Lesson 5. Estimation: (i) continuous time models (parametric and Cox)

Contents

1 Aim .. 1
2 INTRODUCTION.. 1
3 ESTIMATION USING STREG (AND PLOTTING FITTED CURVES WITH STCURV) 2
4 ESTIMATION OF THE WEIBULL MODEL.. 4
5 ESTIMATION OF THE LOG-LOGISTIC MODEL.. 16
6 ESTIMATION OF THE COX PH MODEL USING STCOX... 20
7 ESTIMATION OF THE PIECE-WISE CONSTANT EXPONENTIAL MODEL USING STREG 23
8 EXERCISE 5.1 ... 26

1 Aim

The aim of this lesson is to illustrate how to use Stata to estimate multivariate continuous time survival time models. These include the parametric models (with hazard functions of the type discussed in Lesson 2) and the semi-parametric Cox model.

2 Introduction

Stata provides an extensive suite of estimators. Parametric regression survival-time models (including the piece-wise constant exponential model) are estimated by maximum likelihood using streg. Models corresponding to six types of parametric distribution can be estimated: Exponential, Weibull, Log-logistic, Gompertz, Lognormal, and Generalised Gamma. We will
focus on the first three (discussed in Lesson 2). Cox’s partial likelihood model (the ‘Cox model’) is estimated using \texttt{stcox}.

To use these programs, you must \texttt{stset} the data first, as discussed in Lesson 3.

I discuss and illustrate \texttt{streg} and \texttt{stcox} in turn, using the Cancer data set assumed to be \texttt{stset} already. At the end I ask you, as an exercise, to repeat parts of the analysis with alternative models or with different data sets.

Note that typing \texttt{streg} by itself after estimating a model with \texttt{streg}, or typing \texttt{stcox} by itself after estimation with \texttt{stcox}, will result in the previous estimates being replayed on the screen.

3 Estimation using \texttt{streg} (and plotting fitted curves with \texttt{stcurv})

The different parametric models estimated by \texttt{streg} share a common command syntax – the different distributions are chosen via option specifications. See \texttt{help streg} for the full command syntax and all the options available. We will ignore the \texttt{frailty(.)} option the moment. Frailty (unobserved heterogeneity) models are considered separately in Lesson 7.

The basic syntax is

\begin{verbatim}
streg \[varlist\], dist(distname) nohr time tr nolog
\end{verbatim}

\texttt{dist(distname)} specifies the survival model to be estimated. \texttt{distname} is one of the following: \texttt{exponential}, \texttt{weibull}, \texttt{gompertz}, \texttt{lognormal}, \texttt{loglogistic} or \texttt{gamma}. Abbreviations are allowed (to the minimum, as underlined).

As Stata’s on-line help says (this is text modified from Stata version 7, which still applies):

\begin{itemize}
 \item \texttt{nohr} specifies that coefficients rather than exponentiated coefficients are to be displayed or, said differently, coefficients rather than hazard ratios. This option is valid only for models with a proportional hazard ratio parameterization: \texttt{exponential}, \texttt{weibull}, and \texttt{gompertz}.
 \item \texttt{hr}, which can be specified when the model is estimated or when redisplaying results, states that the underlying log relative hazard coefficients are to be displayed. This option affects only how results are displayed, not how they are estimated.
 \item \texttt{time} specifies that the model is to be estimated in the accelerated failure-time metric rather than the log relative-hazard metric. This option is only valid for the \texttt{exponential} and \texttt{weibull} models since they have both a hazard ratio and an accelerated failure-time parameterization. For these two models, in the log relative-hazard metric, estimates of \((R,s)\) are produced and in the accelerated failure-time metric, estimates of \((-R*s,s)\) are produced.
 \item \texttt{tr} is appropriate only for the \texttt{log-logistic}, \texttt{lognormal}, and \texttt{gamma} models, or for the \texttt{exponential} and \texttt{weibull} models when estimated in the log expected time metric. \texttt{tr} specifies that exponentiated coefficients are to be displayed, which have the interpretation of time ratios. \texttt{tr} may be specified when the model is estimated or when results are redisplayed.
 \item \texttt{nolog} prevents \texttt{streg} from showing the iteration log.
\end{itemize}
stcurve and **predict** are commands used after having run **streg**. See below.

Recall that for models which can be written in the *proportional hazards* (PH) metric, the hazard function for person \(i \) can be written

\[
h_i(t, X_i) = h_0(t) \lambda_i, \quad \text{where}\ h_0(t) = \exp(\beta^* X_i), \text{ or} \]

\[
\log[h_i(t, X_i)] = \log[h_0(t)] + X_i \beta
\]

where \(h_0(t) \) is the baseline hazard, \(X_i \) is a vector of individual characteristics, and \(\beta \) is a vector regression coefficients and includes an intercept term. In a PH model, \(\lambda_i \) scales the baseline hazard multiplicatively by the same amount at each value of \(t \).

For PH models Stata reports estimates for covariate \(k \) of either \(\beta_k \) (use the **nohr** option) or of the ‘hazard ratio’, \(\exp(\beta_k) \), for which you use the **hr** option. The PH form is referred to as the ‘log relative hazard’ in Stata output.

