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Aims of course

* Introduce the distinctive features of panel data.

* Review some panel data sets commonly used in
social sciences.

* Present the advantages (and limitations) of panel
data, and consider what sort of questions panel data
can(not) address.

* Show how to handle and describe panel data.

* Introduce the basic estimation techniques for panel
data

* Discuss how to choose (and test for) the right
technique for the question being addressed.

* Discuss interpretation of results
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Structure of course (1)

5 days x (3 hours lectures + 2 hour lab sessions )

Lab sessions will illustrate concepts using Stata
software (“industry standard” in survey-based

applied work)

Main data will be from British Household Panel
Survey (BHPS)

Focus is on understanding the concepts and applying
them.

Full lecture slides on the web

Technical detail kept to a minimum but available in
“appendices”
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Structure of course (2)

Day 1: Basics

What are panel data (examples)?
Why use panel data?
Handling panel data in Stata - some basic commands.

Patterns of observations in panel data (non-response and
attrition)

Within and between variation
Transitions.
Cohort analysis

Day 2: Statistical analysis

Inference using panel data: some identification issues
= unobservables.
= age, time and cohort effects

Regression analysis: Within and between group regression
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Structure of course (3)

Day 3: Random effects and endogeneity
* Random effects regression
* Testing the FE and RE assumptions

* Hausman test
= Mundlak model
* Endogeneity
= The source of endogeneity
= The between- and within-group IV estimator
= Correlated individual effects: Hausman-Taylor estimation
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Structure of course (4)

Day 4: Binary response models

* Types of discrete variables

* Why not linear regression?

* Latent linear regression

* Conditional (fixed-etfects) logit

* Static random effects logit and probit

* Ordered response models

Day 5: Further topics

* Incomplete panels and sample selection in panel data models
* Dynamic fixed-effects models

¢ Count data models
* Policy evaluation and panel data
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Day 1: Basics

* What are panel data

* Why use panel data?

* Handling panel data in Stata

®
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What are Panel Data?

Panel data are a form of longitudinal data, involving
regularly repeated observations on the same individuals

Individuals may be people, households, firms, areas, etc
Repeat observations may be different time periods or

units within clusters (e.g. workers within firms; siblings
within twin pairs)
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niversity of Essex

Some types of panel data

Cohort surveys
= Birth cohorts (NCDS, British Cohort Survey 1970, Millennium CS)
= Age group cohorts (NLSY, MtF, Addhealth, HRS, ELSA)
= Many programme evaluation studies and social experiments

Panel surveys
= Rotating household panels: (Labour Force Surveys, US SIPP)

= Perpetual household panels: an indefinitely long horizon of
regular repeated measurements

= Company panels: firms observed over time, linked to annual
accounts information

Non-temporal survey panels

= Example: Workplace Employment Relations Survey (WERS) =
cross-section of workplaces, 25 workers sampled within eac

Non-survey panels (aggregate panels)
= countries, regions, industries, etc. observed over time

Useful catalogue of longitudinal data resources:
http:/ /www.iser.essex.ac.uk/ulsc/keeptrack/index.php

01/02/2007 (9)
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Long-term household panels

* Individuals in their household context

* Perpetual panel survey, often with retrospective elements
(period before first wave; periods between waves)

* Designed to maintain representativeness of the sampled
population over time

* But may use refreshment samples if, e.g., substantial
immigration, worries about panel fatigue/conditioning

* Examples worldwide, include

e US PSID, Dutch HP, Swedish LoLS, German SOEP, BHPS,
Canadian SLID, Australian HILDA, NZ SoFIE, European
Community Household Panel, BHePS, NHPS, and several in
developing countries (e.g. Indonesia, Ethiopia, VietNam)

* Big differences in: content, following rules, who is interviewed,
interview method, etc.
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Specific examples - GSOEP

German Socio-Economic Panel Study
Based at DIW, Berlin
Began in 1984 with approx 6 000 households.

Various “top-ups” including expansion to former
GDR. Now has around 12 000 households.

Annual interviews with all adult members of hh.

Various interview modes with gradual introduction
of CAPI (computer-aided personal interviewing)
since 1998. Almost no phone interviews.

®
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The BHPS

http://www.iser.essex.ac.uk/ulsc/bhps/

British Household Panel Survey, based at ISER, University of Essex
Began in 1991 with approx 5,500 households (approx 10,000 adults)
England, Wales and (most of) Scotland

Extension samples from Scotland and Wales (1500 households each)
added in 1999.

Sample from Northern Ireland (2000 households) added in 2001.
Annual interviews with all adults (aged 16+ ) in household.
Youth and child interviews added in 1994 & 2002

Questionnaires have annually-repeated core + less frequent or
irregular additions

Now CAPI

See BHPS quality profile for technical detail
(http:/ /www .iser.essex.ac.uk/ulsc/bhps/quality-profiles/ BHPS-QP-01-03-06-v2.pdf)
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Using household panels (1)

* Panel data involve regularly repeated observations on the same
individuals.

* In most analysis using household panels, the individual is the
person and the repeated observations are the different time
periods (waves). This is the case we will mostly consider.

* Sometimes, e.g. to isolate household (or family) effects, the
individual is the household (or family) and the repeated
observations are different persons within the household

* Multi-level analysis involves more than 2 dimensions of the
sample, e.g. time periods within persons within households

versityof E
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Using household panels (2)

* Conceptual problems with households over successive time

periods (waves)
= households change their composition over time

= how much can a hh change before it is effectively a new
household?.

* We usually follow persons over time periods (waves) and treat

household data as contextual information

* e.g.anindividual’s material living standards measured as the
income of their household at that time.

* Rationale for household panel designs, rather than simpler cohort
designs

* Allows for individuals moving between households & forming
new households
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Why use panel data?

* Repeated observations on individuals allow for
possibility of isolating effects of unobserved
differences between individuals

* We can study dynamics

* The ability to make causal inference is enhanced by
temporal ordering

* Some phenomena are inherently longitudinal (e.g.
poverty persistence; unstable employment)

* Net versus gross change: gross change visible only
from longitudinal data, e.g. decomposition of change
in unemployment rate over time into contributions
from inflows and outflows
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BUT don’t expect too much...

* Variation between people usually far exceeds variation
over time for an individual

= a panel with T'waves doesn’t give T times the information of
a cross-section

* Variation over time may not exist for some important
variables or may be inflated by measurement error

* Panel data imposes a fixed timing structure; continuous-
time survival analysis may be more informative

* We still need very strong assumptions to draw clear
inferences from panels: sequencing in time does not
necessarily reflect causation
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i University of Essex 01/02/2007 (16) ﬁSER



Some terminology

A balanced panel has the same number of time observations ()
for each of the n individuals

An unbalanced panel has different numbers of time observations
(T;) on each individual

A compact panel covers only consecutive time periods for each
individual - there are no “gaps”

Attrition is the process of drop-out of individuals from the panel,
leading to an unbalanced (and possibly non-compact) panel

A short panel has a large number of individuals but few time
observations on each, (e.g. BHPS has 5,500 households and 14
waves)

A long panel has a long run of time observations on each
individual, permitting separate time-series analysis for each

We consider only short panels in this course
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Handling panel data in Stata

* For our purposes, the unit of analysis or case is either the person
or household:

= If case = person, case contains information on person’s state,
perhaps at different dates

= Jf case = household, case contains info on some or all household
members (cross-sectional only!)

* The data can be organised in two ways:

= Wide form - data is sometimes supplied in this format

= Long form - usually most convenient & needed for most panel data
commands in Stata

» Use Stata reshape command to convert between them.
* Three important operations:

= Matching/merging

= Aggregating

= Appending
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Wide format

*One row per case

*Observations on a variable for different time periods (or dates)
held in different columns

* Variable name identifies time (via prefix)

PID awage bwage cwage
(Wage at wl) (Wage at w2) (Wage at w3)
10001 7.2 7.5 7.7
10002 6.3 missing 6.3
10003 5.4 5.4 missing
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Long format

* potentially multiple rows per case, with

* observations on a variable for different time periods (or dates)
held in extra rows for each individual

* case-row identifier identifies time (e.g. PID, wave)

PID wave wage
10001 1 7.2
10001 2 7.5
10001 3 7.7
10002 1 6.3
10002 3 6.3
10003 1 54
10003 2 54
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Matching (or merging)

* Joining two (or more) files at the same level of observation (e.g.
person files) where both (all) files contain the same identifier
variable used as key

* 1:1 matching - one case in “master file” corresponds to one case
in “using file” (i.e. the file being matched in)

* l:many - one case in the “using file” may be “distributed” to
many cases in the “master file”

* E.g.info. about a household attached to each one of the household’s
members

* In either case, not all cases in master file may receive match; not
all cases in the using file may provide a match

e Stata’s command: merge key using file

* Merging is the source of many disastrous errors - always check by
using tabulate _merge (see examples later)
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Aggregation

* Deriving group-level information from all the
members of that group

* E.g. calculating household income from the incomes of its
members

* E.g. calculating how many children a woman has during her
first marriage
* The group-level information may be used in two
ways:
* (i) saved in a new file with the group - e.g. household or
spell - as the case (col lapse)

* (ii) attributed to each of the group members within the
existing file (egen; by(sort): ...)
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Appending

* Combining files with no index-based matching

* E.g. combining file A with n1 rows and file B with n2 rows
to produce a new file C with n1+n2 rows.

e Stata command: append

* Used to assemble a sequence of annual cross-section
data files into a single long-format panel data file

* Rows in new combined files are specific to a person-wave
combination

e Each variable must have the same name in each of
the annual cross-section files
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Sorting (ordering) the data

We now have a dataset in long format

It's a good idea to order the data for easier viewing.
“Eyeballing” the data is important!

We also have to tell Stata which variable identifies
the individual (Stata calls this the panel variable).

We may also have to tell Stata which variable
identifies the repeated observation (Stata calls this the
time variable).

= For some types of panel analysis we don’t need to know the
ordering of the repeated observations
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PID wave wage
10001 2 7.5
10002 3 6.3
10002 1 6.3
10001 1 7.2
10001 3 7.7
10003 1 5.4
10003 2 5.4

sort pid wave

Note: this panel is neither balanced nor compact

i University of Essex
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Panel and time variables

* Use tsset to tell Stata which are panel and time
variables:

. tsset pid wave

panel variable: pid, 10002251 to 1.347e+08

time variable: wave, 1 to 13, but with gaps

* Note that tsset automatically sorts the data
accordingly.
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Describing panel data

Ways of describing/summarising panel data:
= Basic patterns of available cases
= Between- and within-group components of variation
* Transition tables

Some basic notation:
y, is the “dependent variable” to be analysed

= iindexes the individual (pid),1=1,2, ..., n
= tindexes the repeated observation / time period (wave),
t=1,2,..T,
Y, may be:
= continuous (e.g. wages);
= mixed discrete/continuous (e.g. hours of work);
= binary (e.g. employed/not employed);
= ordered discrete (e.g. Likert scale for degree of happiness);
= unordered discrete (e.g. occupation)
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Describe patterns of panel data: xtdes

. xtdes
pid: 10002251, 10004491, ..., 1.347e+08 n = 16082
wave: 1, 2, ..., 13 T = 13
Delta(wave) = 1; (13-1)+1 = 13
(pid*wave uniquely i1dentifies each observation)
Distribution of T_1i: min 5% 25% 50% 75% 95% max
1 1 2 7 13 13 13
Freq. Percent Cum. | Pattern
___________________________ e
4648 28.90 28.90 | 1111111111111
997 6.20 35.10 | 1............
646 4.02 39.12 | 11...........
376 2.34 4146 | - a.o... 1
342 2.13 43.58 | 111..........
327 2.03 45.62 | 1111.........
261 1.62 47.24 | oo 11
254 1.58 48.82 | i
251 1.56 50.38 | .-.-.-.... 111
7980 49.62 100.00 (other patterns)

XXXXXKKXXXKXX
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Between- and within-group variation (1)

Define the individual—specific or group mean for any variable, e.g.

Y,y as:
:E:VYH

| t=1
y,; can be decomposed into 2 components:

Ve =V =¥ = ¥)+ (7, - ¥)
=within + between

n Ti e _
where ¥=> >y, / NT and T is average no. of periods per case

i=l t=1

Corresponding decomposition of sum of squares

ZZMt ZZW M+ZZ

=1l t=1 =1l t=1 =1 t=1

. — +
or: Tyy Wyy B Wy
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Between- and within-group variation (2)

* Between and within variation is the basis of linear
panel regression. Important concept to understand.

* Simple example: balanced panel (n=1119, T = 13) of
workers who have reported their wages.

* From summarize, we have grand mean wage (Y) =
£9.84 per hour, and (overall) variance of wages =
32.63. Recall the standard formula for variance:

ZZ ylt ) T
S i=1 t=1 — _W
nT —1 nT -1

®
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Between- and within-group variation (3)

* SoT,, is the variance multiplied by its degrees of freedom nT -1
=1119*13 - 1 = 14546 (or can calculate T,, ‘by hand” in Stata -
see example in computer lab).

