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1 Aim 
 
The aim of this lesson is to illustrate how to use Stata to estimate (integrated) hazard and 
survival functions using Kaplan-Meier product-limit and lifetable methods. Again, the data 
are assumed to be the simple single-spell type considered in earlier Lessons (with right 
censoring but not left censoring or left truncation). 
 
 

2 Introduction: sts and ltable 
 
Estimation of the Kaplan-Meier empirical hazard and survival functions is done very easily 
in Stata by using either the sts collection of commands or by using the ltable (‘lifetable’) 
command. 
 
Many of the differences between sts and ltable derive from the underlying assumptions about 
the nature of the survival time data. With sts, survival times are treated as observations on a 
continuous variable. In the ltable case, the technique is based on survival data that have been 
grouped into intervals (or implicitly assumed to be).  
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Observe that the continuous time hazard rate is defined with reference to an instant of time 
(and not a probability), whereas the discrete time hazard rate is a probability, the definition of 
which refers to an interval of time, by construction. One might try and estimate the 
continuous time hazard from the slope of the integrated hazard function (a step function): a 
discrete approximation based on the ‘hazard contribution’ – the change in the integrated 
hazard over the interval of time between the dates between two successive observed failure 
times. One might then estimate the hazard rate from the ratio of the hazard contribution to the 
length of the time interval. However this estimator is known to have relatively poor 
properties and this has led analysts to focus instead on estimates of a smoothed hazard rate. 
 
The sts commands consist of sts graph, sts list, sts generate, and sts test. (See help sts.) 
The first two of these are likely to be of most use to you: they provide a graph and listing of 
the survivor function (estimated by the Kaplan-Meier product-limit method), the integrated 
hazard function (estimated by the Nelson-Aalen method) plus associated statistics such as 
standard errors. (Note that Stata refers to the integrated hazard as the ‘cumulative hazard’.) 
The command sts used by itself is a synonym for sts graph (and understands all the standard 
options from graph). Estimates of smoothed hazard rates can be derived using sts graph and 
its hazard option. This uses kernel smoothing, and there are options to choose kernels and 
bandwidths other than the default ones. 
 
The sts commands can only be used with data which has already been stset (see Lesson 3), 
but this has substantial pay-offs. Once the data have been correctly stset, then estimates can 
be derived very straightforwardly – regardless of whether the data are organised by person or 
by person-month. (stset takes care of any potential complications on that score. See Lesson 
3.)  
 
The ltable command displays and graphs estimates of survivor functions estimated using 
lifetable methods. It can be applied to data organised in either person or person-month form. 
Estimates of the empirical hazard can be shown in a table, but cannot be graphed. (This 
reflects the issues raised earlier about estimation of continuous hazard rates.) By default, 
ltable uses the so-called actuarial adjustment for the number of subjects at risk (this may vary 
within intervals if survival times are grouped). To get the unadjusted estimates, 
corresponding to the Kaplan-Meier assumption, which are also the ones produced by sts list, 
you need to use the noadjust option to ltable. 
 
I will now work through an illustrative example based on the Cancer data. There are 
exercises at the end that ask you to work through the same material but with other course data 
sets. 
 
 

3 Illustration using the Cancer data set: (i) sts 
 
First we first stset the data (as in Lesson 3): 
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use cancer 
su 
de 
stset studytim , failure(died) 
ge id = _n   
lab var id "subject identifier" 
 
We also recode the drug variable (for use later) 
 
. recode drug 1=0 2/3=1 
(drug: 48 changes made) 
. lab var drug "receives drug?" 
. lab def drug 0 "placebo" 1 "drug" 
. lab val drug drug 

 
Now we simply: 
 