Models which can be written in the *accelerated failure time* (AFT) metric are of the form:

\[
\ln(t_i) = X_i \beta^* + z_i, \text{ or} \]

\[
\ln(t_i \psi_i) = z_i, \text{ or} \]

\[
t_i = \psi_i \exp(z_i)
\]

where \(\psi_i = \exp(-\beta^* X_i) \) and \(z_i = \sigma u_i \) is a generalised error term (\(u_i \) is an error term, and \(\sigma \) is a scale factor).

The \(\psi_i \) is a survival time scaling factor: values of \(\psi_i > 1 \) accelerate failure (reduce survival time) whereas values of \(\psi_i < 1 \) decelerate failure (increase survival time).

For AFT models Stata reports estimates for covariate \(k \) of either \(\beta_k^* \) (the default) or of \(\exp(\beta_k^*) \), for which you use the **tr** (time ratio) option.

The Weibull and Exponential models are the only ones which are both PH and AFT. In this case, the relationship between the PH and AFT representations is

\[
\beta^* = -\sigma \beta
\]

where \(\sigma = 1/\alpha \) and \(\alpha \) is the Weibull parameter (see Lesson 2). Stata refers to \(\alpha \) as ‘\(p \)’.

The Gompertz model is PH only. The lognormal, log-logistic, and generalised Gamma models are AFT only.

The illustrations in this Lesson focus on the Weibull and Log-logistic models, though the Exercises encourage you to explore other specifications.
The empirical illustration uses the Cancer data set, which has already been stset. Recall that there are two variables in the data set which are available to be used as covariates: age and drug. I shall recode the drug variable from three categories into a simpler binary variable summarising whether the subjects receive the drug or not.

```
. recode drug 1=0 2/3=1  
(drug: 48 changes made)  
. lab var drug "receives drug?"  
. lab def drug 0 "placebo" 1 "drug"  
. lab val drug drug
```

4 Estimation of the Weibull model

The Weibull model estimates are:

```
. streg drug age, dist(weibull) nolog nohr  
     failure _d: died  
     analysis time _t: studytim

Weibull regression -- log relative-hazard form

|             | Coef.    | Std. Err. |      z    | P>|z|    | [95% Conf. Interval] |
|-------------|----------|-----------|-----------|--------|----------------------|
| drug        | -2.196936| 0.4087791 | -5.374    | 0.000  | -2.998129 -1.395744 |
| age         | 0.1202027| 0.0371599 | 3.235     | 0.001  | 0.0473707 0.1930348 |
| _cons       | -10.58396| 2.326271  | -4.550    | 0.000  | -15.14337 -6.024553 |

|             | Coef.    | Std. Err. |      z    | P>|z|    | [95% Conf. Interval] |
|-------------|----------|-----------|-----------|--------|----------------------|
| /ln_p       | 0.5204297| 0.1389037 | 3.747     | 0.000  | 0.2481834 0.792676  |
| 1/p         | 1.682751 | 0.2337403 | 7.225     | 0.000  | 1.281695 2.209301   |

The nohr option meant that coefficient estimates were shown. We can show the corresponding hazard ratio estimates by simple replaying the command and adding the hr option (if we had wished, instead we could have used the nohr option and replayed using the hr option). Interpretation of the estimates follows the display of the estimates in hazard ratio form.
Weibull regression -- log relative-hazard form

No. of subjects =           48                     Number of obs   =        48
No. of failures =           31
Time at risk    =          744
Log likelihood  =   -42.931335                     Prob > chi2     =    0.0000

------------------------------------------------------------------------------
                     t | Haz. Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  drug |   .1111431    .045433     -5.374   0.000       .0498803    .2476487
  age |   1.127725   .0419062      3.235   0.001       1.048511    1.212925
---------+--------------------------------------------------------------------
 /ln_p |   .5204297   .1389037      3.747   0.000       .2481834     .792676
p |   1.682751   .2337403                          1.281695    2.209301
1/p |   .5942651   .0825456                           .452632    .7802168
------------------------------------------------------------------------------

The estimates suggest that the hazard rate is increasing over time at a decreasing rate: note that $1 < p < 2$ (see Lesson 2). In the Weibull model, the ratio of the hazard rate at survival time $t$ to the hazard rate at survival time $u$, given the same $X$, is given by $(t/u)^{-1}$. Thus according to our model estimates, the ratio of the hazard rate at time 10 to that at time 5 is 1.6, and the ratio of the hazard rate at time 30 to that at time 5 is 3.4:

\[
\frac{h(10,X)}{h(5,X)} = \left(\frac{10}{5}\right)^{(e(\alpha_p) - 1)} = 1.6051972
\]

\[
\frac{h(30,X)}{h(5,X)} = \left(\frac{30}{5}\right)^{(e(\alpha_p) - 1)} = 3.3984681
\]

The coefficient estimates indicate that those receiving the drug have lower hazard rates ceteris paribus (i.e. lower conditional death rates and hence longer survival times). Note the negative (and statistically significant) coefficient for drug in the nohr representation and the hazard ratio for drug less that one in the hr representation: 0.11 = exp(–2.2). The estimates imply that, at each survival time, the hazard rate for those who received the drug is only 11% of the hazard rate for those who received the placebo. The output also shows that there is a positive association between age and the hazard rate: older people die earlier. In fact a one year rise in age is associated with a 13% higher hazard rate.

The elasticity of the hazard rate with respect to a one unit change in the $k$th explanatory variable is given by $\beta_kX_{ik}$; for age, it is therefore $(0.1202027)*\text{age}$. (If the explanatory variable had instead been ln(age) rather than age, the estimated coefficient on ln(age) would be the elasticity of the hazard with respect to age.) Here are the elasticities:

\[
\text{Elasticity of hazard w.r.t. age (age covariate in levels)} = \beta_{\text{age}} \times \text{age}
\]

\[
\text{ge elas_age = } _b[\text{age}]*\text{age}
\]
\[ h(t; \text{age}=y+10, \text{drug}=x)/h(t; \text{age}=y, \text{drug}=x) = \exp(\beta' (X_1 - X_2)) \]

Thus a ten year difference in age, other things equal, is associated with a hazard rate ratio of some 3.3. Someone aged \( y+10 \) and who is receiving the drug has a hazard ratio that is 37% of someone aged \( y \) who gets the placebo:

\[ \text{di } "h(t; \text{age}=y+10, \text{drug}=1)/h(t; \text{age}=y, \text{drug}=0) = \exp(\beta' \times 10 + \beta [\text{drug}]) \" \]

Let us now look at the estimated hazard and survivor functions graphically. We can do this using \texttt{stcurv}, run after \texttt{streg}. For example:
Note the monotonically rising hazard. The corresponding survival curve is as follows
The median survival time is about 17.

Observe that \texttt{stcurv} can also be used for out-of-sample projections, i.e. showing what the estimated functions look like at survival times beyond the range that exists in the estimation sample. To do this use the \texttt{range(# #)} option to \texttt{stcurve}. Here’s what the previous hazard and survival curves look like if the analysis time axis is extended to 50.
Survival, out-of-sample prediction, at sample means

Hazard, out-of-sample prediction, at sample means
The last four graphs were, by default, drawn with the covariates set at their mean values. This does not make a lot of intuitive sense for categorical covariates. Compare instead the survivor curves for persons with drug = 0 and drug = 1 (and mean age), making use of the `at()` option.