* We get T,, = 32.627956 * 14546 = 474606.3

* Can calculate B, and IV,, manually in Stata (see example in
computer lab). We get:

'Byy = 358920.7
-Wyy =115685.6
sCheck that Byy + Wyy = Tyy I

* Proportion of between variationis B,, / T,, =76%. Most
variation is between people not within people! Measurement
error may make this an underestimate!
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Within and between deviations in the data

pid

10028005
10028005
10028005
10028005
10028005

10028005
10060111
10060111
10060111
10060111
10060111
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wave

o b~ W DN

a A W N PP

Wage
9.302
10.444
13.883
4.573
13.769

12.914
13.046
12.923
13.453
13.505
12.418

Grand
mean

9.841
-841
-841
-841
-841

© ©O© O o©

.841
.841
-841
-841
-841
.841

© © © O O ©

Ind.
Mean

10.948
10.948
10.948
10.948
10.948

10.948
12.953
12.953
12.953
12.953
12.953
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Within
dev
-1.646
-0.504
2.935
-6.375

2.820

1.966
0.094
-0.030
0.500
0.553
-0.535

Between
dev

1.107
-107
-107
-107
-107

e

-107
2112
-112
-112
-112
2112

W W w w w ek

Total
dev

-0.539
0.603
4.042
-5.268
3.928

-073
.205
-081
-612
.664
577

N W W W w w
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Between- and within-group variation: Xtsum

e Stata contains a ‘canned’ routine, xtsum, that summarises
within and between variation.

* Doesn’t give an exact decomposition:

= Converts sums of squares to variance using different ‘degrees of
freedom’ so they are not comparable

= Reports square root (i.e. standard deviation) of these variances

= Documentation is not very clear!

. Xtsum wage

Variable | Mean Std. Dev. MiIn Max | Obs

______________ e

wage overall | 9.841044 5.712089 .3813552 121.7474 | N = 14547
between | 4.969431 3.322259 46.54612 | n = 1119
within | 2.820121 -18.37394 108.5192 | T = 13
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Transitions

* Want to compare state in this wave with state in last wave.
Example: part-time work status (binary variable PT)

* If we have tsset the data, can easily create lagged values of
variable: generate Ipt = 1.pt

* Then tabulate current against lagged value: tabulate Ipt pt

. tabulate Ipt pt, row
| Part-time (<=30 hours

Lagged PT | total)
work | 0 1] Total
___________ M Sy
0 | 10,619 310 | 10,929
| 97.16 2.84 | 100.00
___________ M Sy
1 ] 333 2,166 | 2,499
| 13.33 86.67 | 100.00
___________ M Sy
Total | 10,952 2,476 | 13,428
| 81.56 18.44 | 100.00

e Same result with command: xttrans pt, freq
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Transitions and measurement error
Analysis of transitions can give good indications of data (un)reliability

Example: UK Offending Crime & Justice Survey (2003-4, ages 10-25)

. tab dlevec 1T wave==1

have you ever taken |
cannabis | Freq Percent Cum
_____________________ e
yes | 855 25.45 25.45
no | 2,477 73.72 99.17
don"t know | 13 0.39 99.55
don"t want to answer | 15 0.45 100.00
_____________________ S
Total | 3,360 100.00
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Transition matrix

. Xttrans dlevec, freq

have you |

ever taken | have you ever taken cannabis
cannabis | Yes No DK DWTA | Total
___________ e
Yes | 728 111 0 1 | 840
| 86.67 13.21 0.00 0.12 | 100.00
___________ s B
No | 251 2,189 6 7 | 2,453
| 10.23 89.24 0.24 0.29 | 100.00
___________ 4
DK | 2 9 1 1 | 13
| 15.38 69.23 7.69 7.69 | 100.00
___________ S B
DWTA | 9 5 0 1 | 15
| 60.00 33.33 0.00 6.67 | 100.00
___________ 4
Total | 990 2,314 7 10 | 3,321
| 29.81 69.68 0.21 0.30 | 100.00

* 13% of people who’d used cannabis before 2003 say they’ve never used before 2004!!
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Age and cohort: earnings profiles

How have different generations fared in the labour market?

AN _|
i

o |
i

w —

of
Lo —
T T T T T
20 30 40 50 60
ageseq
—=—— profile39 —&—— profile4044

—&—— profile4d549 —&—— profile5054
—&—— profile5559 —&—— profile6064

—&—— profile6569 profile7074
—&—— profile75
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Day 2:

Approaches to modelling

®
01,/02/2007 (1) ﬂSER



Basic notation

We work with observed variables y;, , z, and x;, :
y, = dependent variable to be analysed

z, = time-invariant characteristics (e.g. year of
birth, sex)

x;; = time-varying characteristics (e.g. job tenure,
marital status)

where i indexes individuals, t indexes time periods.
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Modelling approaches

Ways of thinking about panel data:

* A collection of cross-sections, one for each time period:
= Between-group regression

* The Structural Equations (SEM) approach - 1 equation for each time
period (e.g. Bollen, 1989, Structural Equations with Latent Variables)

* A collection of time-series, one for each individual. Examples:
= Within-group regression
= Dynamic models with individual heterogeneity

= Latent growth curve analysis (e.g. Acock & Li
http:/ /oregonstate.edu/dept/hdfs/papers/lgcgeneral.pdf#search=%22latent%20growth %20cu

rve%ZOanalysis%ZOoregon%ZZ)
= Trajectory analysis (e.g. Nagin & Tremblay, Child Development 1999)

* Comprehensive models try to capture both inter-individual and inter-
period variation
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Why use panel data?

The disadvantages of cross-section data

Example: cross-section earnings regression (single time period, ¢

subscript suppressed)
v = za + xB+ g
where:
y;, = log wage;

z; = observable time-invariant factors (education, etc.);
x; = observable time-varying factors (e.g. job tenure);
& = random error (e.g. “luck”)

Possible misspecifications, causing bias:

* Omitted dynamics (lagged variables not observed)

* Reverse causation (e.g. pay and tenure jointly determined)
* Omitted unobservables (e.g. “ability”)

[ ]
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Some basic identification problems

(1) Unobservable variables
* Can we identify the impact of unobservables?

* Can we distinguish the impact of unobservables from the impact
of time-invariant observables?

(2) Age, cohort and time effects - can they be distinguished?
* Behaviour may change with age

* Current behaviour may be affected by experience in “formative
years” = cohort or year-of-birth effect

* Time may affect behaviour through changing social environment

[ ]
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Identification of unobservables

Example: wage models based on human capital theory:

Vi = ;0 + xuB +u; + g
wherei=1...n,t=1...T;:
Yy = logwage
z;, = observable time-invariant factors (e.g. education)
x;, = observable time-varying factors (e.g. job tenure)
u; = unobservable “ability” (assumed not to change over time)

6‘1t - Illuckll

Pooled data regression of y on z and x = omitted variable bias:

Ability (u) is likely to be positively related to education (z)
— upward bias in estimate of returns to education

But can we identify the effect of u; if we can’t observe it?

[ ]
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Identification of unobservables

The identification of the effect of rests on assumptions about the
correlation structure of the compound residual v,,:

Uy SU; T &
If individuals have been sampled at random, there is no correlation
across different individuals:

cov(u; ,u;) =0

cov( g ... &7l &1 .- &1]) = 0
for any two (different) sampled individuals i and j

But there may be some correlation over time for any individual:

cov(v,, ,v;) # 0 for two different periods s # ¢,

is 7
since:

cov(vy , ;) = cov(u; + &, u; + &) = var(u;) + cov(g, &)

1 1

If we assume cov(e,, &;) = 0 then u; is the only source of correlation over
time, so its variance can be identified from the correlation of the

residuals.
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Identification with time-invariant covariates:
can we distinguish z; and u,?
Consider again the panel regression model:
Yie = Zi0 + X3P+ u; + g (1)

Let z;y be any arbitrary combination of the z-variables (choose any value
for y you like). Add it to the right-hand side and subtract it again:

Yy = z;o tz,y+ x, B+ u -zy+ g,
Now re-write this as:
Yy = z;oo + x, B+ u+ g, (2)

Where o represents (o + y) and u;” represents (u; - z;y).

But (1) and (2) have exactly the same form, so we can’t tell whether we're
estimating a or a completely arbitrary value a” = (o + 7).

So the separate effects of z;a and u; can’t be distinguished empirically
without further assumptions
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Summary

In models like:
Yy = ;o + X, B+ u; + g,

* We can only identify the effect of unobservable
ability u; if we can assume that ¢, is serially-
independent (or some other simple autocorrelation
structure).

* We cannot distinguish the separate etfects of z, and u;
without making further assumptions (e.g. no
correlation between z; and u,).
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Identification problem (2):
Age, cohort & time effects

Fundamental identity relating age (A;,), time of interview ()
and birth cohort (B)):

Ay = t-b;
These three cannot be distinguished in principle. To do so
would require an ability to move a cohort forward or back in

time (!) to measure the effect of time holding age and cohort
constant.

* In a cross-section, t doesn’t vary, so time effects can’t be
estimated and age or cohort are collinear - only their joint
effect can be estimated

* Inapanel, t varies but A;,, t and B, are collinear - only two
of the three effects can be estimated.

* Sowecanuse (t,B;), (A, ,B)) or (A, ,t) as covariates, but not
all three.
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Age, cohort and time effects

A possible solution is to think more deeply about the effects of time
and cohort and introduce further information.

E.¢. we may think it is the social environment at the time of birth
that generate differences between cohorts and the present social
environment that generates time effects.

Let w(t) be variables describing the social environment at historical
time ¢.

Then our model would use A;,, w(f) and w(B,)) as covariates

This breaks the exact relationship between age, time and cohort
effects and permits identification.

[ ]
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When to use regression methods

Regression models are suitable for the analysis of dependent
variables y;, which can vary continuously, so:

= Income, birthweight, etc. = regression appropriate

= Age at retirement, interpolated grouped income, etc. = regression
may work OK

= Age of school leaving, no. of visits to doctor last week, etc. =
regression a bit risky

* Binary variables (married /non-married, employed/non-employed,
etc. = regression very unreliable

Regression models also have technical problems when:

* The sample is censored or truncated (e.g. if y,, = hours of work and
non-workers are recorded as zero or excluded)

= When there is no natural scale (e.g. Likert scales)

[ ]
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Related methods (1)

Latent growth curve analysis is widely used in sociology,
psychology, criminology, etc. but not economics

Example: simple quadratic latent growth curve:
Vi = up Togb + B2+ g,

where the intercept and slope coefficients (u;, a;, ;) vary
randomly across individuals

Advantage:

= Doesn’t assume all individuals have the same coefficients
(panel data regression assumes no variation in a;, f3;)

Disadvantage:

= Purely descriptive: no theory of development

* Crude dynamics (nothing changes the trend for an individual
once it's underway)

[ ]
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Related methods (2)

Structural equation modelling (SEM) is widely used in psychology and
economics, but with differences in terminology.

In panel data applications, each year is described by a different equation:

Period 1: Yo = Z;04 T Xy By tou; gy
Period T: yir = Z;0p t XpPBr +ou; + gy
Advantage:

= general structure (e.g. panel regression is special case where the a, and 3,
are the same in all periods)

Disadvatage:
= No theory of how the parameters vary over time
= (Can’t predict outcomes in new periods

= Difficult to use in long or very unbalanced panels

[ ]
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Related methods (3)

Multi-level modelling is widely used throughout social
statistics. It generalises ordinary panel data applications to
multiple dimensions

Example: time periods (#) within individuals (i) within
households (h):
Ynie = XuB F oupy T owpt gy

= w, is the household effect, common to all individuals at all periods
within household h

* u,.is the individual effect, common to all time periods for the ith
individual in household h

Specialist software is available for latent growth curve, SEM and Multi-
level analysis (MLwin, Mplus, LISREL, etc). See also xtmixed and
GLLAMM in Stata

[ ]
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Pooled regression for panel data

The “standard” panel data regression model is:

Yy = z;o + x, B+ u; + g,

We have observations indexed by t=1... T;,i=1 ... n.

1

A pooled regression of y on z and x using all the data together
would assume that there is no correlation across individuals,
nor across time periods for any individual

This would ignore the individual effect u, which generates
correlation between the values of (u; + ¢;) ... (u; + &) for each
individual 1

So pooled regression doesn’t make best use of the data

= Under favourable conditions (if u; is uncorrelated with z. and x,),
pooled regression gives unbiased but inefficient results, with
incorrect standard errors, t-ratios, etc.

= If u.is correlated with z;, and x,, pooled regression is also biased

[ ]
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Least-squares dummy variable (LSDV) regression

The panel data regression model is:
Y = Zi0 + ;B + u; + g
We have observations indexed by t=1 ... T;,i=1... n.

1

The u, can be captured using dummy variables. Construct a set of n
dummy variables D1, ... Dn,, where:

Dr;, = 1ifi=rand O otherwise, forr=1...n
Thus Dr;, tells us whether observation i, t relates to person r.
The model is now:

Y = ;o + x;Pp + uy DL+ ... +u,Dn + g,

So u, ... u, are now seen as the coefficients of a set of n dummy
variables.

[ ]
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Shortcut calculation of the LSDVregression

A multiple regression of y on (z , x) and (D1 ... Dn) can be done in
two stages:

Stage 1: Eliminate the effect of (D1 ... Dn) on each of the variables
(y, z , x) using the “within-group” data transformation:
Vi = Vi — y i
X:t =X, —X,

z.=2,-7,=0 (so z; is eliminated completely)

Stage 2: regress iy  on (z*, x) : in other words, ¥ —~Y;on X; =X,

[Intuition: think of regressing a variable on a constant. Estimate
of constant is mean and residual is deviation from mean.]

This is exactly equivalent to regressing y on (z , x) and (D1 ... Dn)

[ ]
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Another interpretation of LSDV

Start ditferently, by thinking how we can cope with u;

We don’t know its statistical properties, so let’s try to
eliminate it from the model. We can eliminate it in
various ways, for example:

Time differencing: Vi = Yia = (X, =X, 4)B+ &, =&,
or
Within-group transform: y, -y, =(x, —X,)B+¢&, —¢&

The within-group approach is the most efficient in the
least squares sense.

