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Aims of course 
• Introduce the distinctive features of panel data.
• Review some panel data sets commonly used in 

social sciences.
• Present the advantages (and limitations) of panel 

data, and consider what sort of questions panel data 
can(not) address.

• Show how to handle and describe panel data.
• Introduce the basic estimation techniques for panel 

data 
• Discuss how to choose (and test for) the right 

technique for the question being addressed.
• Discuss interpretation of results 
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Structure of course (1) 
• 5 days  × (3 hours lectures  + 2 hour lab sessions )
• Lab sessions will illustrate concepts using Stata

software (“industry standard” in survey-based 
applied work) 

• Main data will be from British Household Panel 
Survey (BHPS)

• Focus is on understanding the concepts and applying 
them. 

• Full lecture slides on the web
• Technical detail kept to a minimum but available in 

“appendices”
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Structure of course (2) 
Day 1: Basics
• What are panel data (examples)?
• Why use panel data?
• Handling panel data in Stata – some basic commands.
• Patterns of observations in panel data (non-response and 

attrition)
• Within and between variation
• Transitions.
• Cohort analysis
Day 2: Statistical analysis 
• Inference using panel data: some identification issues

unobservables.
age, time and cohort effects

• Regression analysis: Within and between group regression
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Structure of course (3) 

Day 3: Random effects and endogeneity
• Random effects regression
• Testing the FE and RE assumptions

Hausman test 
Mundlak model

• Endogeneity
The source of endogeneity
The between- and within-group IV estimator
Correlated individual effects: Hausman-Taylor estimation
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Structure of course (4) 
Day 4: Binary response models 
• Types of discrete variables 
• Why not linear regression?
• Latent linear regression
• Conditional (fixed-effects) logit
• Static random effects logit and probit
• Ordered response models
Day 5: Further topics
• Incomplete panels and sample selection in panel data models
• Dynamic fixed-effects models
• Count data models
• Policy evaluation and panel data
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Day 1: Basics

• What are panel data 
• Why use panel data?
• Handling panel data in Stata



01/02/2007 (8)

What are Panel Data?
Panel data are a form of longitudinal data, involving
regularly repeated observations on the same individuals

Individuals may be people, households, firms, areas, etc

Repeat observations may be different time periods or 
units within clusters (e.g. workers within firms; siblings 
within twin pairs)
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Some types of panel data
• Cohort surveys 

Birth cohorts (NCDS, British Cohort Survey 1970, Millennium CS)
Age group cohorts (NLSY, MtF, Addhealth, HRS, ELSA) 
Many programme evaluation studies and social experiments  

• Panel surveys 
Rotating household panels: (Labour Force Surveys, US SIPP)
Perpetual household panels: an indefinitely long horizon of 
regular repeated measurements
Company panels: firms observed over time, linked to annual 
accounts information

• Non-temporal survey panels
Example: Workplace Employment Relations Survey (WERS) ⇒
cross-section of workplaces, 25 workers sampled within each 

• Non-survey panels (aggregate panels)
countries, regions, industries, etc. observed over time

• Useful catalogue of longitudinal data resources:
http://www.iser.essex.ac.uk/ulsc/keeptrack/index.php
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Long-term household panels
• Individuals in their household context
• Perpetual panel survey, often with retrospective elements 

(period before first wave; periods between waves)
• Designed to maintain representativeness of the sampled 

population over time
• But may use refreshment samples if, e.g., substantial

immigration, worries about panel fatigue/conditioning
• Examples worldwide, include

• US PSID, Dutch HP, Swedish LoLS, German SOEP, BHPS, 
Canadian SLID, Australian HILDA, NZ SoFIE, European 
Community Household Panel, BHePS, NHPS, and several in 
developing countries (e.g. Indonesia, Ethiopia, VietNam)

• Big differences in: content, following rules, who is interviewed, 
interview method, etc.
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Specific examples - GSOEP

• German Socio-Economic Panel Study
• Based at DIW, Berlin
• Began in 1984 with approx 6 000 households.
• Various “top-ups” including expansion to former 