```
.. stcurv, survival title("Cancer data:drug=0") at(drug=0) ///
 saving(streg5,replace)
```

![Graph showing survivor curves for Cancer data:drug=0](image)
Clearly survival times are much lower for placebo recipients. This can be seen even more clearly if we take advantage of the fact that `stcurv` allows us to use multiple `at#()` options in order to draw several lines on one graph:
Let us now calculate the median and mean survival times, using the formulae discussed in Lesson 2. To do this we have to specify the values of the covariate vector \( \mathbf{X} \), and thence can derive \( \lambda_i \). (In Chapter 2, we simulated values for a particular value of \( \lambda \).)

The code below shows first how to calculate the Weibull median and mean for the case when the covariates are set at the sample average values. Second it shows how to calculate the median and mean for each person in the sample – we can then examine the values for particular covariate combinations using `list`.

In both cases, the derivations use the `predict` command after `streg`. The `xb` option with `predict` generates a new variable equal to the estimate \( \beta' \mathbf{X}_i \) for each person \( i \). The other calculations also use other automatically saved results, such as the mean after a `summarize`, `r(mean)`, and the estimate of the Weibull shape parameter \( p \) as `e(aux_p)`. I have also used a couple of local macros to hold scalar results to use in other calculations (see `help macro`). In fact, the calculation of mean and mean medians can be done directly using `predict`.

[Note: after all `estimation class` commands, examples of which are mostly regression commands (including `streg`, `logit`, `cloglog`), Stata saves a variety of results in objects with names `e(something)`. You can find the full list of saved results by typing `ereturn list` after an estimation command. Examples include `e(b)` which is a vector containing the parameter estimates, and `e(V)` which is a matrix containing the variance-covariance matrix of the parameter estimates. Different commands save extra results relevant to their model; e.g. after]
a Weibull regression, \( e(\text{aux}_p) \) contains the shape parameter \( \alpha \). Results are also saved after commands like \texttt{summarize} and \texttt{tabulate} in objects with names like \texttt{r(something)}. You can find the full list of saved results by typing \texttt{return list} after one of these ‘rclass’ commands. E.g., after a \texttt{summarize}, \texttt{r(mean)} contains the estimate of the mean. For a more complete discussion of saved results, see the Manuals. Finally, observe that virtually all estimation commands may be followed with a \texttt{predict} command that generates predictions for the observations in memory, based on the parameter estimates of the most recent model. The sorts of things that one can predict depends, of course, on the command. See the Manual entries for the relevant command about \texttt{predict} for that command.

First is the code for predictions for the case when the covariates are set at the sample average values. The trick here is to note that our calculations require the value \( \beta'X_m \) where \( X_m \) is a vector containing the sample mean values of the characteristics. Instead of first calculating \( X_m \) and then \( \beta'X_m \), we take advantage of the fact that \( \beta'X_m \) is equal to the mean of the individual \( \beta'X_i \) for each subject \( i \) in the sample. But I know that \texttt{predict} will produce the \( \beta'X_i \), so all we have to do is generate that and take its mean. Then we can feed the result into our calculation of the mean and median spell lengths.