[ ]
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A note on terminology

Different names are commonly used for this one estimation method:
* Least squares dummy variables (LSDV)

* Within-group regression

* Fixed-effects regression

* Covariance analysis regression

= “LSDV” refers to the method of derivation using explicit dummy
variables;

= “within-group” refers to the type of data transform implied by the
method;

= “fixed effects” is common but often poor terminology which
suggests (wrongly, in the case of sample survey data) that the u; are
fixed parameters

= “covariance analysis” reflects the origins of the method as a
generalisation of analysis of variance in agricultural experiments

[ ]
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Between-group regression

Instead of eliminating u; from the regression, we can
amplify it by averaging out all the within-individual
variation, leaving only between-individual variation
to analyse:

Between-group transform:  y,=z,0+X,p+u, +¢&

Then regress y; on (Zl. X, ) in one of two ways:
= Use one group-mean observation per individual

= Use T, copies of the group mean data for individual

Note: The latter is equivalent to a weighted regression of y, on x,,
with a weight of T, for individual i. It is often desirable to give
more weight to individuals with many time observations.

[ ]
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Within- & between-group estimates -
simple case

Suppose that x (and therefore p) is a single variable
(scalar), and panel is balanced (T, = T). Want to
estimate:

Within-group: V=¥ = (%, —X)f + &, &
Between-group: V. =Xp+u +¢&

University of E
i niversity of Essex 01/02/2007 (22)
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Within-group estimate - simple case

Can substitute for ¥, —»; in preceding formula, to obtain:

D) SOARES (S A VAN PRSI 39 3 e ) o
By =2y - e = o+

If x;; and g, are uncorrelated, E(w,,) =0, so E,EW =p

N

...which means, loosely speaking, that on average f,, is
correct (unbiased).

Note: for unbiasedness of f; , we need also that x;, is
uncorrelated with u; = so within-group regression is less
1 77

robust

[ ]
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Within- & between-group relationships:

correlated individual effects

Yy
Uy
U
Us
In this example, individual effects are negatively correlated
with X, so B-G & W-G relationships differ .
niversity of Essex 01/02/2007 (24) ﬂSER



Within- & between-group relationships:

uncorrelated individual effects

[ ]
i University of Essex 01/02/2007 (25) ﬂSER



Example of panel data estimation

The Stata command xtreg computes within-group and
between-group regressions

Example: within- and between-group regressions of log
earnings on age, year of birth and time, allowing for
unobserved individual effects:

gen age=year-cohort
gen lwage=In(w_hr)
xtreg lwage age cohort, fe
xtreg lwage age cohort, be

[ ]
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Stata output: within-group regression

. xtreg lwage age cohort , fe

Fixed-effects (within) regression Number of obs = 61516
Group variable (1): pid Number of groups = 10335
R-sgq: within = 0.1217 Obs per group: min = 1
between = 0.0312 avg = 6.0
overall = 0.0194 max = 14
F(1,51180) = 7094.59
corr(u_i, Xb) = -0.4880 Prob > F = 0.0000
lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____________ -
age | -030061 -0003569 84.23 0.000 -0293615 -0307605
cohort | (dropped)
_cons | -8994719 -01369 65.70 0.000 .8726394 -9263045
_____________ e
sigma u | .60455798
sigma_ e | .28494801
rho | .81822708 (fraction of variance due to u_1)
F test that all u_1=0: F(10334, 51180) = 18.19 Prob > F = 0.0000
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Stata output: between-group regression

. xtreg lwage age cohort , be

Between regression (regression on group means)

Group variable
R-sq: within

between
overall

sd(u_1 + avg(e_

(

i): pid
0.1217

0.0356
0.0313

D))= 5277749

Number of obs
Number of groups

Obs per group: min

61516
10335

6.0

14

190.55
0.0000

Coef. Std. Err t
.0188575 .0017201 10.96
.0105401 .0015325 6.88

-19.39964 3.065617 -6.33

avg

max
F(2,10332) =
Prob > F =
P>|t] [95% ConfT.
0.000 .0154858
0.000 .0075361
0.000 -25.40885

-0222292
-0135442
-13.39044

i University of Essex
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Important points

* The within-group R? is much higher than the
between-group R?

= the covariate age “explains” a reasonable amount
of the pay variation over time for a given individual

= but pay ditferences between individuals are less
closely related to age and cohort in R? terms

* The large coefficient differences between the within-
and between-group age coefficients suggest that a
single regression model with classical assumptions
doesn’t fit the evidence very well
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i University of Essex 01/02/2007 (29) ﬁSER



Technical appendix

The following slides can be safely ignored if you're not
interested in technical detail or if you aren’t familiar
with vector-matrix notation and matrix algebra

[ ]
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Coefficient estimates - general formula

In matrix form, the within-group multiple regression is:

~ -1 -1
ﬁ — Wxx ny — B T Wxx Wxg

where W, , w,, and w,, are within-group moment
matrices: n T
W, = ZZ(Xz‘t _Xi) (Xit _Xi)
i=1 1=1

If x;, and &, are uncorrelated, E(w,,) =0, so:

EB=

[ ]
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Residuals

There are two residuals for the within-group regression:
e = yi—Xp
£ = ( it _.)_/i)_(xit _ii)ﬁ =y, —X,p—e¢,

N\

e, 1s an estimate of za + u;; &, is an estimate of ¢,

it
Since &, is the residual from the LSDV multiple
regression, its variance is an unbiased estimator of o2

under the classical assumptions of independent sampling
of individuals and:

A. 2 2
Ee,=0; Eg,” =0,

Ex ¢ =0 foralli st

s 1t

Eec e =0 foralli,s #¢

st
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Estimation of o

The residual éi can be written:

¢, =y, ~Xp=(za+XP+u +)-Xp
Zi

a+ui+6_‘i_ii(ﬁ_ﬁ)

Since €;is an estimate of z.a + u;, we could regress it on z; to
estimate a.. (Use T repeated observations on the group means
for individual i, to weight individuals appropriately). This
glves:

= Bzz_lbzé
where B, efc. are between-group cross-product matrices:
n_ 1 n T,
Bzzzzzzilzi; bzézzzzi'éi
i=1 =1 i=l =1
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Estimation of ¢
Rewrite @ as:
& — Bzz_lbzé =0+ Bzz_lbzu + Bzz_lbzé‘ - BZZ_lBZX (ﬁ B B)

But P is unbiased and we assume z; is uncorrelated with

Ei=a+EB_"_)

Thus a is only unbiased if u; and z; are uncorrelated.

[ ]
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Estimation of o, 2

One way is to use the between-group regression. Replace each
observation by the individual mean:

yi=zo+Xp+u +e;, i=1.nt=1.T

. &’ BZZ Bzx B be
Estimator: | - |=
B sz Bxx bxy
The residual variance, 5,2, is an estimate of ¢’ + o~ /T so:

2

_ 2 _Sw

= SB e —
T

where sz? and s;,? are the b-g and w-g residual variances and T

is the mean no. of observations per individual.

~2
u

Note that 6, may be negative! (If so, Stata sets it to zero!)
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Asymptotics for short panels

For panel data arising from repeated surveys, n is usually
much larger than T = max (T;). This suggests using asymptotic
theory based on n — o, with all T; fixed.

Incidental parameters problem: If we regard the unobserved
effects u, ... u, as parameters to be estimated, then the
dimension of the parameter space — « as n — oo. Standard
asymptotic theory doesn’t work in this case.

Consistency of within-group estimator:

olim f, = p -+ plim [li S (x, -%,)'(x, - ¥ >j
n

n— 0 n—© i=1 =1

x plim (lz zT: (x,-X,) (s, - g_,.)j

n—eo \ M1 4=1

:B+(plim Wxx)_ x0 =P

n— 0 [ ]
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Day 3: Linear regression analysis:
random effects

* Random effects regression: Testing the FE and RE
assumptions
* The Hausman test
* The Mundlak approach

* Endogeneity issues

= Forms of endogeneity

= Endogenous regressors: the between and within-group IV
estimator

= Correlated individual effects: Hausman-Taylor estimation

[ ]
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‘Random effects’ GLS & ML estimation

*In general, since individuals are sampled at random from the
population, u; (and all other variables) are random: so “random
effects” is tautological

* Extract the overall mean from u;:
Yie = 0 T zio + x B+ ou g
*Use X, as shorthand for the person i’s time series { x;; ... X, }
* We may choose to assume that u; is uncorrelated with z and X; :
E(u. | z;,X;)) =0 = cov(u;,z;)=0&cov(u;, X;) =0
* Assume also homoskedasticity and uncorrelatedness
Ew? | z,X,) =072, Eu;¢& |z,X) =0 forallt
* Then write the composite random disturbance as:
Ui = Ui

* What is the covariance structure of the random process { v, }?

i University of Essex 01/02/2007 (2) ﬁSER



Random effects covariance structure

Variances & covariances (conditional on z;, X.) :

var(v,) = o+ o/

2, cov(v,,v,) =0, foralls=t

So the observations from different time periods (and the same
individual) are not independent: they are equi-correlated.

The observations are clustered by individual, with non-zero
intra-group correlations

The positive correlation between observations for any
individual means that within-person variation is less than it
would otherwise be. Consequently, whatever within-person
variation we do have is particularly informative

= give more weight to within- than between-group variation

[ ]
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Generalised Least Squares

Generalised least squares (GLS) does this weighting for us.

For simplicity, assume just one explanatory variable, x;, . Then
GLS is:

n

R Z [nyi Ty ibxyi]
Pors = ’21

Z [Wxxi + l//i bxxi ]

where: i=

T,
2V V— X. —X. 2, b =T \x —x 2 etc.
W= %)%, b, =T (%-%)

[ ]
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Estimators combining within & between-
group variation

W-G GLS (RE) pooled OLS B-G
regression regression regression regression
| | | >

0 oz?/(c2+To?) 1 Y =0

* If o2is zero, then GLS is the same as w-g regression
e If g21is zero, then GLS is the same as pooled OLS

* GLSis never the same as b-g regression (since 0,2 /(c,?+Tc ?) can’t be
greater than 1) = b-g regression is never an efficient method

[ ]
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GLS properties

Note that :

* GLS uses the optimal (efficient) combination of within and
between variation: OLS (i.e. with y; = 1) is not generally the
efficient estimator.

* ;. <1, soless weight is given to between-group variation

e limy, =0 | so between-group variation is unimportant in a long
>
panel, and the GLS estimator converges to the within estimator,
i.e. B,,c = B, asthepanellengthens

 If individual effects do not matter (¢,? = 0) then y; =1 and it is

easily shown that B¢ =PBgs

[ ]
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Feasible GLS

We can only use GLS if we know the variance parameters ¢,

and o, . They can be estimated from the within-group and
between-group regression residuals.

Consider the full regression model involving both z and x. It can
be shown that GLS is equivalent to the following procedure:

(1) Transform the data:

y; = Vi _‘91‘)71' ; Z;r :(1_‘91‘)Zi , X; = X _‘951
where: 2
0, =1~ \/ 2 i 2
o, +T.0;

(2) Regress ¥ ; on (Z:,X;), pooling all observations

[ ]
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Maximum likelihood

Speaking loosely, the likelihood function measures the degree
to which our model is consistent with the data, at any
particular choice of values for the model parameters. So we
can estimate all the parameters (a, B, 0,2, 0,°) together by
choosing their values to maximise the likelihood function (see
appendix for details).

ML and feasible GLS are statistically equivalent if n is very
large.

In Stata, the command xtreg has various options:
fe for within-group
,be for between-group
,re for random effects (feasible GLS)
,mle for random effects (ML)

[ ]
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Fixed effects or random effects? Concepts and
interpretation

* Specification of model as FE or RE depends partly on the nature
of data. For example:

= [f individuals are randomly sampled from population then
u;is random ( a ‘draw’ from the population distribution).

= But for an industry level analysis, where we observe a panel
of all industries over several years, industry effect u, can be
thought of as a fixed effect.

* RE implies unconditional inference (because we don’t want to be
restricted to the particular individuals sampled), while FE
implies inference conditional on the effects in the sample.

* In practice, with randomly sampled data, FE/RE choice is
based on whether a further assumption holds: that u; is
uncorrelated with the regressors: E(u; | z;, X;) = 0

[ ]
i University of Essex 01/02/2007 (9) ﬁSER



Testing the hypothesis of uncorrelated effects

The random effects estimator (and any estimator that uses
between-group variation) is only unbiased (strictly, consistent
as n — o) if the following hypothesis is true:

Hy E(u; | z,X;) =0

It is important to test H,. There are various equivalent ways of
doing so, including:
(1)Hausman test: is the difference BW BGLS large?
(2)Between-within comparison: is B, -B, large?
(3) Mundlak approach: estimate the model

Vi =0 20+ X, B+Xy+7, + &,
by GLS and test H,: y = 0.

[ ]
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Hausman test

The idea of the Hausman test is to compare two estimators which
should be approximately the “same” if the zero-correlation
assumption holds (H,)), but different if the assumption is false (H,).

Specifically, under H,, both estimators |3W and f os are unbiased
(strictly, consistent), and B o.s1s more efficient, (so Var([}W) > var(|3 ors))-

It can be shown that the variance (matrix) of BW BGLS is:
Var(BW - BGLS ): Var( w )_ var( GLS )

Under H,, By is still unbiased but Ps:s is not. So the Hausman test

statistic:
— (ﬁW _ ﬁGLS )' [var(A W )_ Var(A GLS )}1 (BW o ﬁGLS )

should take a large value and reject if H,, is not true.

If H, is true, the statistic S is approximately distributed as y* with k
d.f. where k = number of variables in x;, , so we use critical values for
the y*(k) distribution.