. sts list 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
           Beg.          Net            Survivor      Std. 
  Time    Total   Fail   Lost           Function     Error     [95% Conf. Int.] 
------------------------------------------------------------------------------- 
     1       48      2      0             0.9583    0.0288     0.8435    0.9894 
     2       46      1      0             0.9375    0.0349     0.8186    0.9794 
     3       45      1      0             0.9167    0.0399     0.7930    0.9679 
     4       44      2      0             0.8750    0.0477     0.7427    0.9418 
     5       42      2      0             0.8333    0.0538     0.6943    0.9129 
     6       40      2      1             0.7917    0.0586     0.6474    0.8820 
     7       37      1      0             0.7703    0.0608     0.6236    0.8656 
     8       36      3      1             0.7061    0.0661     0.5546    0.8143 
     9       32      0      1             0.7061    0.0661     0.5546    0.8143 
    10       31      1      1             0.6833    0.0678     0.5302    0.7957 
    11       29      2      1             0.6362    0.0708     0.4807    0.7564 
    12       26      2      0             0.5872    0.0733     0.4304    0.7145 
    13       24      1      0             0.5628    0.0742     0.4060    0.6931 
    15       23      1      1             0.5383    0.0749     0.3821    0.6712 
    16       21      1      0             0.5127    0.0756     0.3570    0.6483 
    17       20      1      1             0.4870    0.0761     0.3326    0.6249 
    19       18      0      2             0.4870    0.0761     0.3326    0.6249 
    20       16      0      1             0.4870    0.0761     0.3326    0.6249 
    22       15      2      0             0.4221    0.0786     0.2680    0.5684 
    23       13      2      0             0.3572    0.0788     0.2087    0.5083 
    24       11      1      0             0.3247    0.0780     0.1809    0.4771 
    25       10      1      1             0.2922    0.0767     0.1543    0.4449 
    28        8      1      1             0.2557    0.0753     0.1247    0.4093 
    32        6      0      2             0.2557    0.0753     0.1247    0.4093 
    33        4      1      0             0.1918    0.0791     0.0676    0.3634 
    34        3      0      1             0.1918    0.0791     0.0676    0.3634 
    35        2      0      1             0.1918    0.0791     0.0676    0.3634 
    39        1      0      1             0.1918    0.0791     0.0676    0.3634 
------------------------------------------------------------------------------- 
 
The second column (beg. total) is the total number of subjects at risk of failure (death) at the 
time shown in the first column. The third column (Fail) shows the number dying at each time. 
The fourth column (Net lost) gives the number of subjects censored (and thence no longer 
entering the risk set). The estimates of the survivor function together with estimates of their 
statistical significance are shown in the remaining columns. 
 
The table shows that 48% of the sample remained alive after t = 17 (with a 95 percent. 
confidence interval of 0.33, 0.62). You could change the confidence interval shown if you 
wished using the level option. (This applies to all Stata’s estimation commands: see help 
level.) 
 
Our estimate of the median duration is t between 16 and 17. At the end of the (fictional) drug 
trial which provided the data, only about one fifth of the sample remained alive (four-fifths 
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had died). We can see this directly from a graph of the survivor function derived from sts 
graph: 
 
. sts graph, title("Survivor function, Cancer data (sts)") saving(surv1, replace) 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
 
 
Figure 4.1 Survivor function derived from the Cancer data using sts 
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If you wanted instead an estimate of the integrated hazard function, add the na option to the 
command above. (‘na’ stands for Nelson-Aalen, the progenitors of the method used to derive 
the estimates of the integrated hazard. The estimates could in principle also be derived via the 
survivor function but the literature has shown that the Nelson-Aalen estimator of the 
integrated hazard is to be preferred.) 
 
. sts graph, title("Cumulative hazard function, Cancer data (sts)") /// 
>         na saving(integh1, replace).  
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Figure 4.2 Cumulative hazard function derived from the Cancer data using sts 
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Using sts gen, we can retrieve the estimates shown in the graphs above, together with the 
estimate of the hazard contribution (defined earlier): 
 
. sts gen s = s 
. lab var s "KM survivor function, from -sts gen-" 
. sts gen cumh = na 
. lab var cumh "NA cumulative hazard function, from -sts gen-" 
. sts gen deltach = h  
. lab var deltach "Hazard contribution, from -sts gen-" 
 
We can of course also graph these variables against survival time too, and get pictures that 
look like Figures 4.1 and Figure 4.2. Here follow some examples.  
 
twoway line s _t, sort connect(J) title("Survivor function, Cancer data (sts gen)") /// 
 saving(surv2, replace)  
 
twoway line cumh _t, sort connect(J) /// 

title("Cumulative hazard function, Cancer data (sts gen)")  saving(chaz1, replace)  
 
twoway line deltach _t, sort connect(J) /// 

title("Hazard contribution, Cancer data (sts gen)")  saving(deltach1, replace) 
 

The graphs could have been made more ‘pretty’ using graph twoway options for labelling 
and scaling axes, and so on. Note the use of the connect(J)  option: this ensures that points 
are connected in steps, rather than a straight line between points. 
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Figure 4.3 Survivor function derived from the Cancer data using -sts gen- 
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Figure 4.4 Cumulative hazard function derived from the Cancer data using sts 
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Note the reference to ‘_t’ in the specification of the commands. I knew that stset created this 
variable to represent survival time (it is a synonym for studytim in this case): see the 
discussion in the previous Lesson of the ‘_’ variables created by stset. 
 
Eyeballing the (slope of the) cumulative hazard function shown above suggests that the 
hazard rate might be relatively constant, decline and then increase (remember that the 
continuous time hazard rate is the slope of the continuous time integrated hazard rate). But 
this is indeed just ‘eyeballing’, and made harder to tell given the staircase nature of the 
function arising from real data. We shall have another look using the estimate of the 
smoothed hazard below. 
 
