(time) in this case. 
 
. expand td /* expand on td (not t) since time intervals indexed on td */ 
(1207 observations created) 
 
. sort id 
 
. by id: ge newt = _n 
 
. by id: ge died = dead==1 & _n==_N 
 
. ge logt = ln(newt) 
 
Let us begin with the model including all covariates (but no frailty) and then the 
reference model from which the dietfat regressor has been omitted:  
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. cloglog died logt age smoking dietfat, nolog 
 
Complementary log-log regression                Number of obs     =       1287 
                                                Zero outcomes     =       1229 
                                                Nonzero outcomes  =         58 
 
                                                LR chi2(4)        =     244.53 
Log likelihood = -114.18864                     Prob > chi2       =     0.0000 
 
------------------------------------------------------------------------------ 
        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logt |   3.594979   .4918103     7.31   0.000     2.631048    4.558909 
         age |   .5449406    .060167     9.06   0.000     .4270153    .6628658 
     smoking |   1.638842   .3753424     4.37   0.000     .9031841    2.374499 
     dietfat |   2.149625   .2561884     8.39   0.000     1.647505    2.651745 
       _cons |  -44.72472     4.9638    -9.01   0.000    -54.45359   -34.99585 
------------------------------------------------------------------------------ 
 
. cloglog died logt age smoking, nolog 
 
Complementary log-log regression                Number of obs     =       1287 
                                                Zero outcomes     =       1229 
                                                Nonzero outcomes  =         58 
 
                                                LR chi2(3)        =     126.56 
Log likelihood = -173.17144                     Prob > chi2       =     0.0000 
 
------------------------------------------------------------------------------ 
        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logt |   .5328684   .1743352     3.06   0.002     .1911776    .8745592 
         age |   .1647403    .015838    10.40   0.000     .1336985    .1957821 
     smoking |   .8752191   .3078178     2.84   0.004     .2719074    1.478531 
       _cons |  -11.10694   1.042009   -10.66   0.000    -13.14924   -9.064643 
------------------------------------------------------------------------------ 

 
The estimates are similar to the corresponding Weibull model estimates (as expected).  
 
Now what if we suppose that the frailty term u is Normally distributed? We use the 
xtcloglog command. xt stands for ‘cross-section time series’ or ‘panel data’ estimator 
– we are using a panel data estimator to estimate a survival analysis model. The 
mandatory i(.) option is used to identify the observations with distinct values for the 
heterogeneity term. The ‘sigma_u’ reported is the standard deviation of the 
heterogeneity variance. The reported ‘rho’ is the ratio of the heterogeneity variance to 
one plus the heterogeneity variance. So if the hypothesis that rho is zero cannot be 
rejected, then frailty is unimportant. 
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xtcloglog died logt age smoking , nolog i(id) 
 
Random-effects complementary log-log            Number of obs      =      1287 
Group variable (i) : id                         Number of groups   =        80 
 
Random effects u_i ~ Gaussian                   Obs per group: min =         1 
                                                               avg =      16.1 
                                                               max =        35 
 
                                                Wald chi2(3)       =     21.88 
Log likelihood  = -164.02912                    Prob > chi2        =    0.0001 
 
------------------------------------------------------------------------------ 
        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logt |   3.344268   .9695804     3.45   0.001     1.443925    5.244611 
         age |   .5170562   .1222468     4.23   0.000     .2774569    .7566554 
     smoking |   1.587545   .6984732     2.27   0.023     .2185631    2.956528 
       _cons |  -32.61654   7.741936    -4.21   0.000    -47.79045   -17.44262 
-------------+---------------------------------------------------------------- 
    /lnsig2u |   1.743016   .5665486                      .6326016    2.853431 
-------------+---------------------------------------------------------------- 
     sigma_u |   2.390514    .677171                      1.372043    4.164997 
         rho |   .8510698     .07181                      .6530791    .9454958 
------------------------------------------------------------------------------ 
Likelihood ratio test of rho=0: chibar2(01) =    18.28 Prob >= chibar2 = 0.000 

 
The likelihood ratio test suggests statistically significant frailty. The frailty has 
expected effects on model parameters. The estimated coefficients on the regressors 
age and smoking are larger in magnitude that the corresponding coefficients in the 
reference model. Also the duration dependence is much larger in the frailty models 
than in the reference model – the baseline hazard slopes upwards to a greater extent.  
 