[ ]
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BHPS example: feasible GLS estimates

. xXtreg lwage

Random-effects
Group variable

R-sq: within
between
overall

Random effects
corr(u_i, X)

age
cohort

sigma_u

age cohort , re

61516
10335

1
6.0
14

7405.63
0.0000

Interval]

-0302836
-0210438
-36.73091

GLS regression Number of obs
(1): pid Number of groups
= 0.1217 Obs per group: min
= 0.0335 avg
= 0.0345 max
u_ i1 ~ Gaussian Wald chi2(2)
= 0 (assumed) Prob > chi2
Coef. Std. Err. z P>]z] [95% ContT.
.0295982 .0003497 84.63 0.000 .0289127
.0201181 .0004723 42.60 0.000 .0191924
-38.56221 .9343531 -41.27 0.000 -40.39351
-49751772
.28495079

sigma_e

]

+

I

I

_cons |
+

I

I

rho |

. 75299116 (fraction of variance due to u_1)

i University of Essex
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BHPS example: within-group estimates

. xtreg lwage age cohort , fe

Fixed-effects (within) regression Number of obs = 61516
Group variable (1): pid Number of groups = 10335
R-sq: within = 0.1217 Obs per group: min = 1
between = 0.0312 avg = 6.0
overall = 0.0194 max = 14
F(1,51180) = 7094.59
corr(u_i, Xb) = -0.4880 Prob > F = 0.0000
Iwage | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ PP
age | .030061 .0003569 84.23 0.000 .0293615 -.0307605
cohort | (dropped)
_cons | .8994719 -01369 65.70 0.000 .8726394 -9263045
_____________ -
sigma_u | .60455798
sigma_ e | -28494801
rho | .81822708 (fraction of variance due to u_1)
F test that all u 1=0: F(10334, 51180) = 18.19 Prob > F = 0.0000
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Example: BHPS Hausman test

. hausman fixed random

--—- Coefficients —---
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| Tixed random Difference S.E.
_____________ e
age | -030061 -0295982 -0004628 -0000711

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(1) = (b-B)"[(V_b-V_B)*(-1)](b-B)
= 42 .34
Prob>chi2 = 0.0000

Conclusion: we reject H,, - there is correlation between u; and age, so the
within-group regression is biased

But note: although the FE-RE difference is statistically significant, it is rather
small

[ ]
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The Mundlak approach

Mundlak (1978) suggested that a way to reconcile FE and RE
models was to approximate the individual effect as a function of
the individual means of time-varying characteristics:
u; =Xy +17,
Substituting into the main model:
Vi =0+ 2,0+ X, XY +77, + 8,

Estimating by GLS yields B MGLs = B, because the (linear)
dependence of u; on x;, is fully captured by the Mundlak
formulation [note this is not true for non-linear models, as we see
later].

A test of cov(u;, x;) =0 is a test of Hy:y=0.

=If the test rejects [, GLS using the un-augmented RE model (without X, ) is
biased = we should use the FE model.

=If the test doesn’t reject [, = we should use GLS on the original model.

[ ]
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Random-effects

Group variable

R-sq: within
between
overall

Random effects
corr(u_i, X)

Example: Mundlak test

. xtreg lwage age cohort mage, re

GLS regression
(1): pid

0.1217
0.0356
0.0370

1 ~ Gaussian
= 0 (assumed)

Number of obs
Number of groups

Obs per group:

min
avg
max

wald chi2(3)

61516
10335

1
6.0
14

7453.30
0.0000

age
cohort
mage
_cons
sigma_u
sigma_e
rho

-030061
-0103154
-.0117292
-18.93191

-49751772
.28495079
. 75299116

-0003567
-0015734
-0017958
3.147336

Prob > chi2

P>]z] [95% ContT.
0.000 .0293618
0.000 .0072317
0.000 -.015249
0.000 -25.10057

-.0307601
-0133992
-.0082095
-12.76324

i University of Essex
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Endogeneity

* Forms of endogeneity

* Endogenous regressors: the between and within-
group 1V estimator

* Correlated individual effects: Hausman-Taylor
estimation

[ ]
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Endogeneity in static models

Example: an earnings model

vy, = oy Educ, + o, Female + B, Age,, + B, Tenure, + u. + ¢,

Two forms of endogeneity:
Two-way causation: experience is rewarded with high pay & workers tend
to stay in high-paid jobs

Unobserved common factors: ability is rewarded with high pay & high-ability
people stay longer in education

Earnings || Education Earnings

A

A 4

Tenure

Unobserved

ability

(a) unobserved common (b) 2-way causation
factor

[ ]
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Example of endogeneity

Example: an earnings model
Yi = o Educ;+ o, Female + B, Age, + [, Tenure; + u; + &,

(1) Two-way causation: workers tend to stay in high-paid jobs:
Tenure model:  Tenure, = yy, + v, (y > 0)
= y(oq Educ; + .. .+ B Agey, + [, Tenure, + u; + &) + vy
= | 7(oq Educ;+.. .+ p Agey +u;+ &)+ v, ]/ (1-75)
= cov(Tenure,, u;) =yoc?/ (1-yp)
cov(Tenure,, &) =y o2/ (L-y /)

(2) Unobserved common factors: u; represents ability & high-
ability people stay longer in education:

Educ, = ou; + other vars (6 > 0)
= cov(Educ;, u;) =602
cov(Educ;, ¢,) =0

[ ]
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Strategy for dealing with endogeneity

Type of endogeneity

Consequences

Method

2-way causation
(e.g. tenure — wage & wage — tenure)

Cov(x,u) =0
Cov(x,&) %0

Within-group IV
(w-g to eliminate u; and IV

to deal with covariance
with &)

Common unobserved factor which

Cov(x,u) =0

Within-group regression

persists over time Cov(x,&) =0 (eliminates u;) and

(e.g. ability — wage, ability — Hausman-Taylor to

education & education — wage) estimate coefficients of z;

Common unobserved factor which Cov(x,u) =0 Randome-effects IV, using as

does not persist over time Cov(x,&) # 0 IVs variables which are

(e.g. job loss — wage & job loss — correlated with risk of job

tenure) loss but not wages; no need
to use within-group, since u;
isn’t correlated with x

None Cov(x,u) =0 GLS random effects

Cov(x,&) =0 regression

i University of Essex
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The Instrumental Variables principle

Simple example - a cross-section regression model:
vi = 6Bt g

Problem: simultaneous causation
= cov(x;, &) =0
= OLS regression of y. on x; is biased

But assume there is another variable g, with two properties:

Validity: cov(g;, &) =0
Relevance: cov(q;, x;) #0

The validity requirement says that the instrument must not
suffer from the same endogeneity problem that x; does;

The relevance requirement says that the instrument must be
closely related to x;

University of E
i niversity of Essex 01/02/2007 (21)
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Motivation for the IV method

The assumption of instrument validity is a moment condition
which states that a particular moment, cov(g, ¢), must be equal
to zero

But the model tells us that: &=y, - x;f, so:
cov(g,, &)  =cov(g;, [y;-x: A1)
= cov(q;, y;) - Beov(g;, x;)
= 0 (instrument validity requirement)
Solve for £

p=cov(q;,y;) / cov(yg;, x;)

So, if g is a valid instrument, f must be equal to the ratio of the
population covariance between g and y and between g and x.

[ ]
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The simple Instrumental Variable (IV) estimator

The sample analogue of this moment condition provides an
estimator:

) ﬁ(ql- ~D)(, - 7)

~  samplecov(q,y) *4
" sample cov(g, x) Zn:(q.—cY)(x.—J?)
=1

This can be generalised to:
* More than one explanatory variable in (z;, x;;)
* More than one instrumental variable

e But we must have number of instruments > number of
explanatory variables

(See technical appendix)

[ ]
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Simultaneity: Within-group IV estimation

Model:
Ve = Z;0 Xy B+ ou; + g,

Partition x;, :
Xit = (Xpit » Xoit)s

Where x,;, represents the endogenous covariates:
cov(Xy;, &) =0 and cov(xy;, &) # 0

Find a set of instruments q,;, (at least as many as in x,,,)
where cov(q,;, &;) =0

Full set of instruments: q;, = (Xq;;, qo;p)

Within-group transformation:
Vi — Vi = (X, _ii)ﬁ T& &
Within-group IV estimator uses (q,.t — ﬁl) as instruments

[ ]
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Other IV estimators

* By applying the between-group transform or the random-effects
GLS transform to the model and instruments, we can define
between-group and random effects IV estimators analogous to the
regression case.

* Like regression, these are not robust with respect to correlation
between u; and (z; , x;,)

* So the Random Effects IV method should only be used if we think
the endogeneity problem arises because of the presence of non-
persistent common unobserved factors (i.e. g,) influencing both y

and x. If there are also common persistent factors (i.e. u;), then RE-
IV will be biased

* See the technical appendix for details of the RE and B-G IV
methods

[ ]
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Simultaneity involving only individual effects:
the Hausman-Taylor case
Model:
Vie = Z;0 + Xy B+ ou; + g,
Partition x;, and z;:
Xip = Xy Xoip)r Zp = (245, Zoy),
where:
E(u. | x;;,;) =0, E(u; | z,)=0 = xy;,, z;; are exogenous
E(u; | x,,,) #0, E(u; | z,,) #0 = x4, z,; are enogenous
But we must assume:
E(s, | x;) =0, E(g, | z) =0 for all x- and z-variables

(no simultaneous determination of v, and (z;, x;) !!!!)

Identification condition: no. of x;;, = no. of z,,
Method: use x,; as instruments for z,,

[ ]
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The Hausman-Taylor (1981) estimator
Step 1: compute the within-group estimator for f3:
= regress y —y.on X,—-X, = IASW
Step 2: construct within-group residuals & estimate o, :
£, =2, =5 (x, =)y

G, :Zn:iéz‘tz/(”(f_l)_kx)

i=l t=1
Step 3: estimate model for e, =y, —iiﬁW ;
e, = a, +z,0+residual, i =1.n, t=1.T

use as IVs q;; = [xy:, 2y ] A
Step 4: Construct €, =), —2,0—X,p,, ; estimate 62 from &, ande;

Step 5: Carry out the random effects transform and estimate:

(yit _‘91')_/1'): Zi(l_ei)a+(xit _Hiii)ﬁ+(l_9i)ui +(5iz _‘91'51')

using as IVs (;, = [le- ) (Xl-; —X, )’ iu]

[ ]
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Endogeneity: BHPS examples
Model:

Ln wage = oy + oy Female + o, Education beyond GCSE
+ [, Age + B, Job tenure + u + ¢

(1) Is job tenure jointly determined with the wage?
* Use the standard IV/2SLS estimator in w-g form

* Possible instruments: Married, Spouse part-time, Spouse full-time,
Dissatisfied with hours,

e But are these valid instruments?

(2) Is educational attainment influenced by the same unobservable
factors as labour market success?
* Use the Hausman-Taylor estimator
* Instruments come from within the model

* Butis everything uncorrelated with ¢?

[ ]
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Within-group regression

. Xtreg logearn age postGCSE tenure, fe

Fixed-effects (within) regression Number of obs = 38404

Group variable (1): pid Number of groups = 7700

R-sq: within = 0.0983 Obs per group: min = 1

between = 0.0024 avg = 5.0

overall = 0.0038 max = 11

F(3,30701) = 1115.13

corr(u_i, Xb) = -0.4195 Prob > F = 0.0000

logearn | Coef. Std. Err. t P>]t]| [95% Conf. Interval]

_____________ S

age | .0249189 .0004778 52.16 0.000 .0239824 .0258554

pOostGCSE | .0263467 .0089311 2.95 0.003 .0088413 .043852

tenure | .0016804 -0004299 3.91 0.000 .0008377 -002523

_cons | .9805382 .0174738 56.11 0.000 .9462889 1.014787

_____________ e
sigma u | -54846498
sigma_e | -24922759

rho | .82885214 (fraction of variance due to u_ i)
F test that all u_i1=0: F(7699, 30701) = 14 .66 Prob > F = 0.0000

[ ]
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Within-group IV estimates

. xtivreg logearn age postGCSE (tenure = dumm*), fe
note: dumm6é dropped due to collinearity

Fixed-effects (within) IV regression Number of obs = 38404
Group variable: pid Number of groups = 7700
R-sgq: within = 0.0974 Obs per group: min = 1
between = 0.0027 avg = 5.0
overall = 0.0040 max = 11
Wald chi12(3) = 2.40e+06
corr(u_i, Xb) = -0.4164 Prob > chi2 = 0.0000
logearn | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ -
tenure | .0039841 -007105 0.56 0.575 -.0099415 .0179097
age | .0243511 .0018121 13.44  0.000 .0207995 .0279027
pOostGCSE | .0279968 .0102783 2.72 0.006 .0078518 .0481418
_cons | -9909042 .0363862 27.23 0.000 -9195886 1.06222
_____________ e
sigma u | .54731645
sigma e | .24934411
rho | .82812356 (fraction of variance due to u_1i)
F test that all u_i1=0: F(7699,30701) = 14.63 Prob > F = 0.0000
Instrumented: tenure
Instruments: age postGCSE dumml-dumml2
[ ]
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Hausman test comparing w-g regression & w-g IV

. hausman i1vfe olsfe

---— Coefficients ----
| (b) (B) (b-B) sqrt(diag(VvV_b-V_B))
| 1vfe olsfte Difference S.E.
_____________ e
tenure | .0039841 .0016804 -0023038 -007092
age | -0243511 .0249189 -.0005678 -001748
pPpOStGCSE | .0279968 .0263467 -0016501 -005087

consistent under Ho and Ha; obtained from xtivreg
inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference i1n coefficients not systematic

chi2(3) = (b-B)"[(V_b-V_B)*(-1)](b-B)
= 0.11
0.9912

Prob>chi?2

= No significant evidence of endogeneity in tenure
(despite the large change in the tenure coefficient when we use IV !!!)