Estimates of the (continuous time) hazard rate might be derived by dividing each value of the 
hazard contribution by the length of the time interval between the current failure time and the 
previous failure time – this is an attempt to look at the slope of the cumulative hazard 
function. But this usually generates poor estimates. (Things would be easier if failures times 
could be guaranteed to occur at equal-spaced intervals of short length!) Here’s what the 
hazard contributions look like (remember, from earlier, that these are the changes in the 
cumulative hazard over the intervals of time between successive failure times observed in the 
data): 
 
 
Figure 4.5 Hazard contribution function derived from the Cancer data using sts 
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One can get an estimate of the smoothed hazard with the command that follows below. The 
estimate of the hazard uses a kernel-based smoothing of the hazard contributions defined 
earlier (the change in the cumulative hazard between successive failures). With kernel 
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smoothing, the smoothed value at a given time is based on a weighted average of the values 
in the neighbourhood of that point. The choice of kernel function determines how much 
weight is given to observations that are close to the one being considered relative to ones that 
are far away (most kernel functions give greater weights to closer points), and the 
‘bandwidth’ determines how wide the window of observation is when considering which 
observations are used for the averaging. The larger the bandwidth, the greater the smooth. 
(Choice of the bandwidth is typically much more important than choice of the kernel 
function.) I start with the default bandwidth and function. 
 
* smoothed hazard, default bandwidth (and default kernel) 
sts graph, hazard title("Smoothed hazard function, Cancer data (sts)") /// 
 saving(smoothhaz1, replace) 
 

Figure 4.6 Smoothed hazard derived from the Cancer data using sts 
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This illustrates how eyeballing the cumulative hazard function can be potentially misleading 
about the shape of the (smoothed) hazard! Of course, perceptions also depend on the amount 
of smoothing. Try the following commands and see how the picture differs, noting that the 
width option specifies the bandwidths:  
 
sts graph, hazard width(2) 
 
sts graph, hazard width(10) 
 
 

Note that one can look directly at the estimates of the various functions by listing the data. 
What we want is one estimate presented for each value of t, but we know that there are 
estimates for each subject. So, if we simply listed all the data, we would get more than we 
really want to see: there would be repeated observations on the variables of interest for each 
subject. The trick is to generate a variable that will select one observation on t for each group 
of observations with the same t value. We use the egen tag() function to create such a 
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variable (called tagt), and then observations with values of tagt = 1. We sort the data by _t 
before listing them. 
 
. egen tagt = tag(_t)  
. sort _t 
. list _t deltach cumh s if tagt == 1 
 
     +----------------------------------------+ 
     | _t     deltach        cumh           s | 
     |----------------------------------------| 
  1. |  1   .04166667   .04166667   .95833333 | 
  3. |  2   .02173913    .0634058       .9375 | 
  4. |  3   .02222222   .08562802   .91666667 | 
  5. |  4   .04545455   .13108256        .875 | 
  7. |  5   .04761905   .17870161   .83333333 | 
     |----------------------------------------| 
  9. |  6         .05   .22870161   .79166667 | 
 12. |  7   .02702703   .25572864   .77027027 | 
 13. |  8   .08333333   .33906197   .70608108 | 
 17. |  9           .   .33906197   .70608108 | 
 18. | 10   .03225806   .37132004   .68330427 | 
     |----------------------------------------| 
 20. | 11   .06896552   .44028555   .63617984 | 
 23. | 12   .07692308   .51720863   .58724293 | 
 25. | 13   .04166667    .5588753   .56277447 | 
 26. | 15   .04347826   .60235356   .53830602 | 
 28. | 16   .04761905   .64997261    .5126724 | 
     |----------------------------------------| 
 29. | 17         .05   .69997261   .48703878 | 
 31. | 19           .   .69997261   .48703878 | 
 33. | 20           .   .69997261   .48703878 | 
 34. | 22   .13333333   .83330594   .42210027 | 
 36. | 23   .15384615   .98715209   .35716177 | 
     |----------------------------------------| 
 38. | 24   .09090909   1.0780612   .32469252 | 
 39. | 25          .1   1.1780612   .29222327 | 
 41. | 28        .125   1.3030612   .25569536 | 
 43. | 32           .   1.3030612   .25569536 | 
 45. | 33         .25   1.5530612   .19177152 | 
     |----------------------------------------| 
 46. | 34           .   1.5530612   .19177152 | 
 47. | 35           .   1.5530612   .19177152 | 
 48. | 39           .   1.5530612   .19177152 | 
     +----------------------------------------+ 

 
Check how these values correspond with what was graphed. 
 