```
. predict xb, xb
. su xb

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xb</td>
<td>48</td>
<td>-5.1492</td>
<td>1.3039</td>
<td>-7.1314</td>
<td>-2.5304</td>
</tr>
</tbody>
</table>
```

```
. di "Pred. Median [at sample mean X] = " (ln(2)*exp(-r(mean)))^(1/e(aux_p))
Pred. Median [at sample mean X] = 17.15298
```

```
. di "Pred. Mean [at sample mean X] = " exp(-r(mean)/e(aux_p))*exp(lngamma(1+1/e(aux_p)))
Pred. Mean [at sample mean X] = 19.042575
```

Now, second, we examine how to calculate the estimated mean and median survival time for every person in the sample.

```
. * median duration for each person in sample
. ge mediand = (ln(2)*exp(-xb))^(1/e(aux_p))
```

```
. * expected (mean) duration for each person in sample
. ge meand = exp(-xb/e(aux_p))*exp(lngamma(1+1/e(aux_p)))
```

In fact, Stata allows you to calculate these variables directly, using \texttt{predict} after \texttt{streg}, rather than calculating them by hand. Here’s how:

```
. predict mediandS, median time
. predict meandS, mean time
```

Let’s confirm that we get the same results for both methods of derivation:
Now let’s look and see how the estimated means and median differ for individuals with different characteristics. Among those aged 50–60 years, we compare those who received the drug with those who received the placebo.

```
. sort age drug
. list id age drug mediand meand if age >50 & age <60 & drug ==0 , noobs
```

<table>
<thead>
<tr>
<th>id</th>
<th>age</th>
<th>drug</th>
<th>mediand</th>
<th>meand</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>51</td>
<td>0</td>
<td>11.34556</td>
<td>12.5954</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>0</td>
<td>10.56339</td>
<td>11.72706</td>
</tr>
<tr>
<td>11</td>
<td>52</td>
<td>0</td>
<td>10.56339</td>
<td>11.72706</td>
</tr>
<tr>
<td>20</td>
<td>52</td>
<td>0</td>
<td>10.56339</td>
<td>11.72706</td>
</tr>
<tr>
<td>14</td>
<td>55</td>
<td>0</td>
<td>8.525801</td>
<td>9.465014</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
<td>0</td>
<td>7.938026</td>
<td>8.81249</td>
</tr>
<tr>
<td>19</td>
<td>57</td>
<td>0</td>
<td>7.390773</td>
<td>8.20495</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>0</td>
<td>6.881248</td>
<td>7.639295</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>0</td>
<td>6.881248</td>
<td>7.639295</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>0</td>
<td>6.40685</td>
<td>7.112638</td>
</tr>
</tbody>
</table>