[ ]
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Endogeneity of education: Hausman-Taylor

. Xthtaylor logearn age tenure postGCSE2 female cohort, endog(tenure postGCSE2)

Hausman-Taylor estimation Number of obs = 38404
Group variable (i1): pid Number of groups = 7700
Obs per group: min = 1
avg = 5.0
max = 11
Random effects u i1 ~ 1.1.d. Wald chi2(5) = 4111.99
Prob > chi2 = 0.0000
logearn | Coef. Std. Err. z P>]z| [95% Conf. Interval]
_____________ e
TVexogenous |
age | .0253258 .0004155 60.95 0.000 .0245115 .0261402
TVendogenous |
tenure | .0016367 -0003903 4.19 0.000 .0008717 .0024016
Tlexogenous |
female | -.1749879 .0436307 -4.01 0.000 -.2605026  -.0894732
cohort | .0115968 .0033232 3.49 0.000 .0050834 .0181102
Tlendogenous |
pOostGCSE2 | 1.260647 .3184888 3.96 0.000 .6364202 1.884873
I
cons | -22.45571 6.338539 -3.54 0.000 -34.87902 -10.03241
_____________ PP
sigma u | 1.7227596
sigma_e | -24925073
rho | .97949657 (fraction of variance due to u i)
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Technical appendix 1: random effects

The following slides can be safely ignored if you're not
interested in technical detail or if you aren’t familiar
with vector-matrix notation and matrix algebra

[ ]
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Random effects covariance structure

Variances & covariances (conditional on z;, X.) :

var(v,) = o?+ o/

: = 52
=, cov(v,,v,) =0 Vst

Define the T, x 1 vector v, with elements v, ... v,; . Note that v,

1
and v; are independent for i#j. The covariance matrix of v; is:

Q =01 +0E

where I is the identity matrix and E is a matrix with each
element equal to 1, both of order T; x T; .

Lemma: the inverse of Q. is:

4 1 To? _ 1

&

University of E
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Within- and between-group transformations
1

Qi_l = _z(MW +‘//iMB)
08
The M-matrices are; .
M, =1-T'E
M,=T"E

M,, is the T, x T; idempotent matrix that transforms a T; x 1
vector of data to within-group mean deviation form;

M;; is the idempotent transformation to a T; x 1 vector of
repeated means (the between-group transform).

The scalar ., =07/ (0'82 + Tl.o-f) reflects the relative size of
T.0,2and o?.

[ ]
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Generalised Least Squares

For simplicity, subsume z; within x;, . Then GLS is:

n

1
ﬁGLS = (Z Xilﬂilxij ZXiIQi_lyi
i-1

i=1

n o
- (Z[ w TV B ]j Z [nyi + l//ibxyi ]i

i=1
T

Where Wxxi = Z (Xit o )—(i )I(X - ii )’ B
t=1

it

®
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Maximum likelihood

If we assume u; and ¢, have normal distributions, the log-
likelihood function is:

L(ey,0,B,0°,0°) = const —%Z In detQ2 —%Z v.'Q'v
i=1 =1

This can be maximised numerically to estimate all parameters
simultaneously.

Maximisation is done using an iterative optimisation
algorithm, in which an initial guess at the parameter values is
improved sequentially, until a point is reached where the
gradient of the likelihood with respect to the parameters is
very close to zero. Stata gives a commentary on this
optimisation process.

[ ]
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Technical appendix 2: instrumental variables

The following slides can be safely ignored if you're not
interested in technical detail or if you aren’t familiar
with vector-matrix notation and matrix algebra

[ ]
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Simultaneity: Within-group IV estimation

Model:
Vie = ;00 + X3P+ u; + g
Partition x;, :
Xip = (X, Xoip)s
where: cov(x,;,, &) =0 and cov(x,;, &;) #0
Instruments q,; (at least as many as in x,,))
where cov(x,;, &) =0
Full IV vector q;, = (Xy;;, Qi)

Within-group transformation:

V=V =(X, =X )B+¢, —¢
IV estimator: _ .,
B wIv — (qu qu _1qu) qu qu _1qu

[ ]
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Consistency

o 1 1Y
plimB,, =B+| plim—W_|plim—W_ | plim—W_ | x

H—>00 n—owo N n—owo N n—wo N

1 1 ]

B'LT;qu(B'LT;ij P e
=P

This consistency property holds because:

* The within-group transform removes u,;, which may be
correlated with x,,

e The instruments are uncorrelated with &, so:

1 N R (. =
pllm_wqup“m_ZZ(qit_qi) (git_gi):()

n—o N n—o N ;1 ;1

[ ]
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Between-group IV estimator

If cov(q;;, u;) =0, which is a stronger requirement, then
we can also use q;; as instruments in a between
regression:

B,y =(B..BB_.) B, B’b

49 9y

where X; = (Zi’Xz’t)

And then we can derive estimates of the error term
variances ¢,°and ¢, to allow feasible GLS estimation using
V.

University of E
i niversity of Essex 01/02/2007 (41)

[ ]
fiser



The random-effects IV estimator

0 -1 -1 -1
BRE]V:(Rx*qququ*) Rx*qR r

49 49y

and 9, =1-Jo?/lc?+To?)

If cov(q;; , u;) # 0, then both ﬁ oy and Brey  are
inconsistent = a stronger requirement for instrument

validity

[ ]
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Day 4: Binary response models

* Types of discrete variables

* Linear regression

* Latent linear regression

* Conditional (fixed-etfects) logit
* Random effects logit and probit

[ ]
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Forms of discreteness

Censoring/corner solutions generate variables which are mixed
discrete/continuous
(e.g. hours of work are 0 for non-employed, any positive value for employees)

Truncation involves discarding part of the population
(e.g. low-income targeted samples, or earnings models for employees only)

Count variables are the outcome of some counting process

(e.g. the number of durables owned, or the number of employees of a firm)

Binary variables reflect a distinction between two states

(e.g. unemployed or not, married or not)

Ordinal variables are ordered variables, possibly taking more
than two values

(e.g. happiness on a scale 1=miserable ... 5=ecstatic; rank in the army)
Unordered variables reflect outcomes which are discrete but with
no natural ordering

(e.g. choice of occupation)

[ ]
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Binary models (1)

Dependent variable is
Yy, =0orl
This describes:
* situations of choice between 2 alternatives
* sequences of events defining durations

E.g. suppose:
*y;=(0,0,0,0,1,1,1,0,1, 1) is a monthly panel observation
* 0 indicates unemployment, 1 indicates employment

Then y, represents a history of 4 months” unemployment
followed by 3 months” employment, followed by 1 month’s
unemployment then 2 months” employment.

[ ]
01/02/2007 (3) ﬁSER



Binary models (2)

An alternative to modelling the sequence y; is to model the
set of durations: (U4, E3, U1, E2) = survival analysis

An important issue concerns dynamics - how does the
length of time already spent out of work affect this month’s
probability of finding work: duration dependence.

In this course, we instead focus on modelling this period’s
state (0 or 1):

*as a function of explanatory variables and an individual
effect (static model)

*as a function of explanatory variables, an individual effect
and last period’s state (dynamic model). This allows for state
dependence.

[ ]
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Why are special methods needed ?

Consider the binary variable, y;,, =0 or 1
Notice that the expected value of y;; is:

E(yy) =Pr(y, =1) x1+Pr(y; =0)x0=Pr(y, =1)
where Pr(y;, =1)is the probability thaty, =1

A simple way to model y,, is to use a regression with vy, as
dependent variable. Then the RHS will be the conditional
probability that y;, =1, plus an error term.

This is called a linear probability model (LPM):
Y = Gtz T xu, B+ ou + g,

With panel data methods (e.g. within-group or random-effects),

the linear model implies:
E(i | zi, x, w) =Pr (v =1 | z;, x, u;) = P(z;, %3¢, 1)

17 Mtr "

[ ]
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Disadvantages of the LPM

The linear probability model requires:

P(z;, x;, u;) = o+ zio + x3B + u;
But this may fall outside the admissible [0, 1] interval.
Moreover, var(y; | z;, x;, u;) = P(z;, x;, u;)[1-P(z;, x;, u;)]
which varies with z;, and x; = heteroskedasticity is a

problem

[Despite its disadvantages, the panel LPM is simple to
estimate and is often seen in applied work - but it's not an
ideal choice.]

[ ]
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Why nonlinear models are needed

g (o tz; @+ X, f+ )

01/02/2007 (7)
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Latent regression models: the binary case

To overcome the disadvantages of the LPM, use non-linear
methods.

Define a latent (unobservable) continuous counterpart, v;,
Example from labour economics:
If y,=1 defines employment, then:

y., = best available wage - minimum acceptable wage.

Lety, be generated by a linear regression structure:

Yy = gtz + x, B+ u; + g,

Then employment is chosen whenever available wage - acceptable
wage 18 positive:

y, =1 ifandonlyif vy, >0

. [ ]
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Latent regression models: the binary case (2)

= Pr(y,=1|z,x;, u) = Pr(eg+z,a + x;,B + u; +g, >0)
= Pr(-g,<[qy+z;a + x;,B + u;])
= Flytz;a + x;,B + u,)

where F(.) is the distribution function of the random variable -g,

Probit model: assume ¢, has a normal distribution
F(.)=®(.) = df of the N(0,1) distribution

Logit (logistic regression) model: assume &, has a logistic distribution

F(e) = e?/[ 1+e®] = df of the logistic distribution

. [ ]
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An aside: understanding the results from
binary latent regression models
In a linear regression model:
Y = ptzio + X B+ ou g
We can interpret the coetficients directly:
a = (average) effect on y of increasing z by 1 unit
B= (average) effect on y of increasing x by 1 unit
These are known as the marginal effects of z, x on y

But in nonlinear models, things are more complicated. In:
Pr(y,; =1) = Flay +z;a + x;,B + u))

a and B aren’t the effects on Pr(y;, = 1) of changing z or x

by one unit = so coefficients can’t be directly interpreted

. [ ]
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Some concepts for summarising results

Model: Pr(y;=1) = Flop, + z,a + x;,B + u))
(call this conditional probability P,))

Coefficients = &, z; and 3

Predicted probability = P

Odds (O;) = Py/ (1-Py)

For 2 people with different z and x -values, whose
probabilities of y=1 are P, and P;:

Odds ratio = 0,/0,
Relative risk = P, /P,

Relative risk and the odds ratio are often confused, but
they are different

. [ ]
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Marginal effects, relative risk and the odds ratio

Suppose person 0 has observable characteristics z,, x, and
unobservable characteristic u, ; then:

Py = Flag+zga + x,B + )
Let’s consider the effect of making a 1-unit change in (say) z. This
means inventing a new person with characteristics:
(zyt1, x, , Uy), for whom Pr(y=1) is:
Pi=F(ap+ [zp*t1]a +x, B + 14)
We can summarise the effect of this change in various ways:
= Marginal effect = P, - P,
= Relativerisk = P,/ P,
= Oddsratio =[P,/ (1-P)]/ [P,/ (1-Py)]
=[P/ Py x[(1-Py)/(1-Py)]
Other variables are “held constant” at their baseline values(x, , u,)

. [ ]
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Logistic regression and the odds ratio
In the logit model:
Py= exp(ay+zyo+xB+ug) / [1+exp(ay+zyo+xB+u) |
Py = exp(ay +[zy+1]a +x,B+ug) / [1+exp(aq +[zg+1]a +x, B + 1) |
Odds ratio= [Py / (1-Py) ]/ [Py / (1-Py) ]
= [exp(ag +[zy+T]a +xo B+ug) [ / [exp(ay +zgo +x B +11p) |
= lexp(ag +zga +xoB+up) x exp(Ixa) | / [ exp(ay +zpa +x B+ 1) |
= exp(a)
The odds ratio is usually only quoted in relation to logit results. It is
hard to interpret and very often gets misinterpreted. It gives the

proportionate effect of a 1-unit change in a variable on the odds,
not the probability Pr(y=1).

. [ ]
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Misinterpretation of odds ratios

Check that you understand the error in the following quotation:

“The odds ratio of 1.3689 for females |[...] indicates that, controlling
for the effects of the other explanatory variables, females are 37%
more likely to be in poverty than males. Stated differently, the
probability of being in poverty is 1.37 times greater for females than
for males.”

(W. H. Crown, Statistical Models for the Social and Behavioural Sciences: Multiple
Regression and Limited Dependent Variable Models. London: Praeger, 1998)

It isn’t possible to calculate the relative risk or the marginal effect
on the response probability, from knowledge of the odds ratio
alone.

What would be the relative risk and marginal effect if the predicted
probability for males is 0.2? What if it’s 0.001? What if it’s 0.8?

[ ]
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Options for presentation of results

* Present marginal effects evaluated at sample mean values of x
and z, with individual effects u set at zero (i.e. the average in the
population). But:

= This represents a synthetic, hybrid person that doesn’t exist.

= Technically, no-one has a zero individual effect (prob is
Zero)

* Present average partial effects (APE) which allow for the average
effect of the unobserved individual effects. Evaluate at:;

= Mean x and z, or
= Selected x and z to represent typical person, or
= Each person’s x and z, and then average the results.

. [ ]
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Other options for presentation of results

* Present predicted probabilities for different
combinations of x and z (representing different types
of person). Can also evaluate at different values of
the individual effect u, based on its estimated
distribution.

e All these methods are difficult with the fixed-effects
logit, as we don’t estimate the (distribution of)
individual effects or the coefficients of time-invariant
variables.