Stratification 
 
One might suppose that survival times will vary according to whether the subjects received a 
drug (drug = 2 or 3) or a placebo (drug = 1). One can use sts with the by(byvar) option to 
derive separate estimates for sample subgroups stratified by a variable such as type of drug 
received: 
 
. sts graph, title("Survivor functions, by drug, Cancer data (sts)") /// 
>         by(drug) lost saving(surv5, replace) 

 
See Figure 4.7 for the resulting graph. Note the lost option in this case: this adds the number 
of censored subjects onto the graph at the relevant survival times. 
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Figure 4.7 Survivor function, stratified by drug (Cancer data), derived using sts 
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Subjects receiving the placebo appear to have shorter survival times. One can look at the 
estimates themselves, stratified by subgroup, using the command sts list, by(drug). The 
resulting table has the same format as the earlier sts list table except that there is a separate 
panel of estimates for each subgroup. An alternative and more succinct listing can be 
produced with 
 
. sts list, by(drug) compare 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
                 Survivor Function 
drug            placebo       drug 
---------------------------------- 
time       1     0.9000     1.0000 
           5     0.6000     1.0000 
           9     0.4500     0.8914 
          13     0.2250     0.8100 
          17     0.1125     0.7650 
          21     0.1125     0.7650 
          25          .     0.5296 
          29          .     0.4634 
          33          .     0.3476 
          37          .     0.3476 
          41          .          . 
---------------------------------- 

 
One can also use sts generate to calculate stratified estimates. 
 
You might also like to test whether the observed subgroup differences in the survivor 
functions are statistically significant. Two standard tests in the literature are the Log-rank and 
the Wilcoxon tests. Test statistics can be derived using sts test as follows: 
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. sts test drug 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
 
Log-rank test for equality of survivor functions 
 
        |   Events         Events 
drug    |  observed       expected 
--------+------------------------- 
placebo |        19           7.25 
drug    |        12          23.75 
--------+------------------------- 
Total   |        31          31.00 
 
              chi2(1) =      28.27 
              Pr>chi2 =     0.0000 
 
. sts test drug, wilcoxon 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
 
Wilcoxon (Breslow) test for equality of survivor functions 
 
        |   Events         Events        Sum of 
drug    |  observed       expected        ranks 
--------+-------------------------------------- 
placebo |        19           7.25          385 
drug    |        12          23.75         -385 
--------+-------------------------------------- 
Total   |        31          31.00            0 
 
              chi2(1) =      22.61 
              Pr>chi2 =     0.0000 

 
If the chi-squared value associated with the test is sufficiently large (associated p-value 
sufficiently small), then we reject the null hypothesis of no subgroup differences in survivor 
functions. In this case, the probability that the observed differences occur by chance is less 
than 0.00 (i.e. less than 1%, a standard reference point). We would reject the null hypothesis. 
 
 
Graphical checks regarding model specification 
 
Our final exercise with data assumed to be continuous is illustration of the graphical checks 
that one may use to check whether the data are consistent with a proportional hazards model, 
with a Weibull model, or with a log-logistic model. See the Lecture Notes for details.  
 
The check concerning the validity of the PH assumption is based on graphs of the log of non-
parametric estimates of the cumulative hazard against time for different subgroups: recall that 
we are hoping to see the graphs move in parallel. Throughout, we shall simply compare 
values according to one explanatory variable drug, which has two values corresponding to 
whether the subject received the drug or the placebo.  
 
The first step in implementation is creation of the subgroup variables referring to the log of 
the estimated cumulative hazard. We use sts generate to create a variable cumhg which 
contains values of the cumulative hazard calculated separately for each group. The ‘= na’ 
part of the command tells Stata that we want the cumulative hazard; the by(.) option tells 
Stata that we want separate calculations for the groups defined by the byvar (two groups in 
this case corresponding to drug = 0 (placebo recipient) and drug = 1 (drug recipient)). We 
then compute the log of this variable. 
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. sts gen cumhg = na, by(drug) 
 
. ge lch = log(cumhg) 

 
In order to graph the log cumulative variables with separate lines for each group, we need 
two new variables. The first is equal to lch if drug = 0 and missing otherwise, and the second 
is equal to lch if drug = 1 and missing otherwise. The separate command creates these two 
new variables, naming lch0 and lch1 by default (the suffix to the name corresponds to the 
values of drug). You could name the variables using your own variable name stub if you 
wished, using the generate() option. 
 
. separate lch, by(drug)  // creates lch0 lch1 

 
Now we draw the relevant graph 
 
. twoway connect lch0 lch1 _t, ytitle("log(cumulative hazard)") /// 
>         title("Proportional hazard check - parallel lines?") /// 
>         xtitle("survival time") xtick(1(1)39) sort saving(PHtest1, replace) 

 
Figure 4.8 Informal graphical check of the PH assumption  
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Do you think the graphs have the same slope at each survival time (are ‘parallel’)? To my 
eyes, they do not! Note the difficulty of making a firm decision on the basis of a visual 
inspection – this issue reminds us that these sorts of checks are relatively informal.  
 