```
. list id age drug mediand meand if age >50 & age <60 & drug ==1 , noobs
```

<table>
<thead>
<tr>
<th>id</th>
<th>age</th>
<th>drug</th>
<th>mediand</th>
<th>meand</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>52</td>
<td>1</td>
<td>38.97641</td>
<td>43.2701</td>
</tr>
<tr>
<td>48</td>
<td>52</td>
<td>1</td>
<td>38.97641</td>
<td>43.2701</td>
</tr>
<tr>
<td>36</td>
<td>54</td>
<td>1</td>
<td>33.78753</td>
<td>37.50961</td>
</tr>
<tr>
<td>41</td>
<td>55</td>
<td>1</td>
<td>31.4582</td>
<td>34.92368</td>
</tr>
<tr>
<td>35</td>
<td>55</td>
<td>1</td>
<td>31.4582</td>
<td>34.92368</td>
</tr>
<tr>
<td>31</td>
<td>55</td>
<td>1</td>
<td>31.4582</td>
<td>34.92368</td>
</tr>
<tr>
<td>24</td>
<td>56</td>
<td>1</td>
<td>29.28944</td>
<td>32.51601</td>
</tr>
<tr>
<td>44</td>
<td>56</td>
<td>1</td>
<td>29.28944</td>
<td>32.51601</td>
</tr>
<tr>
<td>42</td>
<td>57</td>
<td>1</td>
<td>27.27021</td>
<td>30.27434</td>
</tr>
<tr>
<td>23</td>
<td>58</td>
<td>1</td>
<td>25.39019</td>
<td>28.18721</td>
</tr>
<tr>
<td>32</td>
<td>58</td>
<td>1</td>
<td>25.39019</td>
<td>28.18721</td>
</tr>
<tr>
<td>39</td>
<td>58</td>
<td>1</td>
<td>25.39019</td>
<td>28.18721</td>
</tr>
</tbody>
</table>

Finally, let’s compare the estimated means and medians for two (hypothetical) persons, call them i and j, each of which has an age equal to the sample mean age, but one received the drug and the other didn’t. (These comparisons parallel those that we undertook in Lesson 2.) First we drop the previous variables, then we find the mean age using `summarize` and place its value into a local macro that we can refer to later. The next steps compute $\beta'X_i$ and $\beta'X_j$ for the two individuals i and j, and then finally we substitute these values into the formula for the mean and median for the Weibull model.
. drop xb mediant meand

. su age

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>48</td>
<td>55.875</td>
<td>5.659205</td>
<td>47</td>
<td>67</td>
</tr>
</tbody>
</table>

. local meana = r(mean)

We now have the mean age. Now follows the calculations for the placebo recipient.

. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*0

. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = " `xb0'
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = -3.8676331

. di "Pred. Median [mean(age), drug=0] = " (ln(2)*exp(-`xb0'))^(1/e(aux_p))
Pred. Median [mean(age), drug=0] = 8.0092224

. di "Pred. Mean [mean(age),drug=0] = " exp(-`xb0'/e(aux_p))*exp(lngamma(1+1/e(aux_p)))
Pred. Mean [mean(age),drug=0] = 8.8915291

Here are the calculations for the drug recipient.

. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*1

. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = " `xb0'
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = -6.0645694

. di "Pred. Median [mean(age), drug=1] = " (ln(2)*exp(-`xb0'))^(1/e(aux_p))
Pred. Median [mean(age), drug=1] = 29.552145

. di "Pred. Mean [mean(age),drug=1] = " exp(-`xb0'/e(aux_p))*exp(lngamma(1+1/e(aux_p)))
Pred. Mean [mean(age),drug=1] = 32.807649

The results highlight again the very large difference in the survival time distribution between drug and placebo recipients. Observe too the difference between the mean and median durations.

Exactly the same principles as described here could be used if you had a model with a large number of explanatory variables rather than simply two.

The predict command after streg can be used to create other types of variables. E.g. residuals (Cox-Snell and martingale-like) for analysis of specification. See the Reference Manuals.

AFT representation

To complete the discussion of the Weibull model, consider now the AFT representation of the results, showing either coefficients or time-ratios.
Weibull regression -- accelerated failure-time form

| Coef. | Std. Err. | z    | P>|z| | 95% Conf. Interval |
|-------|-----------|------|-----|---------------------|
| drug  | 1.305563  | .2369046 | 5.511 | 0.000 | (.8412383, 1.769887) |
| age   | -.0714323 | .0217129 | -3.290 | 0.001 | (-.1139888, -.0288758) |
| _cons | 6.289679  | 1.220494  | 5.153  | 0.000 | (3.897554, 8.681804) |

Recall that the estimated coefficient on drug in the PH version of the model was 2.20, and that $-(-2.20)(0.59) = 1.31$ which is indeed the estimated coefficient on drug in the AFT version of the model, as expected. Similarly, for age, $-(0.12)(0.59) = -0.07$, and for the constant term $-(10.58)(0.59) = 6.29$. The values of the AFT coefficients can be interpreted as saying that drug recipients have longer (log) survival times, and older people have shorter ones.

5 Estimation of the Log-logistic model

Estimation of this alternative model is quite straightforward, in the sense that little modification of the commands used earlier is required. The model is an AFT one (but not as a PH one).
. streg drug age, dist(logl) nolog
   failure _d: died
   analysis time _t: studytime

Log-logistic regression -- accelerated failure-time form

No. of subjects =           48                     Number of obs   =        48
No. of failures =           31
Time at risk    =          744
LR chi2(2)      =     35.14
Log likelihood  =    -43.21698                     Prob > chi2     =    0.0000

------------------------------------------------------------------------------
   _t |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
   drug |   1.420237   .2502148      5.676   0.000       .9298251    1.910649
   age |  -.0803289   .0221598     -3.625   0.000      -.1237614   -.0368964
   _cons |   6.446711   1.231914      5.233   0.000       4.032204    8.861218
------------------------------------------------------------------------------
/ln_gam |  -.8456552   .1479337     -5.716   0.000        -1.1356   -.5557105
------------------------------------------------------------------------------
     gamma |    .429276   .0635044                          .3212293    .5736646
------------------------------------------------------------------------------

Qualitatively, the estimates are similar to those derived from the Weibull model. Those receiving the drug, and younger, have longer survival times. It turns out that the estimated median duration (at covariate means), 16, is a little smaller than that predicted by the Weibull model (17). Also the hazard function (evaluated at covariate means) is also rather different: note the negative slope at longer durations.

What about the estimates of the median and mean duration. (The latter can be calculated because the estimate of gamma is less than one – see Lesson 2.) We proceed as we did with the Weibull model: First are the estimates for the (hypothetical) person with characteristics corresponding to sample mean values.

. predict xb, xb
. su xb

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xb</td>
<td>48</td>
<td>2.786804</td>
<td>.8510832</td>
<td>1.064673</td>
<td>4.091489</td>
</tr>
</tbody>
</table>

. di "Pred. Median [at sample mean X] = "  exp(r(mean))
Pred. Median [at sample mean X] = 16.229071

. di "Pred. Mean [at sample mean X] = "  exp(r(mean))*(_pi*e(gamma))/sin(_pi*e(gamma))
Pred. Mean [at sample mean X] = 22.438269

Here, second are calculations of the mean and median for each person in the sample. We are going to this ‘by hand’. Derivation of the values using predict is left as an exercise.

. * median duration for each person in sample
. ge mediland = exp(xb)
. * mean duration for each person in sample
. ge meand = exp(xb)*(_pi*e(gamma))/sin(_pi*e(gamma))
Now we list the values to compare them across individuals with different characteristics.