GDR. Now has around 12 000 households.
• Annual interviews with all adult members of hh.
• Various interview modes with gradual introduction 

of CAPI (computer-aided personal interviewing) 
since 1998. Almost no phone interviews.
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The BHPS
http://www.iser.essex.ac.uk/ulsc/bhps/

• British Household Panel Survey, based at ISER, University of Essex
• Began in 1991 with approx 5,500 households (approx 10,000 adults)
• England, Wales and  (most of) Scotland
• Extension samples from Scotland and Wales (1500 households each)

added in 1999.
• Sample from Northern Ireland (2000 households) added in 2001.
• Annual interviews with all adults (aged 16+ ) in household.
• Youth and child interviews added in 1994 & 2002
• Questionnaires have annually-repeated core + less frequent or 

irregular additions
• Now CAPI
• See BHPS quality profile for technical detail 

(http://www.iser.essex.ac.uk/ulsc/bhps/quality-profiles/BHPS-QP-01-03-06-v2.pdf)
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Using household panels (1)
• Panel data involve regularly repeated observations on the same 

individuals.
• In most analysis using household panels, the individual is the 

person and the repeated observations are the different time 
periods (waves). This is the case we will mostly consider.

• Sometimes, e.g. to isolate household (or family) effects, the 
individual is the household (or family) and the repeated 
observations are different persons within the household

• Multi-level analysis involves more than 2 dimensions of the 
sample, e.g. time periods within persons within households



01/02/2007 (14)

Using household panels (2)
• Conceptual problems with households over successive time 

periods (waves)
households change their composition over time
how much can a hh change before it is effectively a new 
household?.

• We usually follow persons over time periods (waves) and treat 
household data as contextual information 

• e.g. an individual’s material living standards measured as the
income of their household  at that time. 

• Rationale for household panel designs, rather than simpler cohort
designs

• Allows for individuals moving between households & forming 
new households
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Why use panel data? 
• Repeated observations on individuals allow for 

possibility of isolating effects of unobserved 
differences between individuals

• We can study dynamics
• The ability to make causal inference is enhanced by 

temporal ordering
• Some phenomena are inherently longitudinal (e.g. 

poverty persistence; unstable employment)
• Net versus gross change: gross change visible only 

from longitudinal data, e.g. decomposition of change 
in unemployment rate over time into contributions 
from inflows and outflows
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BUT don’t expect too much…

• Variation between people usually far exceeds variation 
over time for an individual 
⇒ a panel with T waves doesn’t give T times the information of 

a cross-section
• Variation over time may not exist for some important 

variables or may be inflated by measurement error
• Panel data imposes a fixed timing structure; continuous-

time survival analysis may be more informative
• We still need very strong assumptions to draw clear 

inferences from panels: sequencing in time does not
necessarily reflect causation
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Some terminology
A balanced panel has the same number of time observations (T) 

for each of the n individuals
An unbalanced panel has different numbers of time observations 

(Ti) on each individual
A compact panel covers only consecutive time periods for each 

individual – there are no “gaps”
Attrition is the process of drop-out of individuals from the panel, 

leading to an unbalanced (and possibly non-compact) panel
A short panel has a large number of individuals but few time 

observations on each, (e.g. BHPS has 5,500 households and 14 
waves)

A long panel has a long run of time observations on each 
individual, permitting separate time-series analysis for each

We consider only short panels in this course
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Handling panel data in Stata
• For our purposes, the unit of analysis or case is either the person 

or household:
If case = person, case contains information on person’s state, 
perhaps at different dates
If case = household, case contains info on some or all household
members (cross-sectional only!)

• The data can be organised in two ways:
Wide form – data is sometimes supplied in this format
Long form – usually most convenient & needed for most panel data
commands in Stata
Use Stata reshape command to convert between them.