What happens if we re-estimate our model but instead assume Gamma-distributed 
unobserved heterogeneity? To investigate this, we use pgmhaz8. Its syntax differs 
from that for the other programs (it was modelled on the syntax for the Cox model in 
Stata 5, i.e. in a pre-stset era), but is relatively straightforward. One specifies the 
covariates after the program name, and then options are used to specify identifiers for 
each person (the id(.) option), the spell interval identifier for each person (seq(.), 
which is an integer sequence from 1 to the total survival time for that person) and the 
censoring variable (the dead(.) option). See help pgmhaz8 for further details. The 
program first reports the non-frailty cloglog model (estimated using glm), and then 
the Gamma frailty model. (Observe that the non-frailty estimates correspond to those 
reported earlier. pgmhaz8 has an option to turn off the reporting of these.) 
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. pgmhaz8 logt age smoking , id(id) seq(newt) dead(died) nolog 
PGM hazard model without gamma frailty 
 
Generalized linear models                          No. of obs      =      1287 
Optimization     : ML: Newton-Raphson              Residual df     =      1283 
                                                   Scale parameter =         1 
Deviance         =  346.3428729                    (1/df) Deviance =  .2699477 
Pearson          =  827.8333299                    (1/df) Pearson  =  .6452325 
 
Variance function: V(u) = u*(1-u)                  [Bernoulli] 
Link function    : g(u) = ln(-ln(1-u))             [Complementary log-log] 
Standard errors  : OIM 
 
Log likelihood   = -173.1714365                    AIC             =  .2753247 
BIC              =  -8840.02592 
 
------------------------------------------------------------------------------ 
        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logt |   .5328684   .1743352     3.06   0.002     .1911776    .8745592 
         age |   .1647403    .015838    10.40   0.000     .1336985    .1957821 
     smoking |   .8752191   .3078178     2.84   0.004     .2719074    1.478531 
       _cons |  -11.10694   1.042009   -10.66   0.000    -13.14924   -9.064643 
------------------------------------------------------------------------------ 
 
PGM hazard model with gamma frailty               Number of obs   =       1287 
                                                  LR chi2()       =          . 
Log likelihood = -162.55447                       Prob > chi2     =          . 
 
------------------------------------------------------------------------------ 
        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
hazard       | 
        logt |   2.742215   .9879201     2.78   0.006     .8059276    4.678503 
         age |   .4369005   .1197364     3.65   0.000     .2022216    .6715795 
     smoking |   .9551981   .5663482     1.69   0.092     -.154824     2.06522 
       _cons |  -26.43864   6.772158    -3.90   0.000    -39.71182   -13.16545 
-------------+---------------------------------------------------------------- 
ln_varg      | 
       _cons |   .5409866   .5287288     1.02   0.306    -.4953028    1.577276 
-------------+---------------------------------------------------------------- 
  Gamma var. |   1.717701   .9081978     1.89   0.059     .6093864    4.841749 
------------------------------------------------------------------------------ 
LR test of Gamma var. = 0: chibar2(01) =   21.2339  Prob.>=chibar2 =  2.0e-06 

 
The p-value for the likelihood ratio test is virtually zero, indicating statistically 
significant frailty – which is entirely consistent with what we found for the 
corresponding continuous time model. We see again too that regressor coefficients are 
larger in magnitude and the degree of positive duration dependence in the hazard is 
larger. 
 
If we add dietfat back into the model as a regressor, then the frailty appears to become 
negligible. Observe that I omitted the nolog option this time, so the iteration log for 
the frailty model is reported. There are obviously some problems with convergence 
(note the ‘not concave’ messages) and, although the model did finally converge 
satisfactorily, the frailty variance is tiny. 
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. pgmhaz8 logt age smoking dietfat, id(id) seq(newt) dead(died) nolog 
 
. pgmhaz8 logt age smoking dietfat, id(id) seq(newt) dead(died) iter(25) 
PGM hazard model without gamma frailty 
 
Generalized linear models                          No. of obs      =      1287 
Optimization     : ML: Newton-Raphson              Residual df     =      1282 
                                                   Scale parameter =         1 
Deviance         =    228.37728                    (1/df) Deviance =  .1781414 
Pearson          =  679.2477092                    (1/df) Pearson  =  .5298344 
 