The graphical check of the Weibull specification is implemented similarly (recall that it is a 
PH model): the variable on the vertical axis is the same, but we graph it against the log of 
survival time on the horizontal axis. We create the log(time) variable first and then draw the 
graph. 
 
. ge logt = log(_t) 
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. twoway connect lch0 lch1 logt, ytitle("log(cumulative hazard)") /// 
>         xtitle("log(survival time)") /// 
>         title("Weibull model check - parallel straight lines?") /// 
>         sort saving(Weibtest1, replace) 
(file Weibtest1.gph saved) 
 
Figure 4.9 Informal graphical check of the Weibull assumption  
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If the Weibull model is appropriate, the two lines should be parallel straight lines – are they? 
To my eyes, they are not. (And I hadn’t expected them to be because I was already sceptical 
of the PH assumption on the basis of the previous graph.) 
 
As an exercise, you are asked to do the informal check for the log-logistic model (an AFT 
model), based on graphs of the log odds of survival  
 

4 Illustration using the Cancer data set: (ii) ltable 
 
ltable provides estimates of survival, failure, and hazard functions. Recall that now that the 
survival time data are assumed grouped into (equal-spaced) intervals, assumed by default to 
be of length one unit (but this can be changed – see below).  
 
One important distinction, as ever, is between whether the underlying survival times are 
continuous but have been observed in grouped form, or whether the times are intrinsically 
discrete. If the former case is appropriate (it is the most common one in the social sciences), 
then we can derive estimates of the survivor, failure, and cumulative hazard function using 
Stata’s lifetable command, ltable. We can also draw graphs of the survivor function. 
 
Estimates of the underlying continuous time hazard rate can only be derived with 
assumptions about the shape of the hazard within each interval. The most common 
assumption in this context is that failures occur at a uniform rate within the intervals, and 
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thence one can derive an estimate for the midpoint of each interval (see Lecture Notes): this 
is idea of the ‘actuarial adjustment’. ltable uses this adjustment by default (the noadjust 
option turns it off). Because of these various complications, versions of Stata from version 8 
onwards won’t allow you to graph the estimates of the hazard rate in the same way that you 
can graph the estimated survivor function. 
 
Alternatively we might be interested in the interval hazard itself (recall that this is a 
probability), in which case we do not want the actuarial adjustment. We use the noadjust 
option (in which case the survivor function estimates correspond with those that can be 
derived using sts). What if we want to draw a graph of the interval hazard? The simplest way 
to circumvent Stata’s restrictions from version 8 onwards is to use the Stata 7 version of 
ltable, using version control as illustrated below. Use this too if survival times are 
intrinsically discrete. 
 
Let us turn to the mechanics of the ltable command. The survivor function is the default 
estimate; specify the hazard option for hazard estimates or the failure option for failure 
function estimates (one minus the survivor function). Use the gr(aph) option to draw a graph 
in addition to providing a table of estimates. If you want a graph but no table, use the notab 
option. The graph, if requested, also shows the point-wise confidence interval. You can 
suppress this using the noconf option. The default estimates are based on the actuarial 
adjustment for within-interval changes in the number at risk of failure.  
 
I show the tables of survivor function estimates first and then the table of hazard rate 
estimates. 
 
ltable studytim died, graph title("Survivor function, Cancer data (ltable)")  
 