• Three important operations:
Matching/merging
Aggregating
Appending



01/02/2007 (19)

Wide format
•One row per case 
•Observations on a variable for different time periods (or dates)
held in different columns 
•Variable name identifies time (via prefix)

…
missing5.45.410003

6.3missing6.310002
7.77.57.210001

(Wage at w3)(Wage at w2)(Wage at w1)
cwagebwageawagePID
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Long format
• potentially multiple rows per case, with 
• observations on a variable for different time periods (or dates)

held in extra rows for each individual  
• case-row identifier identifies time (e.g. PID, wave)

……
5.4210003
5.4110003
6.3310002
6.3110002
7.7310001
7.5210001
7.2110001
wage wavePID
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Matching (or merging)
• Joining two (or more) files at the same level of observation (e.g. 

person files) where both (all) files contain the same identifier
variable used as key

• 1:1 matching – one case in “master file” corresponds to one case 
in “using file” (i.e. the file being matched in)

• 1:many – one case in the “using file” may be ‘distributed’ to 
many cases in the “master file”
• E.g. info. about a household attached to each one of the household’s 

members
• In either case, not all cases in master file may receive match; not 

all cases in the using file may provide a match
• Stata’s command:  merge key using file

• Merging is the source of many disastrous errors – always check by  
using tabulate _merge (see examples later)
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Aggregation
• Deriving group-level information from all the 

members of that group
• E.g. calculating household income from the incomes of its 

members
• E.g. calculating how many children a woman has during her 

first marriage
• The group-level information may be used in two 

ways: 
• (i) saved in a new file with the group – e.g. household or 

spell – as the case (collapse)
• (ii) attributed to each of the group members within the 

existing file  (egen; by(sort): …) 
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Appending
• Combining files with no index-based matching 

• E.g. combining file A with n1 rows and file B with n2 rows 
to produce a new file C with n1+n2 rows.

• Stata command: append
• Used to assemble a sequence of annual cross-section 

data files into a single long-format panel data file
• Rows in new combined files are specific to a person-wave

combination
• Each variable must have the same name in each of 

the annual cross-section files
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Sorting (ordering) the data 

• We now have a dataset in long format
• It’s a good idea to order the data for easier viewing. 

“Eyeballing” the data is important!
• We also have to tell Stata which variable identifies 

the individual (Stata calls this the panel variable).
• We may also have to tell Stata which variable 

identifies the repeated observation (Stata calls this the 
time variable).

For some types of panel analysis we don’t need to know the 
ordering of the repeated observations
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7.5210001
6.3310002
6.3110002

7.7310001

……
5.4210003
5.4110003

7.2110001

wage wavePID

……
5.4210003
5.4110003
6.3310002
6.3110002
7.7310001
7.5210001
7.2110001
wage wavePID

sort pid wave

Note: this panel is neither balanced nor compact
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Panel and time variables

• Use tsset to tell Stata which are panel and time 
variables:

. tsset pid wave
panel variable:  pid, 10002251 to 1.347e+08
time variable:  wave, 1 to 13, but with gaps

• Note that tsset automatically sorts the data 
accordingly.
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Describing panel data
• Ways of describing/summarising panel data:

Basic patterns of available cases
Between- and within-group components of variation
Transition tables

• Some basic notation:
yit is the “dependent variable” to be analysed 

i indexes the individual (pid), i = 1, 2, …, n
t indexes the repeated observation / time period (wave), 
t = 1, 2, …, Ti

• yit may be: 
continuous (e.g. wages); 
mixed discrete/continuous (e.g. hours of work); 
binary (e.g. employed/not employed); 
ordered discrete (e.g. Likert scale for degree of happiness); 
unordered discrete (e.g. occupation)
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Describe patterns of panel data: xtdes
. xtdes

pid:  10002251, 10004491, ..., 1.347e+08           n =      16082
wave:  1, 2, ..., 13                               T =         13

Delta(wave) = 1; (13-1)+1 = 13
(pid*wave uniquely identifies each observation)

Distribution of T_i:   min    5%     25%     50%     75%     95%     max
1 1       2       7      13      13 13