Variance function: V(u) = u*(1-u)                  [Bernoulli] 
Link function    : g(u) = ln(-ln(1-u))             [Complementary log-log] 
Standard errors  : OIM 
 
Log likelihood   =   -114.18864                    AIC             =  .1852193 
BIC              = -8950.831444 
 
------------------------------------------------------------------------------ 
        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logt |   3.594979   .4918101     7.31   0.000     2.631049    4.558909 
         age |   .5449406    .060167     9.06   0.000     .4270154    .6628657 
     smoking |   1.638842   .3753423     4.37   0.000     .9031842    2.374499 
     dietfat |   2.149625   .2561882     8.39   0.000     1.647506    2.651745 
       _cons |  -44.72472   4.963796    -9.01   0.000    -54.45358   -34.99586 
------------------------------------------------------------------------------ 
 
Iteration 0:   log likelihood = -116.47328   
Iteration 1:   log likelihood = -114.39827   
Iteration 2:   log likelihood = -114.29907   
Iteration 3:   log likelihood = -114.22669   
Iteration 4:   log likelihood = -114.20848   
Iteration 5:   log likelihood = -114.19356   
Iteration 6:   log likelihood =  -114.1906   
Iteration 7:   log likelihood =  -114.1895   
Iteration 8:   log likelihood = -114.18888   
Iteration 9:   log likelihood = -114.18871   
Iteration 10:  log likelihood = -114.18865   
Iteration 11:  log likelihood = -114.18864  (not concave) 
numerical derivatives are approximate 
nearby values are missing 
Iteration 12:  log likelihood = -114.18864  (not concave) 
Iteration 13:  log likelihood = -114.18864  (not concave) 
Iteration 14:  log likelihood = -114.18864   
 
PGM hazard model with gamma frailty               Number of obs   =       1287 
                                                  LR chi2()       =          . 
Log likelihood = -114.18864                       Prob > chi2     =          . 
 
------------------------------------------------------------------------------ 
        died |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
hazard       | 
        logt |   3.595206   .1925172    18.67   0.000     3.217879    3.972532 
         age |   .5449706   .0197679    27.57   0.000     .5062262    .5837149 
     smoking |   1.638924   .3370305     4.86   0.000     .9783566    2.299492 
     dietfat |   2.149746   .1156383    18.59   0.000       1.9231    2.376393 
       _cons |  -44.72717   1.595761   -28.03   0.000    -47.85481   -41.59954 
-------------+---------------------------------------------------------------- 
ln_varg      | 
       _cons |  -13.22453   1390.536    -0.01   0.992    -2738.625    2712.176 
-------------+---------------------------------------------------------------- 
  Gamma var. |   1.81e-06    .002511     0.00   0.999            0           . 
------------------------------------------------------------------------------ 
LR test of Gamma var. = 0: chibar2(01) =  -8.2e-07  Prob.>=chibar2 =       .5 

 
What is probably happening is that the program is trying to find ever-smaller values 
of the variance: a value of the log of the gamma variance of –13.22 implies a value for 
the variance that is very very close to zero! But the model is programmed with the 
gamma variance constrained to be positive – hence convergence problems. This type 
of result is quite common when estimating frailty models.  
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To reiterate, although our first applications of pgmhaz8 converged relatively quickly 
and without difficulty, this is often not the case in practice with real-world data sets. 
With ‘large’ data sets, the model can be slow to converge, because the program uses 
numerical derivatives. Moreover the likelihood surface is not globally concave and 
non-concavities may sometimes be reported at the final iteration, or the maximisation 
may sometimes get stuck on a ‘flat’ part and fail to converge with an error message: 
 
pgmhaz8_ll does not compute a continuous nonconstant function 
could not calculate numerical derivatives 
r(430); 
 
If such situations arise, users are recommended to use the trace option to pgmhaz8 – 
e.g. check whether the estimate of ln(Gamma variance) is heading off towards minus 
infinity – and to experiment with different starting values for the Gamma variance 
using the lnvar(.) option.  
 
xtcloglog and xtlogit may also take a long time to run with expanded person-month 
data sets if they are ‘large’. 
 

4.1 Prediction for discrete-time frailty models 
 
There are no built-in commands for predicting medians and so on for the discrete-time 
frailty models, as there were for the frailty models estimated using streg. However 
predictions can be derived straightforwardly, by adapting the strategy that was 
illustrated in Lesson 6 for discrete-time models without unobserved heterogeneity. For 
the discrete-time frailty models, predictions are derived assuming that the frailty term 
is set equal to its mean value. 
 