                 Beg.                                 Std. 
   Interval     Total   Deaths   Lost    Survival    Error     [95% Conf. Int.] 
------------------------------------------------------------------------------- 
    1     2        48        2      0     0.9583    0.0288     0.8435    0.9894 
    2     3        46        1      0     0.9375    0.0349     0.8186    0.9794 
    3     4        45        1      0     0.9167    0.0399     0.7930    0.9679 
    4     5        44        2      0     0.8750    0.0477     0.7427    0.9418 
    5     6        42        2      0     0.8333    0.0538     0.6943    0.9129 
    6     7        40        2      1     0.7911    0.0588     0.6465    0.8817 
    7     8        37        1      0     0.7698    0.0609     0.6228    0.8653 
    8     9        36        3      1     0.7047    0.0664     0.5527    0.8134 
    9    10        32        0      1     0.7047    0.0664     0.5527    0.8134 
   10    11        31        1      1     0.6816    0.0681     0.5279    0.7945 
   11    12        29        2      1     0.6338    0.0712     0.4775    0.7547 
   12    13        26        2      0     0.5850    0.0736     0.4277    0.7129 
   13    14        24        1      0     0.5606    0.0745     0.4036    0.6914 
   15    16        23        1      1     0.5357    0.0752     0.3791    0.6692 
   16    17        21        1      0     0.5102    0.0758     0.3543    0.6463 
   17    18        20        1      1     0.4840    0.0763     0.3293    0.6226 
   19    20        18        0      2     0.4840    0.0763     0.3293    0.6226 
   20    21        16        0      1     0.4840    0.0763     0.3293    0.6226 
   22    23        15        2      0     0.4195    0.0786     0.2656    0.5660 
   23    24        13        2      0     0.3550    0.0787     0.2069    0.5061 
   24    25        11        1      0     0.3227    0.0778     0.1794    0.4749 
   25    26        10        1      1     0.2887    0.0767     0.1512    0.4418 
   28    29         8        1      1     0.2502    0.0755     0.1196    0.4050 
   32    33         6        0      2     0.2502    0.0755     0.1196    0.4050 
   33    34         4        1      0     0.1877    0.0784     0.0653    0.3585 
   34    35         3        0      1     0.1877    0.0784     0.0653    0.3585 
   35    36         2        0      1     0.1877    0.0784     0.0653    0.3585 
   39    40         1        0      1     0.1877    0.0784     0.0653    0.3585 
------------------------------------------------------------------------------- 

 
The graph that appears on your screen is not saved by default, but you can save it by issuing 
the graph save command: 
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. graph save surv3, replace 
(file surv3.gph saved) 

 
To get the graph back anytime later, you can simply graph use surv3.gph. Here is what it 
looks like: 
 
Figure 4.10 Survivor function (Cancer data), derived using ltable 
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Now contrast these estimates with those derived without the noadjust option: 
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. ltable studytim died, noadjust 
 
                 Beg.                                 Std. 
   Interval     Total   Deaths   Lost    Survival    Error     [95% Conf. Int.] 
------------------------------------------------------------------------------- 
    1     2        48        2      0     0.9583    0.0288     0.8435    0.9894 
    2     3        46        1      0     0.9375    0.0349     0.8186    0.9794 
    3     4        45        1      0     0.9167    0.0399     0.7930    0.9679 
    4     5        44        2      0     0.8750    0.0477     0.7427    0.9418 
    5     6        42        2      0     0.8333    0.0538     0.6943    0.9129 
    6     7        40        2      1     0.7917    0.0586     0.6474    0.8820 
    7     8        37        1      0     0.7703    0.0608     0.6236    0.8656 
    8     9        36        3      1     0.7061    0.0661     0.5546    0.8143 
    9    10        32        0      1     0.7061    0.0661     0.5546    0.8143 
   10    11        31        1      1     0.6833    0.0678     0.5302    0.7957 
   11    12        29        2      1     0.6362    0.0708     0.4807    0.7564 
   12    13        26        2      0     0.5872    0.0733     0.4304    0.7145 
   13    14        24        1      0     0.5628    0.0742     0.4060    0.6931 
   15    16        23        1      1     0.5383    0.0749     0.3821    0.6712 
   16    17        21        1      0     0.5127    0.0756     0.3570    0.6483 
   17    18        20        1      1     0.4870    0.0761     0.3326    0.6249 
   19    20        18        0      2     0.4870    0.0761     0.3326    0.6249 
   20    21        16        0      1     0.4870    0.0761     0.3326    0.6249 
   22    23        15        2      0     0.4221    0.0786     0.2680    0.5684 
   23    24        13        2      0     0.3572    0.0788     0.2087    0.5083 
   24    25        11        1      0     0.3247    0.0780     0.1809    0.4771 
   25    26        10        1      1     0.2922    0.0767     0.1543    0.4449 
   28    29         8        1      1     0.2557    0.0753     0.1247    0.4093 
   32    33         6        0      2     0.2557    0.0753     0.1247    0.4093 
   33    34         4        1      0     0.1918    0.0791     0.0676    0.3634 
   34    35         3        0      1     0.1918    0.0791     0.0676    0.3634 
   35    36         2        0      1     0.1918    0.0791     0.0676    0.3634 
   39    40         1        0      1     0.1918    0.0791     0.0676    0.3634 
------------------------------------------------------------------------------- 

 
Survival probabilities estimated with the noadjust option are slightly larger at each 
corresponding duration interval than those with the adjust default, as you would expect. 
Compare the results too with those from sts shown earlier in this Lesson. 
 