Freq.  Percent    Cum. |  Pattern
---------------------------+---------------

4648     28.90   28.90 |  1111111111111
997      6.20   35.10 |  1............
646      4.02   39.12 |  11...........
376      2.34   41.46 |  ............1
342      2.13   43.58 |  111..........
327      2.03   45.62 |  1111.........
261      1.62   47.24 |  ...........11
254      1.58   48.82 |  .1...........
251      1.56   50.38 |  ..........111
7980     49.62  100.00 | (other patterns)

---------------------------+---------------
16082    100.00         |  XXXXXXXXXXXXX
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Between- and within-group variation (1)
Define the individual-specific or group mean for any variable, e.g.
yit as:

yit can be decomposed into 2 components:

where and      is average no. of periods per case

Corresponding decomposition of sum of squares:

or:  Tyy =  Wyy +  Byy
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Between- and within-group variation (2)
• Between and within variation is the basis of linear 

panel regression. Important concept to understand.
• Simple example: balanced panel (n=1119, T = 13) of 

workers who have reported their wages.
• From summarize, we have grand mean wage (   ) = 

£9.84 per hour, and (overall) variance of wages = 
32.63. Recall the standard formula for variance:
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Between- and within-group variation (3)
• So Tyy is the variance multiplied by its degrees of freedom 

= 1119*13 – 1 = 14546 (or can calculate Tyy ‘by hand’ in Stata –
see example in computer lab).

• We get Tyy = 32.627956 * 14546 = 474606.3

• Can calculate Byy and Wyy manually in Stata (see example in 
computer lab). We get:

Byy = 358920.7

Wyy = 115685.6

Check that Byy + Wyy = Tyy !!

• Proportion of between variation is Byy / Tyy = 76%. Most 
variation is between people not within people! Measurement 
error may make this an underestimate!

1−Tn
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Within and between deviations in the data

2.5773.112-0.53512.9539.84112.418510060111

3.6643.1120.55312.9539.84113.505410060111

3.6123.1120.50012.9539.84113.453310060111

3.0813.112-0.03012.9539.84112.923210060111

3.2053.1120.09412.9539.84113.046110060111

3.0731.1071.96610.9489.84112.9141310028005

................

3.9281.1072.82010.9489.84113.769510028005

-5.2681.107-6.37510.9489.8414.573410028005

4.0421.1072.93510.9489.84113.883310028005

0.6031.107-0.50410.9489.84110.444210028005

-0.5391.107-1.64610.9489.8419.302110028005

Total 
dev

Between 
dev

Within 
dev

Ind. 
Mean

Grand 
meanWagewavepid
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Between- and within-group variation: xtsum

• Stata contains a ‘canned’ routine, xtsum, that summarises 
within and between variation.

• Doesn’t give an exact decomposition:
Converts sums of squares to variance using different ‘degrees of
freedom’ so they are not comparable
Reports square root (i.e. standard deviation) of these variances
Documentation is not very clear!

. xtsum wage

Variable      |    Mean   Std. Dev.    Min       Max   |  Obs
--------------+----------------------------------------+----------
wage  overall | 9.841044  5.712089  .3813552  121.7474 | N = 14547

between |           4.969431  3.322259  46.54612 | n =  1119
within  |           2.820121 -18.37394  108.5192 | T =    13
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Transitions 
• Want to compare state in this wave with state in last wave. 

Example: part-time work status (binary variable PT)
• If we have tsset the data, can easily create lagged values of 

variable: generate lpt = l.pt
• Then tabulate current against lagged value: tabulate lpt pt

• Same result with command:  xttrans pt, freq

. tabulate lpt pt, row

| Part-time (<=30 hours
Lagged PT |        total)

work |         0          1 |     Total
-----------+----------------------+----------

0 |    10,619        310 |    10,929 
|     97.16       2.84 |    100.00 

-----------+----------------------+----------
1 |       333      2,166 |     2,499 
|     13.33      86.67 |    100.00 

-----------+----------------------+----------
Total |    10,952      2,476 |    13,428 

|     81.56      18.44 |    100.00
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Transitions and measurement error

. tab d1evec if wave==1

have you ever taken |
cannabis |      Freq.     Percent        Cum.