* Researcher should decide how to present results
based on research question being asked.

[ ]
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Fixed effects models - some issues

e To deal with individual effects in linear FE models,
we can.
= estimate individual effects u; (LSDV).
» difference out individual effects u;.

Estimates of B are unaffected in both cases and are
unbiased

e But in non-linear FE models:

= There’s no short-cut method of calculating the estimator
without calculating the estimates of the u; = the “incidental
parameters problem”

= Estimated coefficients are biased

= Can’t remove the individual effects u; by simple differencing
as in within-group regression

. [ ]
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Conditional ML estimation

CML (as applied here) is a way of condensing the
likelihood function into a form which does not depend on
u; but does depend on .

Then CML is consistent (loosely speaking, unbiased in a
large sample) for B.

But CML is very model specific as it is based on a
technical “trick” that is only applicable in a few cases, e.g.:
= logit models
* Poisson model (for count data) - see later

Details of conditional logit are given in the Technical
Appendix

[ ]
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Fixed effects (or conditional) logit

Model: Pr(y,=1) = Fly+z,0 + x, + u) ,
where F( . ) is the logistic form

Avoiding technicalities, the method works as follows:

* Work with the subsample of individuals for whom there is some
change in y;, during the observation period = so we sacrifice
information on any individuals displaying no change in y

* The changes in the covariates x;, (i.e. variable differences like x;, -
x;,) are then used in a modified logit analysis to explain the
changes in the observed sequence of outcomes y;; ... y;7 .

* Note that differencing the covariates removes any variables that
are constant over time (e.g. gender, birth year, etc.), so a can’t be
estimated

* Butit also removes u,;, so we don’t have to assume anything
about u; = so FE logit is more robust than RE logit

[ ]
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Random effects logit/probit

Appropriate if we want to:
* estimate the coefficients of z,

* use a non-logistic form

* allow for dynamic adjustment (i.e. use the lagged value
;.1 as an explanatory variable)

then conditional likelihood is not available. The random
effects approach is a natural solution.

land, of course, RE is preferred if the individual effects are
independent of the x - use a Hausman test to decide]

[ ]
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Random effects logit/probit

Consider the basic model:

*

Yy = optz,a T xitB +u, + g,
y, =1 ifandonlyif y,;, >0

Make standard random effects assumptions (including
independence of (z;, x;;) and u, ).

Since the g, are independent, the joint probability of
observing (V;;, Yi1,---, Yi1;) conditional on u; (and z;, x;,) is
just the product of the conditional probabilities for each
time period:

Pr(yi, - Yir | ) = Pr(ya | w;) x ... xPr(y;r | u;)
= Flagtzio+x; B+ u;) x ... x F(optz;o + x0 B+ u;)

[ ]
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Random effects logit/probit

Make an assumption about the distribution of u; (usually
assumed to be N(0, o,?)

Average out (marginalise with respect to) the unobservable u; to
get the unconditional probability of the data for individual i :

Pr(yiy, s Yir) = ELPr(, s Yir | 1) ]
where “E[ . |” refers to the expectation or mean with respect to
the N(0, o?) distribution of u, .

This unconditional probability Pr(y,, ..., y,r) is the likelihood
for individual i. Repeated this for all individuals in the sample.

We then choose as our ML estimates the parameter values that
maximise the likelihood over the whole sample. This is
implemented in Stata, but computing run times are quite long.

This ML method works well only if cov(u,, [z;, x;]) =0

[ ]
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Is the zero-correlation assumption valid?
The Hausman test

A Hausman test can be used to compare conditional logit estimates
with the random-effects logit which assumes independence
between u; and (z;, X; ).

Null hypothesis is H: 4; and (z; , X, ) are independent.

Alternative hypothesis is H;: u; and (z;, X; ) are not independent
(implies we should use CL).

B, is consistent under H, and H;, but inefficient under H, (since
only uses information on changers).

e Pre is consistent and efficient under H,, but inconsistent under H;.

* Test statistic:
S = (BCL — ﬁRE )' (VB.I'(BCL) - Var(ﬁRE))(ﬁCL o ﬁRE)

(distributed as p? if H, is correct, with df equal to the no. of
coefficients in )
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Individual effects correlated with
regressors (1)

* The RE probit/logit assumes that (z;, x;;) and u; are
independent.

* Is there any way of relaxing the independence
assumption?

* One possibility is to allow u; to be correlated with
elements of x;,.

= A very general formulation (due to Chamberlain) models u;
as a function of all values of x;, from all time periods.

= A simplified version (based on the Mundlak model) is to
model u; as a function of individual means.

. [ ]
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Individual effects correlated with
regressors (2)

Using the Mundlak-style approach we have:
u, = pL+X;0+1n, wheren, | X~ N(O' 0-772) (1)

This formulation still assumes that z. is not correlated
with u,. If it is, it belongs in (1), and we can’t separate its
correlation with u, from its true effect. Related to this, p
absorbs the main regression constant ¢,. [Can’t have
two constants!]

. [ ]
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Individual effects correlated with
regressors (3)

Important caveat: in linear regression, the Mundlak
approximation was innocuous (the estimates of B were
identical to FE). But here, we assume u; really can be
expressed as a linear function of x, such that the error
term 7; is independent of X; with normal distribution.

The latent regression becomes:

. _
Y =My +zZ,0+X,p+X0+7 +¢,

Estimate by including individual means in list of
regressors.

. [ ]
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Unobserved heterogeneity or state dependence?

* Asseen in our data set, there is much persistence in and
repetition of categorical states. Past experience of a given
state is often a good predictor of future experience of that
state.

* Example: people who were unemployed in the past are
more likely to be unemployed in the future.

* There are two possible mechanisms behind this
persistence:
= State dependence: experience of a given state alters behaviour

in the future so as to make that state more likely to occur
[see the appendix for dynamic random effects models]

= Unobserved heterogeneity: individuals differ in their
propensity to be in a given state and the factors explaining
these differences persist over time and are unmeasured.
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Technical appendix

The following slides can be safely ignored if you're not
interested in technical detail or if you aren’t familiar
with maximum likelihood and the maths of the logit
model

= Marginal effects

= Conditional logit

= Random effects likelihood function

* Dynamic random effects model

. [ ]
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Marginal effects

* Inthe LPM, the marginal effect of an increase in a
variable on the conditional probability thaty;, =1 is
just its coetficient. Formally 0 P(x;;, u;) / 0 x;; = f;
(where z, is absorbed into x;, for brevity)

* Note the marginal effect in the LPM does not depend
on the values of other covariates, or the individual
effect. So the ME is the same for everyone.

* This is not generally true in non-linear models:
OP(x;, u;) /Oy = OF(aptx; Btu;) / Oxy
= f (aptx; Btu;) p;

[ ]
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Marginal effects (2)

* Marginal effect is coetficient multiplied by the
density function (normal for probit, logistic for logit),
evaluated at the base values of x.

* So marginal effects depend on covariates and
individual effects. And usually we don’t estimate the
individual effects directly!

* Note we can still compare the relative effects of
variables (since f(.) cancels out). So the ratio of MEs
due to x; and x; is §; / B;.. Doesn’t depend on value of
latent variable.

[ ]
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Conditional logit

Subsume z; in x;, for notational simplicity.

If we try to estimate the u; using individual-specific dummy variables,
there is no simplification analogous to within-group regression.

Moreover, the number of parameters — oo with 7, so the MLDV
estimator 1s not consistent.

Log-likelihood for the logit model for individual i conditional on u;:

T; 1 T exitlﬂui
L(Bouy..1,) =Y v, ln( o | T2 (1=y,)n e
t=1 t=1

l+e +e

The statistic 2., y;, is a sufficient statistic for u;: Pr(y; | 2, y;,) does not
depend on u;.

Example T, = 2; 2., y,, can take values 0, 1, 2. Conditional on 2, y;, =0,
Y4 = Y, = 0 and, conditional on 2, v, =2, y,; = y,, = 1 with prob 1. So
only cases with 2., y;, = 1 are of interest.

[ ]
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Conditional logit (continued)

Probability of the conditioning event:
Pr(2,y;=1) = Pr(yy =1, y,=0) + Pr(y; =0, y, = 1)
= P;(1-Pp) + (1-Py)P;,
X;op+u;

exi1B+ui +e
(1 + exi1B+ui XI + exi2B+ui )

Conditional probability:

Pr(y, =1y,=0)
Pr(y, +y,=1)
x;1B e(xil_xiz)ﬁ

Pr(y, =Ly, =0y, +y,=1)=

exi1B+ui

exi1B+ui +exi2ﬁ+ui exnﬁ _|_exi2B 1+e(xi1_xiz)ﬁ

e

=  u,is eliminated by conditioning on ., y;,

[ ]
o
:: University of Essex 01/02/ 2007 (32) ﬁSER



Conditional logit (continued)

With T = 2, the conditional log-likelihood is:

LB) = 3 (d,(x, —x,,)B—In(1+ ¥ ))

ii2y=1

whered, =1ify,; =1,y,=0and 0 if y,; =0, y,, = 1.

Note that, if x;, contains time-invariant covariates (i.e. z;), these
disappear from (x;;-x,,) = a cannot be estimated.

In general, conditional logit only uses data from individuals who
experience change in y;, over time. This sacrifices sample variation.

* The same conditioning approach does not work with probit and other
functional forms, nor with general dynamic models

*But it can be generalised to:
= unordered multinomial logit models
= ordered logit models with more than two outcomes.
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The random effects likelihood function
(static model)

Let P, (u,) =Pr (y; | z;, x;;, u;), where

Fla,~za+x B+u) if y, =1

Pr ] Z'ax'ﬂui = 1
SO {1—F(a0+zia+xit[3+ui) it y,=0

Then the likelihood function for individual i, conditional
onu;, s :

Li(ui):HPit(ui) /

which tells us, for given values of a, B, 0, and ¢,%, and
given value of u; how well the model fits the data on
individual 1.

. [ ]
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Integrating out the random effects

Including u; in the conditioning set greatly simplifies the likelihood
function, because errors from different time periods are then
independent (otherwise, we’d need to allow for dependence across
periods).

But... we don’t know u; (also we have the incidental parameters
problem). We do, however, know (by assumption!) its distribution.
Therefore we can “average out ” or marginalise with respect to u;:

L = E(H P, (u»] = [T1 2 @ew)du

where g(u) is an assumed density for u, e.g. for probit, Gaussian: g(u)
= o, 1¢¥u/ ). The full likelihood functionis L = TI L,

Evaluation of the likelihood function requires the integral to be
approximated numerically by a quadrature algorithm.
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Day 5: Further topics

* Ordered response models

* Incomplete panels and sample selection in panel data
models

* Dynamic fixed-effects regression models
* Dynamic binary logit/probit models

* Policy evaluation and panel data

* Count data models

[ ]
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Topic 1:

Ordered response models

01/02/2007 (2)
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Ordered response models

* Ordered (or ordinal) variables take discrete values
which have a natural ordering:
= Happiness on a scale of 1-5
= Not working, part-time, full-time
= Want fewer, same, more work hours
= No, part, full insurance
= Credit rating

* Variables are ordinal but not (necessarily) cardinal,
i.e. the “distance” between two categories has no
meaning in the model. Only order matters.

|
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Latent regression (1)

As in binary response models, assume there is an
underlying latent variable y;,” determined as follows:

Vi = zia t x3P+ oyt g
u; is assumed to be a random effect distributed
independently of (z;, X;) as N(0, c,?).
Note there is no constant (see later).

The observed value of y;,is {0, 1, ..., ]}, depending on
where y;,” falls relative to a set of | cutpoints or
thresholds, ph < i< ... <p,

[ ]
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Latent regression (2)
* The outcome vy, is given as:
Yir =0 if vy <4y
Yyir =1 if 1y <yy <t

Y =] if My < Yir

* So, if | = 3, there are 2 cutpoints, g and 1,

* And if | =2 (binary choice model), there is only one
cutpoint, y.

= This is slightly different to the usual specification of the
binary probit/logit. Usually, & is normalised to zero and a
constant included in the list of regressors. Here, we set the
constant to zero and estimate z, as is done in Stata’s
oprobit and reoprob. The choice is arbitrary.

[ ]
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Random effects ordered probit (1)

* Assume ¢, is normally distributed with unit variance.
Pr(y, =0 | z;, x;, u) = Pr(yy < | 2z, x;, )
=Pr(zja + x;B + u; + 5,< )

1t —
=Dy -z;00 - X3P - uy)

Pr(y, =11z, x;, u) = Pr(uy, <yy < | z;, x;;, u;)

=Pr(u <zja + x;B + u;+ g, < 1)

= Ot -z;0 - X P - uy) - Py -z;00 - x;B - uy)
[which is just Pr (y,,” < 1) minus Pr (y;," < 14)]
Etc...

. [ ]
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Random effects ordered probit (2)
* Finally:
Pr(y;=] | z;, x;y, u;) = Pr(ey <y | z;, Xy, )
=1-Pr(y; < H | 2;, X;, U;)
=1-O(yy-z;a - xP - u)
* Check that these probabilities sum to one!

* Predicting probabilities and calculating marginal
effects is done analogously to the binary RE probit.

* But there is a complication in the intermediate
categories 1, ... J.

. [ ]
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Marginal effects

* For example (absorb z, into x;, for brevity):
Pr(y;=1|x;, u;) = D1~ X, B - ;) - Pty - X P - 1)

* So the marginal effect of x;; on the probability that y,=1 is:
o Pr(y,=1|x;,u;)/ 5int = ',Bj‘j)(/b - X B -uy) + ,Bj(l)(ﬂl -X; B -uy)

* This can be either negative or positive (consider the ¢(.)
function). And in general, the sign will vary with x;, and u;.