```
. sort age drug

. list id age drug mediand meand if age >50 & age <60 & drug ==0 , noobs

<table>
<thead>
<tr>
<th>id</th>
<th>age</th>
<th>drug</th>
<th>mediand</th>
<th>meand</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>51</td>
<td>0</td>
<td>10.4849</td>
<td>14.49639</td>
</tr>
<tr>
<td>11</td>
<td>52</td>
<td>0</td>
<td>9.675598</td>
<td>13.37746</td>
</tr>
<tr>
<td>20</td>
<td>52</td>
<td>0</td>
<td>9.675598</td>
<td>13.37746</td>
</tr>
<tr>
<td>14</td>
<td>55</td>
<td>0</td>
<td>7.603588</td>
<td>10.5127</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>0</td>
<td>7.016689</td>
<td>9.701255</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
<td>0</td>
<td>7.016689</td>
<td>9.701255</td>
</tr>
<tr>
<td>19</td>
<td>57</td>
<td>0</td>
<td>6.47509</td>
<td>8.952441</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>0</td>
<td>5.975296</td>
<td>8.261427</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>0</td>
<td>5.975296</td>
<td>8.261427</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>0</td>
<td>5.51408</td>
<td>7.623751</td>
</tr>
</tbody>
</table>
```

Finally, let’s compare the estimated means and medians for two (hypothetical) persons, call them $i$ and $j$, each of which has an age equal to the sample mean age, but one received the drug and the other didn’t.

```
. drop xb mediand meand

.* mean age is already in local macro meana

. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*0

. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = " `xb0'
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = 1.9583325

. di "Pred. Median [mean(age), drug=0] = " exp(`xb0')
Pred. Median [mean(age), drug=0] = 7.0874991

. di "Pred. Mean [mean(age), drug=0] = " exp(`xb0')*(_pi*e(gamma))/sin(_pi*e(g > amma))
Pred. Mean [mean(age), drug=0] = 9.7991566

. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*1

. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = " `xb0'
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = 3.3785696

. di "Pred. Median [mean(age), drug=1] = " exp(`xb0')
Pred. Median [mean(age), drug=1] = 29.328789

. di "Pred. Mean [mean(age), drug=1] = " exp(`xb0')*(_pi*e(gamma))/sin(_pi*e(g > amma))
Pred. Mean [mean(age), drug=1] = 40.549902
```
We can also look at the estimated survivor and hazard functions using `stcurv`:

```
use stcurve to look at estimated survivor and hazard functions
for person with sample mean values of covariates

stcurv, survival title("Cancer data, at sample means") ///
saving(streg7,replace)
```

![Cancer data, at sample means](image-url)
The `at(.)` and `range(.)` options could of course also been used here (see the earlier discussion).

6 Estimation of the Cox PH model using `stcox`

All the models estimated so far used a parametric specification for the relationship between hazard rates and characteristics (PH models) or survival times and characteristics (AFT models). Forcing the hazard function to take a particular shape may be a disadvantage.

Cox’s partial likelihood model allows derivation of estimates of the slope coefficients within the vector $\beta$ from a PH model, but places no restrictions at all on the shape of the baseline hazard. Let us apply the Cox model using the same covariates as used when estimating the parametric models: The command in Stata is `stcox` and, as for estimation using `streg` models, the data must have first been `stset`. Assuming that has been done, here are the model estimates. First, we make `stcox` display the coefficient estimates (the slope coefficients within the vector $\beta$) using the `nohr` option; second, we display the hazard ratios $\exp(\beta_k)$ for each regressor $k$. (Observe how typing the estimation command name again ‘replays’ the results.) Alternatively, we could have estimated the model with default display format (hazard ratios) and looked at the coefficients by redisplaying the results and using the `nohr` option.)
. stcox drug age, nohr
        failure _d: died
        analysis time _t: studytim

Iteration 0:   log likelihood = -99.911448
Iteration 1:   log likelihood = -83.551879
Iteration 2:   log likelihood = -83.324009
Iteration 3:   log likelihood = -83.323546
Refining estimates:
Iteration 0:   log likelihood = -83.323546

Cox regression -- Breslow method for ties
No. of subjects =           48                     Number of obs   =        48
No. of failures =           31                     Time at risk    =          744
Log likelihood  =   -83.323546                     LR chi2(2)      =     33.18
Prob > chi2     =    0.0000                             Log likelihood  =   -83.323546                     Prob > chi2     =    0.0000
------------------------------------------------------------------------------
_t  |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  drug   |  -2.254965   .4548338     -4.958   0.000      -3.146423   -1.363507
  age    |   .1136186   .0372848      3.047   0.002       .0405416    .1866955
------------------------------------------------------------------------------

Now replay the results:

. stcox, hr

Cox regression -- Breslow method for ties
No. of subjects =           48                     Number of obs   =        48
No. of failures =           31                     Time at risk    =          744
Log likelihood  =   -83.323546                     LR chi2(2)      =     33.18
Prob > chi2     =    0.0000                             Log likelihood  =   -83.323546                     Prob > chi2     =    0.0000
------------------------------------------------------------------------------
_t  | Haz. Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  drug   |   .1048772   .0477017     -4.958   0.000       .0430057    .2557622
  age    |   1.120325   .0417711      3.047   0.002       1.041375    1.205260
------------------------------------------------------------------------------

The coefficient (and hazard ratio) estimates are similar to the Weibull ones derived earlier.

If one wants to create the non-parametric estimates of the baseline survivor and cumulative hazard functions, one simply uses the basesurvival and basechazard options as follows (note how they can be abbreviated), and then one can graph (or list) the estimates:

The Cox model does not fit a baseline hazard function – that is not identified. However, all proportional hazards models, including the Cox model, satisfy the properties that $S(t,X) = [S_0(t,X)]^\gamma$ and $H(t,X) = \lambda H_0(t,X)$. The baseline survivor and integrated hazard functions are derived using the methods described in Lesson 4, and then these are scaled using functions of the slope coefficients estimated for the Cox model (part of $\lambda$).

. stcox drug age, nohr bases(s0) basech(ch0)
<output omitted>
These graphs may not be very appealing in this form. The problem is that the baseline curves are generated setting all the covariates equal to zero. But values of the variable age range from 47 to 67 years in our data set. It is more sensible to calculate baseline curves using values lying within the covariate range. (Remember that the general shape of the hazard function will be the same – this is a PH model.). So let us redo the estimates for age = 55 (and drug = sample mean): To do this, we first calculate a new age variable equal to age minus 55; this ‘recentres’ the estimates. Then we re-estimate the model using the new regressor.