Now look at the estimates of the hazard function (these use the actuarial adjustment) 
 
. ltable studytim died, hazard  
 
                 Beg.     Cum.     Std.                Std. 
   Interval     Total   Failure   Error    Hazard     Error    [95% Conf. Int.] 
------------------------------------------------------------------------------- 
    1     2        48    0.0417  0.0288    0.0426    0.0301    0.0000    0.1015 
    2     3        46    0.0625  0.0349    0.0220    0.0220    0.0000    0.0651 
    3     4        45    0.0833  0.0399    0.0225    0.0225    0.0000    0.0665 
    4     5        44    0.1250  0.0477    0.0465    0.0329    0.0000    0.1110 
    5     6        42    0.1667  0.0538    0.0488    0.0345    0.0000    0.1164 
    6     7        40    0.2089  0.0588    0.0519    0.0367    0.0000    0.1239 
    7     8        37    0.2302  0.0609    0.0274    0.0274    0.0000    0.0811 
    8     9        36    0.2953  0.0664    0.0882    0.0509    0.0000    0.1880 
    9    10        32    0.2953  0.0664    0.0000         .         .         . 
   10    11        31    0.3184  0.0681    0.0333    0.0333    0.0000    0.0987 
   11    12        29    0.3662  0.0712    0.0727    0.0514    0.0000    0.1735 
   12    13        26    0.4150  0.0736    0.0800    0.0565    0.0000    0.1908 
   13    14        24    0.4394  0.0745    0.0426    0.0425    0.0000    0.1259 
   15    16        23    0.4643  0.0752    0.0455    0.0454    0.0000    0.1345 
   16    17        21    0.4898  0.0758    0.0488    0.0488    0.0000    0.1444 
   17    18        20    0.5160  0.0763    0.0526    0.0526    0.0000    0.1558 
   19    20        18    0.5160  0.0763    0.0000         .         .         . 
   20    21        16    0.5160  0.0763    0.0000         .         .         . 
   22    23        15    0.5805  0.0786    0.1429    0.1008    0.0000    0.3403 
   23    24        13    0.6450  0.0787    0.1667    0.1174    0.0000    0.3968 
   24    25        11    0.6773  0.0778    0.0952    0.0951    0.0000    0.2817 
   25    26        10    0.7113  0.0767    0.1111    0.1109    0.0000    0.3285 
   28    29         8    0.7498  0.0755    0.1429    0.1425    0.0000    0.4221 
   32    33         6    0.7498  0.0755    0.0000         .         .         . 
   33    34         4    0.8123  0.0784    0.2857    0.2828    0.0000    0.8400 
   34    35         3    0.8123  0.0784    0.0000         .         .         . 
   35    36         2    0.8123  0.0784    0.0000         .         .         . 
   39    40         1    0.8123  0.0784    0.0000         .         .         . 
------------------------------------------------------------------------------- 
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Observe that for intervals in which a hazard rate cannot be calculated (when there are no 
failures), the ltable table shows a hazard equal to zero and no confidence band. Now here are 
the estimates derived with the noadjust option: 
 
. ltable studytim died, hazard noadjust 
 
                 Beg.     Cum.     Std.                Std. 
   Interval     Total   Failure   Error    Hazard     Error    [95% Conf. Int.] 
------------------------------------------------------------------------------- 
    1     2        48    0.0417  0.0288    0.0417    0.0295    0.0050    0.1161 
    2     3        46    0.0625  0.0349    0.0217    0.0217    0.0006    0.0802 
    3     4        45    0.0833  0.0399    0.0222    0.0222    0.0006    0.0820 
    4     5        44    0.1250  0.0477    0.0455    0.0321    0.0055    0.1266 
    5     6        42    0.1667  0.0538    0.0476    0.0337    0.0058    0.1327 
    6     7        40    0.2083  0.0586    0.0500    0.0354    0.0061    0.1393 
    7     8        37    0.2297  0.0608    0.0270    0.0270    0.0007    0.0997 
    8     9        36    0.2939  0.0661    0.0833    0.0481    0.0172    0.2007 
    9    10        32    0.2939  0.0661    0.0000         .         .         . 
   10    11        31    0.3167  0.0678    0.0323    0.0323    0.0008    0.1190 
   11    12        29    0.3638  0.0708    0.0690    0.0488    0.0084    0.1921 
   12    13        26    0.4128  0.0733    0.0769    0.0544    0.0093    0.2143 
   13    14        24    0.4372  0.0742    0.0417    0.0417    0.0011    0.1537 
   15    16        23    0.4617  0.0749    0.0435    0.0435    0.0011    0.1604 
   16    17        21    0.4873  0.0756    0.0476    0.0476    0.0012    0.1757 
   17    18        20    0.5130  0.0761    0.0500    0.0500    0.0013    0.1844 
   19    20        18    0.5130  0.0761    0.0000         .         .         . 
   20    21        16    0.5130  0.0761    0.0000         .         .         . 
   22    23        15    0.5779  0.0786    0.1333    0.0943    0.0161    0.3714 
   23    24        13    0.6428  0.0788    0.1538    0.1088    0.0186    0.4286 
   24    25        11    0.6753  0.0780    0.0909    0.0909    0.0023    0.3354 
   25    26        10    0.7078  0.0767    0.1000    0.1000    0.0025    0.3689 
   28    29         8    0.7443  0.0753    0.1250    0.1250    0.0032    0.4611 
   32    33         6    0.7443  0.0753    0.0000         .         .         . 
   33    34         4    0.8082  0.0791    0.2500    0.2500    0.0063    0.9222 
   34    35         3    0.8082  0.0791    0.0000         .         .         . 
   35    36         2    0.8082  0.0791    0.0000         .         .         . 
   39    40         1    0.8082  0.0791    0.0000         .         .         . 
------------------------------------------------------------------------------- 