= Intuitively, why does the marginal effect have an ambiguous sign?

[ ]
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Topic 2:

Incomplete panels and sample selection
in panel data models
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Incomplete panels

We have distinguished between balanced,
unbalanced and non-compact panels.

Most techniques (Stata commands) can be used with
all three types of panel.

But...

= We have implicitly assumed that missing observations onl
represent an efficiency loss (i.e. estimates are still unbiased).

= In fact, the pattern of missing observations may not be
random.

= If observations are not missing at random, estimates may be
biased. Thus unbalanced and non-compact panels may not
be random samples.

= Equally, balanced (sub-)panels may not be random -
respondents present at every wave are unlikely to be
representative of the population.

[ ]
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Non-response

Why might observations be missing?

Unit non-response
= Attrition - respondents drop out of panel
» Wave non-response - unavailable at particular waves
Item non-response
= Respondents fail to answer particular questions, e.g. income.

Types of missing-ness:
= Missing completely at random (MCAR)

= Missing at random (MAR): conditional on observables (X,
z,), response is random. Systematic differences in response
are explained by observable characteristics.

= Informative or non-ignorable non-response: systematic
differences in response remain after controlling for (X, z;).

[ ]
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Implications of incompleteness

* Implications depend on type of analysis (but this is a
complex area with disagreements between
econometricians and survey statisticians).

* Descriptive (i.e. unconditional) statistics will be
unbiased if data are MCAR, but biased if data are
MAR or non-response is informative.

= Example: if poor households are less likely to participate in
surveys, we will underestimate the poverty rate.

* Conditional estimates (regressions) are unbiased if
data are MCAR or MAR (conditional on observables
in model). Biased if non-response is informative.

[ ]
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Weights?

* Data sets usually include weights which account for:

= systematic non-response (as a function of particular
observables);

= non-representative sampling due to survey design.

* Use weights for descriptive stats (if want to make
inferences about the population).

* Weighting is more problematic in regression analysis:

= General purpose weighting model may not be appropriate
for a specific regression model

= May be identification problems if same variables used for
weights and in regression.

= Weighting is not necessary if data are MAR, and inflates SEs.

= In practice, Stata does not accept weights for linear FE and
RE (GLS) analysis.

[ ]
01/02/2007 (13) ﬁSER



Non-random selection in panels

In the regression framework, non-random response
can be represented as follows. Let the model of
interest be:

vy =z, + x,B+u +¢g, t=1...T,1i=1...n

Define a response indicator r;, which equals 1 if (v,
Z, X;) is observed in the panel and 0 otherwise.

If data are MCAR or MAR, then r;, is independent of
u; and g,.
If non-response is non-ignorable then r;, is not

independent of u; and ¢;,. Also called non-random
selection or selection on unobservables.

[ ]
01/02/2007 (14) ﬁSER



Consequences for RE estimates

* We focus on the implications of missing observations
for linear RE and FE estimates.

e RE is unbiased if:
E(u; t&, | X, z;, 7
where r,_ (1, ...,
in all periods.

) =E(u;+ & | X;,2)=0
t.7), a vector of selection outcomes

This says that the composite error term is unrelated
to selection conditioning on observable
characteristics (MAR or selection on observables).

. [ ]
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Consequences for FE estimates

* Unsurprisingly (why?), FE is more robust to non-
random selection into the panel.

* FEis consistent if:
E(sy | Xi, 2 u;, 1) = E(g | X, 2, u;) =0
This says that the transitory error term is unrelated to

selection, conditioning on observable characteristics
and the individual effect u;. But r; can be related to u..

* As long as selection into the panel works through
“levels”, i.e. time-invariant factors, then FE remains
consistent.

[ ]
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Testing for non-random selection in
panels

* Some simple indicative tests for non-random selection involve:

1. checking whether r, helps explain the outcome y;, after controlling
for other characteristics

2. comparing results from the unbalanced panel with the balanced
sub-panel.

* In the first type of test, functions of r; can be added to the
equation and their significance tested [note r;, can’t be added -
why not?]. For example:

= lagged response indicator r;,
= indicator for present in all waves, ¢, =117,
= number of waves present for, T, =2 r,,

The last two can only be used with RE (why?).

[ ]
: University of Essex 01/02/ 2007 (17) ﬂSER



“Hausman” test

2. Asecond test compares RE or FE estimates from the
unbalanced panel and its balanced sub-panel. If selection is
random, the two estimates should be close. If selection is non-
random, and affects the estimators differently, we expect a
statistically significant difference between the two.

For example, test the RE estimator by forming the statistic:

(ﬁRE,B - ﬁRE,U )' [Var(ﬁRE,B )_ Var(ﬁRE,U )}1 (ﬁRE,B - ﬁRE,U )
~ x> (k) under H, :no selection bias

[Not a true Hausman test because neither estimatgr is )
consistent in presence of selection bias, and both Breyand Py,

may be affected similarly by selection. Thus the test may have
low “power”]

If these tests suggest attrition bias, the situation is difficult:
methods to correct for “endogenous” attrition are complicated

[ ]
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Topic 3:

Dynamic fixed-effects regression models
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Dynamic models

Why model dynamics?

* Current outcomes might depend on past values of
determinants = include lagged xs (distributed lag
model). Use similar techniques to those already
discussed.

* Adjustment might be partial: this year’s outcome ¥y
depends not only on x, but also on last year’s
outcome =» include lagged y. We will focus on this
case.

= Notice (as we will see) that this amounts to including an
infinite (or back to start of process) number of lagged x.

. [ ]
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Dynamic models for continuous dependent
variables

Adjustment may be imperfect - how to model it? Any
conventional time-series model can be used, e.g. AR(1):

Yy = z;a + x;, B+ yy, tu + g, (1)

or static model with AR(1) errors:

Ve = ;00 + Xy B+ ou; + g, (2)

&t = P& T My
= Yy = zi(l-p)a + (X-p%;)B + oYy * u; + 13 (2)
NB: model (1) implies gradual adjustment to change in x;
model (2) implies a full immediate response.

More general distributed lag models can be used (e.g. ECMs,
ARMA, etc.)

. [ ]
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W University of Essex

Within-group estimation
Within-group transformed model (e.g. AR(1)):

Vi = Vi =X, =X )B+ 7y, _.)_/z‘*)_i_git — &
where:

o _ii _i .5
Vi T & Vit T Yie = Vi

1

NB we assume a compact panel (why?) and an observable
initial condition y,,

We have got rid of the individual effect. But what are the
statistical properties of a regression of

Yy, — Yy, on(x, —X;) and (Vi _)_/z*) ?

[ ]
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Properties of the within-group estimator (1)

Find an expression for y;, that only involves z, x, and y,, (the
starting value or “initial condition” of v).

Vi = ;o + xuB+ yy,tou g,
By substitution:
Vi = ;00 X, B +y(z 0%, Bryy,tute )+ ou g,
= () z;a+x, B+yx, B+ ryotu+ o+ e, + g
= (1)) z;a + x;, B +yx; 1 B+ F(z;atx;, By y;stute,,)
tut ot ye, Tog,
(I++7) zia + %, B +y X, B+ X nB+7 Yis
tugt ot Pt ogtye g t e,

And so on... Eventually we arrive at =0
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Properties of the within-group estimator (2)
Distributed lag form of (1):

(-1
Yie = 27/S (Zia‘ +x, Btu + gt—s)+ 7tyi0
s=0
1_ t
= 1_77// (Zia +ui)+ Z7sxir—sl3 + [git TV T T 7/_151'1]"' 7/tyi0

= 1,4 isafunctionof g, ... &

-1
= ¥ =) / T, isafunction of g, ... & and y,,
=0

=> Yia—Y: is correlated with ¢, —&
= bias in within-group regression coefficients
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Properties of the within-group estimator (3)

* Bias of the within-groups estimator is caused by
eliminating the individual effect u, from the equation.
This causes a correlation between the transformed
error term and the transformed lagged dep var.

* Bias is generally negative for small T (even if true yis
Zero).

* For large T, bias is small - but with panel data T'is
not usually large...

What about pooled OLS?

. [ ]
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Properties of the pooled OLS estimator

* Assume individual effects u; are random. In a static
model, OLS is unbiased and consistent (though,
recall, inefficient).

* But this is not the case in a dynamic model:
Yie = ;0 + Xy B+ yy  +tou + g

* We know from above that y;, ; is a function of u; and
Y- In general, correlation between y,, ; and u; + ¢, 1is
positive due to:

= Positive contribution from u..

= Positive contribution from vy, if y,, generated by same
process as any other y;,

* So OLS is biased upward and is inconsistent

. [ ]
:: University of Essex 01/02/ 2007 (26) ﬂSER



Other estimators?

* GLS and ML estimators are also generally biased
= They depend critically on assumptions about initial
conditions y,,, and how they are generated
e There are several IV estimators which correct for
endogeneity of the lagged dependent variable and
are also independent of initial conditions. Like HT,
instruments come from inside the model.
= Anderson-Hsiao
= Arellano-Bond
= Blundell-Bond

[ ]
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A simple IV estimator

The within-group transform complicates estimation with lagged
endogenous variables. Consider time-differencing;:

Ay, =Ax, B+ Ay, +Ag, , t=2...T, (1)

The problem now is that the error term, Ag, = ¢, - &,; isa MA(1)

1

process which contains ¢, ; , which is correlated with Ay;, ; .

= Find a set of instruments correlated with Ay, ; but
uncorrelated with ¢,

= All lagged x;, and y,,, ... v,y are valid instruments if {g,} is
serially independent

= Simplest IV estimator (Anderson Hsiao) estimates (1), using
instruments (X, X1, X;10,Yiz.0)-

= We can only use observations t =2 ... T; . Each extra lag used
as an instrument loses us n observations.

= Once B, is found, estimate a by regressing 3, — X.f ,, onz

01/02/2007 (28)
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Problems with IV estimators

Suppose y;, is a random walk (e.g. Hall’s (1978) form of the
permanent income hypothesis: dynamic choice models
based on Euler conditions).

=V,., is uncorrelated with Ay, ; and is not a valid
instrument

—IV methods based on a differenced model won’t work
well if there is a near-unit root

Any method based solely on the differenced equation
ignores potentially valuable information contained in the
initial condition y,,

What is the optimal point on the trade-off between the
number of lags used as instruments and the number of time
periods retained in the estimation sample?
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System estimators

The time-differenced model:

Ay, =Ax B+7Ay,  +u, +Ag, , t=2...T (1)

1

This is a system of T'-1 linear equations with cross-correlated
errors (since Ag, is correlated with Ag, ; and Ag,,,)

There is also some (related) process generating the initial
conditions, y,, and y,;, which could provide further equations.

A different number of instruments is available for each of the
equations in (1):
E.g. the equation for t =2 has only (x;, ... X;7, ¥;);
the equation for t = T, has (x,y...X;7, Yio--- Yi7.0)-

NB it's assumed here that x,, is observable
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Digression: method of moments (1)

The method of moments is a way of getting consistent
estimates of model parameters.

1. Specity moment conditions (e.g. means, covariances)
implied by the model as a function of its parameters
(population moments).

2. Write down the “sample analogues” of these
moment conditions, i.e. expressions into which you
can plug the sample data, as a function of parameter
estimates.

3. Choose values for the parameter estimates which
“solve” the sample moment conditions.
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Digression: method of moments (2)

Very simple example: mean of a random variable y.

1. Mean of y is defined as x = E[y]. Rearrange as a
moment condition: m(y; ») = E[y - 1] = 0.

n

2. Sample analogue is i(y;u)= lZ(yl. —11)=0

i=1

3. Solve to get MM estimator:  ;=—%")
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Digression: method of moments (3)

* Often there are more moment conditions than
parameters to be estimated. Then the moment
conditions don’t have a unique solution.

*In this case, we minimise a (weighted) sum of the
squares of the sample moments. In vector notation this
is written in the general case as m(y,x,p)'V 'm(y,x, p)
where V is the weighting matrix.

*This is called the generalised method of moments
(GMM).

. [ ]
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Generalised method of moments
IV estimators are members of the class of GMM estimators
e.q. the 2SLS estimator, B, = (X'Q(Q 'Q)_IQ'X)_IX'Q(Q 'Q)"'Q'y
is the following M-estimator:

B, =arg min (y -XB)Q(Q'Q)'Q'(y - XB)

=arg min m(y,x,B)'V 'm(y,x,p)
B

where m is the “sample analogue”, n'Q’(y-XB), of a moment,
Eq’s assumed to be zero in the population.

V is a weighting matrix proportional to the asymptotic
covariance matrix of the moment condition (in this standard
2SLS example 0,°Q’Q, where ¢,? is the residual variance).

GMM can be extended to any number of moment conditions
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Arellano-Bond GMM (1991)
We have T’-2 differenced equations (1).

The instruments for equation ¢ are:

di; = (Xio---Xi7» Yio---Yir0)
Full set of moment conditions:

Eq, Ag,=0 (I +1)k +1 conditions
Eqy Agy;=0 (T +1)k +2 conditions
Eq,; Agr=0 (I'+1)k +T-1 conditions

m is a [(T,+1)(T,-1)k, +T;(T;-1)/2] x 1 moment vector
The optimal choice for Vis Em m'

More conditions can be added (e.g. for z; and to impose the
homoskedasticity assumption on ¢;,). But GMM often works
badly in finite samples with many moment conditions.
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Specification testing
(1) Testing for over-identifying restrictions

The number of restrictions = the number of moment
conditions for each individual (r) minus the number
of parameters (k).