```
. ge age55 = age-55
. stcox drug age55, nohr bases(s1) basech(ch1)
```

```
failure _d: died
analysis time _t: studytim

Iteration 0: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration 0: log likelihood = -83.323546

Cox regression -- Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

```

```
| _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] |
|--------|-----|-------------|------|-------|-----------------------|
| drug | -2.254965 .4548338 -4.958 0.000 -3.146423 -1.363507 |
| age55 | .1136186 .0372848 3.047 0.002 .0405416 .1866955 |
```

```
. twoway line s1 _t, sort connect(J) title("Baseline S(t),age=55,Cox model") ///
> saving(stcox3, replace)
(file stcox3.gph saved)

. twoway line ch1 _t, sort connect(J) title("Baseline Cum.Haz.,age=55,Cox model") ///
> saving(stcox4, replace)
(file stcox4.gph saved)
```
The model estimates are just the same. But compare the baseline curves for the uncentred and centred results. I use the `graph combine` command to put all the graphs into one picture.

```
 . graph combine stcox1.gph stcox2.gph stcox3.gph stcox4.gph, saving(stcox5, replace)
 (file stcox5.gph saved)
```

The median duration from the revised model now corresponds with those derived earlier.

`stcox` has several other facilities. E.g. there are several alternative methods for dealing with tied survival time. (Recall that the theoretical model was derived assuming one event per survival time. The default option uses the ubiquitous Breslow method for handling ties – this was reported in the estimation output. Other methods are also available: `help stcox`.) It is possible to partition (‘stratify’) the sample into subgroups and estimate a model which allows a separate non-parametric baseline hazard for each subgroup. There are also possibilities for residual analysis. See `help stcox`.

7 Estimation of the piece-wise constant exponential model using `streg`

The parametric models that we have considered make strong assumptions about the shape of the hazard function, and the Cox model makes none. Sometimes an in between approach is more appealing, in which we fit a semi-parametric hazard. The piece-wise constant exponential model is the model most commonly used for doing this (in a continuous time modelling framework). The hazard is assumed constant within pre-specified survival time intervals but the constants may differ for different intervals.
The model is simple to estimate using `streg, dist(exponential)` but first requires some reorganisation of the data and creation of some time-varying covariates.

Recall that the exponential model is

\[ h(t) = h_0 \lambda_i, \quad \text{where } \lambda_i = \exp(\beta X_i), \] or

\[ \log[h(t)] = \log(h_0) + \beta X_i \]

since, in this case \( h_0(t) = h_0 \), a constant.

We can generalise this specification to have a constant hazard within each of \( K \) intervals along the survival time axis:

\[ \log[h_i(t)] = \log(h_{0i}) + \beta X_i, \quad t \in (\tau_{i-1}, \tau_i] \]

All we need to estimate the model is to generate variables which allow the constant term in the hazard regression to differ from interval to interval. This we do by changing the organisation of the data set (expanding it or `stsplittting` it) and specifying the variables using appropriate dummy variables. Reread the relevant section in Lesson 3.

Suppose the estimates above lead us to wish to allow the baseline hazard to differ over three intervals \((0, 8], (8, 17], \text{ and } (17, 39]\). In Lesson 3 we showed how to split episodes and create dummy variables that linked the (new) episodes with these time intervals – we called these variables, \( e_1, e_2, \text{ and } e_3 \), respectively. We then have two possible strategies in estimation: either we include all three variables \( e_1, e_2, \text{ and } e_3 \) as regressors in the model and exclude the constant term, or we can include a constant term but only two of the variables. (We can’t include all three variables plus a constant because that would introduce a collinearity between the regressors, and the model could not be estimated.) I prefer the second display because it allows us to look directly at how the baseline hazard for the two intervals in question differs from that of the interval corresponding to the excluded variable. (This is a presentational or interpretational issue – the models are the same models and would generate the same predictions.)
Here, first, are the estimates for the case where all three variables are included, there is no constant term, and we want coefficients displayed rather than hazard ratios.