The idea is to first derive predicted hazard rates for persons with given characteristics, 
and thence the implied survivor functions. I start with the pgmhaz8 model estimated 
earlier, with age and smoking as the covariates, and consider predictions for three 
persons: (a) someone with the sample mean values of each regressor (age = 35, 
smoking = 0.23); (b) someone aged 30 and a non-smoker; and (c) someone aged 50 
and a smoker.  
 
Recall that the cloglog hazard rate with frailty has specification: 

p(t)   = 1 – exp[–exp( z(t) )] 
where z(t) = D(t) + Xβ + u. D(t) is the baseline hazard function and Xβ includes an 
intercept term. For predictions, we will take the case with u = 0, and we will consider 
the case with D(t) = (q–1)log(t), as earlier.  

What we have to do is, first, generate values of z(t) for each of our three persons, 
using the coefficient estimates left behind after pgmhaz8 Model 2, and then, second, 
the implied hazard rate and survivor functions. At the first step, one uses Stata’s 
matrix operations to extract the required coefficients (one doesn’t need the estimate 
of the frailty variance). Then one generates the values of z(t) = β0 + β1*age + 
β2*smoking + c.log(t) for the given values of age and smoking. Observe the result 
used to get z(t) when age and smoking are at sample mean values: (the mean of a 
linear combination equals the linear combination of means). So, matrix score is used 
to calculate β0 + β1*age + β2*smoking for all cases, and then summarise is used to 
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derive the mean of this. The if newt == 1 qualifier is used to ensure the mean is taken 
over individual cases, rather than over time intervals. 

The following code illustrates the strategy as a whole: 
 
. * First re-do earlier model 
. pgmhaz8 logt age smoking , id(id) seq(newt) dead(died) nolog 
< output omitted > 
 
. * Now generate predicted probabilities 
. mat b = e(b) 
 
. mat list b 
 
b[1,5] 
       hazard:    hazard:    hazard:    hazard:   ln_varg: 
         logt        age    smoking      _cons      _cons 
y1  2.7422156  .43690055  .95519812  -26.43864  .54098674 
 
. scalar n = colsof(b) - 1  
 
. scalar list n 
         n =          4 
 
.  
. mat b = b[1,2..n]  /* exclude coeffs on dur dep var(s), and lnvarg est */ 
 
. mat list b 
 
b[1,3] 
       hazard:    hazard:    hazard: 
          age    smoking      _cons 
y1  .43690055  .95519812  -26.43864 
 
. mat score xb = b 
 
. sum xb if newt == 1 
 
    Variable |     Obs        Mean   Std. Dev.       Min        Max 
-------------+----------------------------------------------------- 
          xb |      80   -7.278995   4.992778  -15.07923   1.604393 
 
. ge z0 = r(mean) + _b[logt]*logt 
 
. ge z1 = _b[_cons] + _b[age]*45 + _b[smoking]*1 + _b[logt]*logt 
 
. ge z2 = _b[_cons] + _b[age]*30 + _b[smoking]*0 + _b[logt]*logt 
 
.  
. sort id newt 
 
. by id: gen p0 = 1 - exp(-exp(z0)) 
 
. lab var p0 "Predicted h(t) at mean of covariates" 
 
. by id: gen p1 = 1 - exp(-exp(z1)) 
 
. lab var p1 "Predicted h(t),age=45,smoking" 
 
. by id: gen p2 = 1 - exp(-exp(z2)) 
 
. lab var p2 "Predicted h(t),age=30,non-smoking" 
 
.  
. by id: ge s0 =  exp(sum(ln(1-p0))) 
 
. lab var s0 "Predicted S(t) at mean of covariates" 
 
. by id: ge s1 =  exp(sum(ln(1-p1))) 
 
. lab var s1 "Predicted S(t),age=45,smoking" 
 
. by id: ge s2 =  exp(sum(ln(1-p2))) 
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. lab var s2 "Predicted S(t),age=30,non-smoking" 
 

 
Having generated the predicted hazard and survivor probabilities, we can graph them: 
 
. . twoway (connect p0 newt , sort  msymbol(t) ) /// 
>         (connect p1 newt, sort msymbol(o) ) /// 
>         (connect p2 newt, sort msymbol(x) )  /// 
>         , title("Predicted discrete hazard rates from -pgmhaz8-") /// 
>         saving(pgmh1, replace) ytitle("p(t)") 
(file pgmh1.gph saved) 
 