 
Hazard rates estimated with the noadjust option are slightly smaller at each corresponding 
duration interval than those with the adjust default, as you would expect.  
 
What if one wants a graph of the interval hazard rates (the numbers shown in the table 
above). We call the Stata version 7 ltable command as follows:  
 
. version 7: ltable studytim died, haz graph saving(haz3a-noa, replace) noadjust 

 
Note the prefix for version control. Note too that in Stata 7, the saving() option to ltable 
saved the graph. (In Stata 8 and later versions, the saving() option saves the table of estimates 
to a data file. See ex4_1.do for an example of how to draw the graph using the data from this 
saved file. 
 
The command results in the following graph. The vertical lines show the 95% confidence 
intervals for the estimates. Where the hazard rate could not be estimated, because there were 
no events within the interval (with an estimate of ‘.’ shown in the table), the graph has shown 
the estimate of the hazard as zero. It is up to you, the analyst, to decide how to interpret the 
zeros. 
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Figure 4.11 Interval hazard function (Cancer data), derived using ltable, noadjust 
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ltable can also produce estimates stratified by subgroup and test the equality of subgroup 
survivor functions. For stratified estimates, use the by(groupvar) option; add test for the 
Log-rank and Wilcoxon tests. 
 
ltable can also produce estimates based on time intervals specified by the user – the default 
interval has a length of one unit (as in our examples). Typically one would group survival 
times in this way either because there is a large range of survival times (yielding more detail 
than required) or it is only by grouping that there are sufficient events per interval to derive 
the hazard. Use the intervals(interval) option. 
 
 

5 Estimation using data in person-month form rather than person form 
 
In the last chapter, we described how we might do episode-splitting prior to estimation of 
continuous time models, and almost certainly will in order to estimate discrete time models. 
sts and ltable can derive estimates regardless of whether the data have been episode split or 
not. 
 
We use a simple modification of the commands illustrated earlier. Assuming the data have 
been appropriately stset, then the sts commands can be used unchanged. The ltable 
commands simply require the addition of tvid(idvar) with the options. In the Cancer data, the 
idvar is ‘id’, as created earlier. 
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6 Exercise 4.1 
 
(1) Replicate the tasks above using the marriage data (duration.dta) and the strike data 

(kennan.dta). What do the survivor functions look like in each of these data sets? If you 
have access to a Limdep manual (William Greene, Limdep Version 7.0, Econometric 
Software Inc., 1997), you may like to compare your estimates with those shown in the 
survival analysis chapter. They should be the same! What is the median duration in each 
case? Do survivor functions rates differ between the sexes in the Marriage data? 
(Stratification variables are not available in the Strike data.) 

(2) Using the cancer data, and assuming survival times are continuous, undertake the 
graphical check for the log-logistic model. Recall from the Lecture Notes that, if this 
model is appropriate, then the log odds of survival are a linear function of time.: 
log[S(t,X)/(1 – S(t,X)] = β*′X  –  ϕ.log(t). First create the log odds variable, having first 
derived non-parametric estimates of the survivor function (as in the Lesson), and the log 
time variable (as in the Lesson). Then draw the graph. 

(3) You could also (i) compare ltable estimates derived without the noadjust option with 
those derived with it, and (ii) convert your data into expanded (person-month) form and 
compare estimates with those derived from the data prior to reorganisation. 

(4) Estimate the smoothed hazard function using the Marriage data, and see how the picture 
changes as you vary the width option. 

(5) Compare the outputs from the following commands on the cancer data: 
ltable studytim died, hazard noadjust 
 
stset studytim, f(died) 
sts gen hazc = h 
egen first = tag(_t) 
sort _t 
list _t hazc if first == 1 

  
Compare the estimates of the hazard with the estimates of the hazard contribution: 
what do you notice? Now repeat the exercise using the command ltable 
studytim died, hazard (i.e. without the adjust option). How do the results 
compare now? Can you provide an explanation? 
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