```
. streg drug age e1 e2 e3, dist(exp) nolog nocons nohr
 failure _d: died
 analysis time _t: studytim
 Id: id
Exponential regression -- log relative-hazard form
No. of subjects = 48 Number of obs = 98
No. of failures = 31 Time at risk = 744
Wald chi2(5) = 252.59 Log likelihood = -46.134703 Prob > chi2 = 0.0000
--
 _t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 drug | -2.010659 .4069367 -4.94 0.000 -2.80824 -1.213077
 age | .1031196 .0357331 2.89 0.004 .033084 .1731553
 e1 | -8.178818 2.071186 -3.95 0.000 -12.23827 -4.119368
 e2 | -7.720299 2.006316 -3.85 0.000 -11.65261 -3.787991
 e3 | -7.098881 2.000018 -3.55 0.000 -11.01884 -3.178916
--
```

Now, second, see what happens if, instead, you estimate the model including the last two variables and a constant term:

```
. streg drug age e2 e3, dist(exp) nolog nohr
 failure _d: died
 analysis time _t: studytim
 Id: id
Exponential regression -- log relative-hazard form
No. of subjects = 48 Number of obs = 98
No. of failures = 31 Time at risk = 744
LR chi2(4) = 30.42 Log likelihood = -46.134703 Prob > chi2 = 0.0000
--
 _t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 drug | -2.010659 .4069367 -4.94 0.000 -2.80824 -1.213077
 age | .1031196 .0357331 2.89 0.004 .033084 .1731553
 e2 | .4585195 .4406342 1.04 0.298 -.4051077 1.322147
 e3 | 1.079937 .4924212 2.19 0.028 .1148094 2.045065
 _cons | -8.178818 2.000018 -3.55 0.000 -11.01884 -3.178916
--
```
Finally here is that same model again, but now with hazard ratios displayed.

```
. streg drug age e2 e3, dist(exp) nolog

failure _d: died
analysis time _t: studytim
id: id

Exponential regression -- log relative-hazard form

No. of subjects = 48 Number of obs = 98
No. of failures = 31
Time at risk = 744
Log likelihood = -46.134703 Prob > chi2 = 0.0000
--
 _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 drug | .1339005 .0544896 -4.94 0.000 .0603111 .297281
 age | 1.10862 .0396146 2.89 0.004 1.033637 1.189051
 e2 | 1.58173 .6969645 1.04 0.298 .666905 3.751466
 e3 | 2.94449 1.449932 2.19 0.028 1.12166 7.729663
--
```

The hazard for the third interval (17, 39] is 2.94 times higher than the hazard for the first interval (the reference category). That it is higher is what we would expect from the non-parametric estimates. The hazard ratios for drug and age are similar to those estimated by the other PH models.

8 Exercise 5.1

(i) Repeat all the derivations above, but using the marriage data set (duration.dta) with the sex and married variables as covariates (you need to create a dummy variable from married first). Compare the estimates from the Weibull, Log-logistic and Cox models. Consider the impact of the covariates, the shape of the hazard function, and the median partnership survival time for persons of different legal status (single, married) and sex (man, woman).

(ii) For the Weibull model and the Cancer data, we computed the estimated mean and median for each individual both by hand and directly using Stata’s `predict` command. For the Log-logistic model, we only used the by-hand method. Repeat the derivation using `predict`, and show that it yields the same results.

(iii) Return to the Cancer data set and estimate the lognormal model using the same covariates as before (drug, age). Then run the following three commands:

```
ge cens = 1-died
ge lntime = ln(studytim)
cnreg lntime drug age, censored(cens)
```

Compare the results from the `cnreg` and `streg, d(lognormal)` regressions. Can you explain the relationship between them? Now examine how badly OLS does. Rerun the regression first simply ignoring censoring (`reg lntime drug age`) and then excluding the censored cases (`reg lntime drug age if died==1`). How do the results compare with the earlier ones?

(iv) Now estimate the generalised Gamma mode using the Cancer data and the same regressors. What do the hazard and survivor functions look like? Compare the median durations for persons with drug = 0 and drug = 1 (use `stcurv`).

26 Lesson 5
(v) [Harder] The generalized Gamma model has ancillary parameters kappa and sigma. For particular values of these parameters, the model reduces to models considered above (they are nested). If kappa = 1: Weibull model. If kappa = 1, sigma = 1: Exponential model. If kappa = 0: Lognormal model. Do a Wald test of the null hypothesis that kappa = 0, and a Wald test of the null hypothesis that kappa = 1. Compare the test statistics with χ²(1). Alternatively use a likelihood ratio test based on the log-likelihood values derived from estimation of the generalized Gamma model and a Weibull model.