---------------------+-----------------------------------
yes |        855       25.45       25.45

no |      2,477       73.72       99.17
don't know |         13        0.39       99.55

don't want to answer |         15        0.45      100.00

---------------------+-----------------------------------
Total |      3,360      100.00

Analysis of transitions can give good indications of data (un)reliability 

Example: UK Offending Crime & Justice Survey  (2003-4, ages 10-25)
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Transition matrix
. xttrans d1evec, freq

have you |
ever taken |        have you ever taken cannabis

cannabis |       Yes         No         DK       DWTA |     Total
-----------+--------------------------------------------+----------

Yes |       728        111          0          1 |       840 
|     86.67      13.21       0.00       0.12 |    100.00 

-----------+--------------------------------------------+----------
No |       251      2,189          6          7 |     2,453 

|     10.23      89.24       0.24       0.29 |    100.00 
-----------+--------------------------------------------+----------

DK |         2          9          1          1 |       13 
|     15.38      69.23       7.69       7.69 |    100.00 

-----------+--------------------------------------------+----------
DWTA |         9          5          0          1 |       15 

|     60.00      33.33       0.00       6.67 |    100.00 
-----------+--------------------------------------------+----------

Total |       990      2,314          7         10 |     3,321 
|     29.81      69.68       0.21       0.30 |    100.00

• 13% of people who’d used cannabis before 2003 say they’ve never used before 2004!!
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Age and cohort: earnings profiles

6
8

10
12

20 30 40 50 60
ageseq

profile39 profile4044
profile4549 profile5054
profile5559 profile6064
profile6569 profile7074
profile75

How have different generations fared in the labour market?
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Day 2:

Approaches to modelling
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Basic notation 

We work with observed variables yit , zi and xit :  

yit =  dependent variable to be analysed

zi =  time-invariant characteristics (e.g. year of 
birth, sex)

xit =  time-varying characteristics (e.g. job tenure, 
marital status)

where i indexes individuals, t indexes time periods.
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Modelling approaches 
Ways of thinking about panel data:
• A collection of cross-sections, one for each time period:

Between-group regression
The Structural Equations (SEM) approach – 1 equation for each time 
period (e.g. Bollen, 1989, Structural Equations with Latent Variables) 

• A collection of time-series, one for each individual. Examples:
Within-group regression
Dynamic models with individual heterogeneity
Latent growth curve analysis   (e.g. Acock & Li 
http://oregonstate.edu/dept/hdfs/papers/lgcgeneral.pdf#search=%22latent%20growth%20cu
rve%20analysis%20oregon%22)
Trajectory analysis (e.g. Nagin & Tremblay, Child Development 1999)

• Comprehensive models try to capture both inter-individual and inter-
period variation
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Why use panel data?
The disadvantages of cross-section data

Example: cross-section earnings regression (single time period, t 
subscript suppressed)

yi =  ziα + xi β +  εi

where:
yi =  log wage;  
zi =  observable time-invariant factors (education, etc.);  
xi = observable time-varying factors (e.g. job tenure); 
εi =  random error (e.g. “luck”)

Possible misspecifications, causing bias:
• Omitted dynamics (lagged variables not observed)
• Reverse causation (e.g. pay and tenure jointly determined) 
• Omitted unobservables (e.g. “ability”)
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Some basic identification problems

(1)  Unobservable variables
• Can we identify the impact of unobservables? 
• Can we distinguish the impact of unobservables from the impact 

of time-invariant observables?

(2) Age, cohort and time effects – can they be distinguished?
• Behaviour may change with age
• Current behaviour may be affected by experience in “formative 

years” ⇒ cohort or year-of-birth effect
• Time may affect behaviour through changing social environment
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Identification of unobservables
Example:  wage models based on human capital theory:

yit =  ziα + xitβ +  ui +  εit

where i = 1…n, t = 1 … Ti :
yit =  log wage
zi =  observable time-invariant factors (e.g. education)
xit =  observable time-varying factors (e.g. job tenure)
ui =  unobservable “ability” (assumed not to change over time)
εit =  “luck”

Pooled data regression of y on z and x ⇒ omitted variable bias:

Ability (u) is likely to be positively related to education (z) 
⇒ upward bias in estimate of returns to education

But can we identify the effect of ui if we can’t observe it?