Sargan test statistic:
The minimized optimal GMM criterion scaled by n is

s = nlir(y.x. BV 'y, x. )

has an asymptotic chi-square distribution with r- k,
degrees of freedom.

. [ ]
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Specification testing
(2) Testing for residual serial correlation

If the ¢;, are serially independent, then

E[A &; A &1]=E[(e); - €i1.1) (€1t 1~ €1t 2)]=-Eley 1°]=-0, 2

Also var(g; - &.1)=var(e;.q- y.,)=2 6,7

Thus, the first order serial correlation coefficient is
r,.=E[A &, A ¢, ,]/ [NVar(Ag,)\varA ¢, )] = 0.5.

But E[A ¢, A ¢;,,]=0, and so the second order serial
correlation coefficient r2=0.

= test for second order serial correlation.

Specification error if second order serial correlation is
statistically significant.
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Further developments: initial conditions

Arellano-Bond ignores the initial conditions y,, and y,; and
only uses moment conditions for Ay,,...Ay..

To progress further, we need additional assumptions about the
initial conditions. One possibility is:

Equilibrium initial values. If the process is homogeneous and
long-established:

yiO_Zla—i_u +Z7/ (Xz sB+‘9 s)
Y 5=0

—Coefficient of u; in equation for y;, is (1- -7) 1

= But the quantity ZV X;_s 1s unobserved

=Also, do people really have infinite pasts?

If lagged levels of y;, are poor instruments for Ay;, ;, can we go
back to using the equations in level form?
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Extended system methods

Arellano & Bover (1995) and Blundell & Bond (1998) (see also
Bhargava & Sargan, 1983) suggested using the model in both
differenced and levels form to generate GMM moment conditions.

Question: in the levels model

Yie = 2 F X, B+ yy tou g, (1)
is there a good instrument for y;, ,? This instrument must be
uncorrelated with u; as well as g .

A&B suggested Ay, ,, etc. The instrument validity condition is
E[Ay;4 (u; + &,)] =0, which requires (see B&B, 1998):
Eu[yio-u/(-y)] = 0 (2)
EuAg, = 0 (3)
(2) Requires y,, to be in stationary equilibrium. It then improves
estimation precision in highly-persistent models (i.e. when y= 1)
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Topic 4:

Dynamic binary logit/probit models
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Dynamic binary models

* Unobserved (time-invariant) heterogeneity will lead
to persistence over time after controlling for all
observable characteristics, even if there is no true
state dependence.

e We often want to measure, or control for, true state
dependence, e.g. does past experience of
unemployment make future unemployment more
likely? Implies long term effects of econ policy.

* Dynamic models using panel data allow both
unobserved heterogeneity and state dependence.

[ ]
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Dynamic random effects binary models

* We focus on the RE binary model (logit or probit)
with a simple dynamic specification (one lag of the
dependent variable).

* The latent regression is now:

Vie = gtz + x,B + yypg tup g,
y, = 1 ifand onlyif y;” >0

* True state dependence is measured by y and

persistent unobserved heterogeneity is captured by u;

* Assume (as previously) that ¢;,is serially
uncorrelated

. [ ]
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The random effects likelihood function

Construct a likelihood by sequential conditioning:

Pr(y, | z:, X, u;) = Py(u)
Pr(yiy | Yio, 2, X, u) = Pu(Yio, ;)

Pr(yir | Yira, 2;, X7, u;) = P, (]/iT-1r u;)

The probabilities P, (for t = ., T) are of the form:
F(CXO-I_Zz(x + xztB t 7/yzt-1+ uz) foryzt_l
or 1-Floptzio + x;B + yyuq t u) fory,=0.

Likelihood function for individual i, conditional on u:

T;.
L,(u;) = By(u)] [ B (i)
t=1

=]
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Initial conditions

* The P,y(4;) term in the likelihood is the contribution
of the initial condition - the first observed value v.

* If y,,is exogenous (unrelated to the individual effect)
then effectively P,y(1#,;) can be dropped from the
likelihood

= Just condition on y,, in P, (y;, , 1)
= Possible efficiency loss since useful information about the
starting point may be neglected.

* But y,, is probably not exogenous:

= [tis probably not the true starting point of the “process”, just
the start of our sample

= In any case, y,, is probably not randomly allocated, but
related to u; as are the other vy,

] °
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Heckman’s method

* In practice, it is difficult to derive an exact expression
for P,,(u;), especially if we do not observe the process
from the beginning.

* Heckman (1981) suggested approximating P,,(u;) by a
simple probit model, where regressors can include
“pre-sample” information (e.g. family background).

* Can be complicated to estimate.
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Wooldridge’s method

Wooldridge suggested an alternative: condition on v,
without specifying its probability. Instead, model the
density of u; conditional on vy, x;. This is related to the
Chamberlain/ Mundlak approach discussed earlier.

So u; could be specified as:
U, = [+X,0+ 7, + 1, wheren, | X,, y,, is distributed as N(0, o)
and the latent regression is now:
Vi = fly + X, BHZO+ W, XS+ Vo T FE,

Can be estimated as standard RE probit - include X,
and y,, every period.

Again, though, note this is just an approximation.

01/02/2007 (46)
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Topic 5:

Policy evaluation and panel data
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Policy evaluation and panel data

* A specialised application of statistics is to evaluate
the impact of various new policies, e.g. training
schemes, changes to tax-benefit system, minimum
wages.

* Policy evaluation often uses panel data.

* We look briefly at the parameters that policy
evaluation methods try to measure and how they
relate to panel data estimators seen earlier in the
course.

. [ ]
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Potential outcomes and counterfactuals

Aim is to evaluate impact of some policy “treatment’
(terminology originates in clinical trials).

Each individual has two potential outcomes, y;; (with
treatment) and y,,; (without treatment).

The treatment effect is A, = y;; — y,,. Note that A,
potentially differs over individuals (e.g. some people
benefit more from training than others).

Problem is we only observe each individual in one
state (treated or untreated). We don’t observe the
counterfactual state, i.e. what would have happened
to the treated person had they not been treated, and
the untreated person had they been treated.
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Average treatment effects (1)

* Say we want to estimate the average etfect of the
treatment. The population average treatment effect
(ATE) is E(A)= E(yy; - Yo:) = E(V1:) - E(Yo:)- But, as
already seen, we don’t observe y,; and y,; for all
individuals in the sample.

* But, using available observations, we could estimate
(naively): E(yy;|d;=1) - E(yy;|d;=0)

= E(yy;1d; =1)-E(yo; | d; = 1)*E(yo; | d; = 1)-E(yy; | 4,=0)

= E(yy;-Yo;1d;=1) + E(yo; | d; = 1) - E(y;| 4,=0)

= ATT + E(y; | d;=1) - E(y; | d;= 0)

where d;indicates treatment and ATT is the average effect
of treatment on the treated.
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Average treatment effects (2)

* ATT will often differ from ATE. E.g. training may be
given to those who benefit the most from it. But ATT
is often the more relevant parameter for policy
purposes - e.g. want to know the impact on those
who will actually participate in a scheme.

* The naive estimator includes a bias/selection term
E(yy;|d;=1) - E(yy; | d;= 0), which is the difference in
untreated outcomes between those who got the
treatment and those who didn’t. This term will not be
zero if, e.g., trainees would have earned less (or
more) than non-trainees even without training.
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Before-after estimator (1)

The bias term highlights the key problem in policy
evaluation, which is making sure that the treated and
untreated groups are very similar (ideally, identical).
On average, the outcomes of the 2 groups should be the
same in the absence of the treatment.

Consider a possible estimator using two waves of panel
data (t and t+1), with treatment occurring after the first
wave. Compare treated individuals with their
“untreated selves” in the previous wave, i.e. estimate:

E(1i11d; = 1) = E(yoi | d;= 1)

by )7;;1 — )ZT ,where 3" is the mean outcome for treated individuals
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Before-after estimator (2)

e The before-after estimator uses outcomes before
treatment (at ) to proxy (non-observed) outcomes at
t+1 without the treatment. It identifies ATT on the
assumption that

E(Yoir+114;=1) = E(yoi | d; = 1)
e However, even without the treatment, outcomes may

have changed between t and #+1 because of macro
factors or lifecycle effects.

e To control for these trends, we can include a control
group who never receive the treatment but (are
assumed to) experience the same trends.
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Difference-in-difference estimator

The difference-in-difference (DID) estimator takes the
difference between the change in outcomes for treated
individuals and the change for untreated (control)
individuals. DID is estimated as:

(.)_/:rl _)_/tT)_(.)—/til _)—/tC)

where 3" (7°) is the mean outcome for treated (control) individuals

A weakness of DID is that the common trend
assumption may be violated:

= macro trends may affect the 2 groups differently

* may be time-varying factors affecting only one group, e.g.

“ Ashenfelter’s dip”: often trainees had a temp drop in earnings

before they took up training course.
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Regressions
Consider a regression model with a treatment dummy,
time trend and interaction :
Yie =g+ yd; + OW2, + pd, w2, + u; + g,
t=1,2,1i=1...n
where w2, equals 1 if =2 and zero otherwise.

It is easily shown that in this simple case (2 waves and
no other controls) 2 is identical to DID and so
identifies ATT. Can estimate as RE, FE (in which case 4,
drops out) or by pooled OLS (adjust SEs).

Can add controls x;, to account for differing trends -
though interpretation of # is less straightforward
(unless treatment effect same for all, A= A).

01,/02/2007 (55)
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Other estimators

Other estimators of treatment effects match treatment
and control individuals based on observed
characteristics x. A popular estimator of this type is
propensity score matching.

Matching estimators can be less restrictive (don’t
assume linear functional form) and allow more
flexible analysis of heterogeneous treatment effects.

But they assume treatment is unrelated to potential
outcomes conditional on x: selection on observables.

Can also combine matching with DID.

[ ]
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Topic 6:

Count data models
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Count data

* Quantities are often inherently discreet, or are
measured discreetly. Frequencies are inherently
discreet. Examples of count variables:

= Number of visits to doctor

= Number of organisations joined.
= Number of arrests.

= Number of patent applications.

* Counts cannot be negative, may be (are often?) zero
and always take integer values.

* Modelling counts as continuous variables would not
take account of this “lumpy” distribution (cf
problems with LPM for binary variables).

. [ ]
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Modelling count data (1)

Counts are tf{pically modelled as a Poisson distribution.
i

The probability of individual i experiencing y;, events in
period ¢ is:
exp(—4,) A"
Priy, ) = P2

Where does this come from? Imagine a simple
experiment that would produce a distribution of counts.
We toss a coin n=10 times and count the number of
heads (probability p of a head from a toss = 0.5).

This would produce a binomial distribution, with mean
number of heads = np = 5.
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Modelling count data (2)

The Poisson distribution is the limiting form of the
binomial distribution as the number of “trials”
(tosses) goes to infinity, and p gets correspondingly
smaller so as to keep constant the mean count np
(=4).

The mean of the Poisson distribution is A,

The variance of the Poisson distribution is also 4,
(often rejected in practice!).

Allow for observed and unobserved characteristics
by specifying 4, = exp(z;a + x;p + u;). Note the
exponential form guarantees 4, > 0.
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Poisson regression

* The Poisson model is usually estimated by maximum
likelihood (ML)

* The ML estimator is quite “robust”: provided the
conditional mean is correctly specified, the estimates
are consistent even if the true distribution is not
Poisson.

e The conditional mean is:
E(vy | z, x;, u) =4, = exp(z;o + x;,B + 1))

= exp(u) . exp(z; & + x;B)
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Marginal effects (1)

* So the individual effect u; affects the conditional
mean multiplicatively. This turns out to be
convenient.

* Since E(y; | z;, x;, u;) =exp(y,) . exp(z;a + x;,p), if Xjit
increases by 1 unit, holding all else constant, the ratio
of the new to the old mean number of events is
exp(f). In Stata, using the 1rr option, this is reported

as an “incident rate ratio”.
* Notice the IRR is independent of u..
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Marginal effects (2)

* Alternatively, the marginal effect of x;;; on the
expected count is:

OE( | z;, xy, u)) / OXjyy = b exp(u;).exp(z;a + x;p)
=LiEWa | 2;, xi, uy)
* Semi-elasticity: a 1 unit increase in x;;, has a 100 f; %
effect on the expected count, all else constant.

* Equivalently, f; is the marginal effect on the log of
the expected count.
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Random effects Poisson model

* We still have to deal with u,. In the RE model, we
assume that the multiplicative individual effect is
independent of (z;, X;) and has a gamma distribution
with a mean of one (analogous to mean zero in an
additive model) and constant variance (=« in Stata).

* Stata also allows a normally distributed individual
effect (but runs slower).
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Fixed effects Poisson model

*The Poisson regression can also be estimated as a fixed

effects model, allowing arbritary dependence of u; on
(2, X;)-

* As for the conditional (FE) logit, the method is to
condition on a sufficient statistic. The sufficient statistic
is the sum for eachTindiVidual of the observed counts
over the panel ( = D y.)

» As usual in FE models, the effects (o) of time-invariant
variables z, cannot be identified.
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Over- (and under-) dispersion

A restrictive feature of the Poisson model is that the
mean and variance of y;, are constrained to be the
same.

In practice, the variance is usually greater than the
mean - overdispersion. One reason is unobserved
heterogeneity (cf linear regression where individual
effects increase the variance of the composite error
term).

The negative binomial distribution allows for
overdispersion.

But, with panel data techniques we already allow
explicitly for unobserved heterogeneity.

= RE incorporates overdispersion

= FEis consistent in presence of either under- or overdispersion.
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