 
. twoway (connect s0 newt , sort  msymbol(t) )   /// 
>         (connect s1 newt, sort msymbol(o) )   /// 
>         (connect s2 newt , sort  msymbol(x) )  /// 
>         , title("Predicted survivor functions from -pgmhaz8-") /// 
>         saving(pgms1, replace) ytitle("S(t)") 
(file pgms1.gph saved) 
 
 
 
 

Figure 8.1. Predicted hazard rates from -pgmhaz8-  
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Figure 8.2. Predicted survivor functions from -pgmhaz8- 
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The median duration for the person with sample mean values is about 10, but clearly 
very much longer for the 30 year old non-smoker (out of sample range). The median 
duration for the 45 year-old smoker is shorter – about six – and the survival 
probability in this case is zero by the tenth interval. Observe from the first graph how 
the hazard rate for this person rises very quickly.  
 
Finally, we do a bit of tidying up: 
 
. drop z0 z1 z2 xb p0 p1 p2 s0 s1 s2 
 
This code only produces predictions for survival times ranging between the minimum 
and the maximum in the sample. If you want predictions for longer survival times, 
then you have to generate extra sample observations – just as we did in Lesson 6. 
 
Observe that the same code could be used to generate predictions after estimating the 
proportional hazards or logistic models with Normal heterogeneity (the order in which 
the regressors are listed has to be the same as before for this to work without change). 
The commands would be: 
 
. xtcloglog died logt age smoking , i(id)  nolog 
 
. xtlogit died logt age smoking , i(id)  nolog 
 
Note that, for these models, one could predict hazard rates in this model for each 
person within the sample using their built-in predict commands: 
 
. predict p, pu0 

 
Observe the ‘pu0’ option. This ensures that the prediction is generated while 
conditioning on frailty being set equal to its mean value. You could then generate the 
survivor function predictions with 
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. bysort id (newt): ge s =  exp(sum(ln(1-p))) 

 
The within-sample predictions could be listed and so on, as we did in Lesson 6. 
 
 
 

5 Exercise 7.1 
 
(i) Repeat the estimation of frailty and non-frailty models using the bc.dta for a 

Log-logistic hazard model rather than a Weibull one. In what way do the 
results change? 

 
(ii) For any one of the three persons considered in the discrete-time model 

predictions, compare the predicted median survival times from the 
proportional hazards models with and without Normal heterogeneity (i.e. 
xtcloglog and cloglog with age and smoking as the regressors). Which model 
predicts the shorter median? Explain the result you find, referring to the 
parameter estimates from the two models. 

 
(iii) Repeat the estimation of Normal frailty and non-frailty models using the breast 

cancer data (bc.dta) for a discrete time logistic model rather than a discrete 
time proportional hazards model. Use logit and xtlogit rather than cloglog and 
xtcloglog. Compare model predictions too for the three persons considered in 
the text. 

 
(iv) Verify that uninformative episode-splitting does not affect the estimates of the 

continuous time frailty models. Use the Weibull model to do this and the 
following commands: 

use bc, clear 
ge id = _n 
stset t, f(dead) id(id) 
streg age smoking , d(weib) nohr nolog frailty(gamma) 
stsplit time, every(1) 
stset 
streg age smoking , d(weib) nohr nolog frailty(gamma) 

 

(v)  Compare the results of the various frailty and non-frailty models, discrete and 
continuous, using a different data. I suggest the cancer data set (cancer.dta) 
rather than bc.dta. 

 
(vi) Using bc.dta, we compared the estimates derived using 
  pgmhaz8 logt age smoking , id(id) seq(newt) dead(died) nolog 
  xtcloglog died logt age smoking , nolog i(id) 
 These assume a parametric continuous distribution for the frailty mixture 

distribution. Re-estimate the model assuming a two mass point discrete 
mixture using the command 

  hshaz logt age smoking , id(id) seq(newt) dead(died) nolog 
 (By default, hshaz assumes that there are two mass points; the number can be 

changed using the nmp() option.) Comment on the estimates and compare 
them with those for the earlier models. Derive and compare the predicted 
hazard and survivor functions for persons from Type 1 and Type 2 (setting the 
other covariates at their mean values). 
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