01/02/2007 (7)

Identification of unobservables
The identification of the effect of  rests on assumptions about the 
correlation structure of the compound residual vit :

vit = ui +  εit

If individuals have been sampled at random, there is no correlation 
across different individuals:

cov(ui , uj )  =  0
cov( [εi1 … εiT], [εj1 … εjT])  =  0

for any two (different) sampled individuals i and j

But there may be some correlation over time for any individual:
cov(vis , vit )  ≠ 0   for two different periods s ≠ t,

since: 
cov(vis , vit )  =  cov(ui +  εis ,  ui +  εit)  =  var(ui) + cov(εis , εit)

If we assume cov(εis , εit) = 0 then ui is the only source of correlation over 
time, so its variance can be identified from the correlation of the 
residuals.
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Identification with time-invariant covariates: 
can we distinguish zi and ui?

Consider again the panel regression model:

yit =  ziα + xitβ +  ui +  εit (1)
Let zi γ be any arbitrary combination of the z-variables (choose any value 
for γ you like). Add it to the right-hand side and subtract it again:

yit =  ziα + zi γ + xitβ +  ui - zi γ +  εit

Now re-write this as:
yit =  ziα* + xitβ +  ui

* +  εit (2)
Where α* represents (α + γ) and ui

* represents (ui - zi γ).

But (1) and (2) have exactly the same form, so we can’t tell whether we’re 
estimating α or a completely arbitrary value α* = (α + γ).
So the separate effects of ziα and ui can’t be distinguished empirically 
without further assumptions
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Summary
In models like:

yit =  ziα + xit β +  ui + εit

• We can only identify the effect of unobservable 
ability ui if we can assume that εit is serially-
independent (or some other simple autocorrelation 
structure).

• We cannot distinguish the separate effects of zi and ui
without making further assumptions (e.g. no 
correlation between zi and ui).
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Identification problem (2): 
Age, cohort & time effects

Fundamental identity relating age (Ait), time of interview (t) 
and birth cohort (Bi):

Ait ≡ t –Bi
These three cannot be distinguished in principle. To do so 

would require an ability to move a cohort forward or back in 
time (!) to measure the effect of time holding age and cohort 
constant.

• In a cross-section, t doesn’t vary, so time effects can’t be 
estimated and age or cohort are collinear – only their joint 
effect can be estimated

• In a panel, t varies but Ait , t and Bi are collinear - only two 
of the three effects can be estimated. 

• So we can use (t ,Bi) , (Ait ,Bi) or (Ait ,t) as covariates, but not 
all three.
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Age, cohort and time effects

A possible solution is to think more deeply about the effects of time 
and cohort and introduce further information.

E.g. we may think it is the social environment at the time of birth 
that generate differences between cohorts and the present social
environment that generates time effects. 

Let w(t) be variables describing the social environment at historical 
time t.

Then our model would use Ait , w(t) and w(Bi)) as covariates
This breaks the exact relationship between age, time and cohort 

effects and permits identification.
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When to use regression methods
Regression models are suitable for the analysis of dependent 
variables yit which can vary continuously, so:

Income, birthweight, etc. ⇒ regression appropriate
Age at retirement, interpolated grouped income, etc. ⇒ regression 
may work OK
Age of school leaving, no. of visits to doctor last week, etc. ⇒
regression a bit risky
Binary variables (married/non-married, employed/non-employed, 
etc. ⇒ regression very unreliable

Regression models also have technical problems when:
The sample is censored or truncated (e.g. if yit = hours of work and 
non-workers are recorded as zero or excluded)
When there is no natural scale (e.g. Likert scales)
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Related methods (1)
Latent growth curve analysis is widely used in sociology, 
psychology, criminology, etc. but not economics

Example: simple quadratic latent growth curve:
yit =  ui + αi t + βi t2 + εit

where the intercept and slope coefficients (ui , αi , βi) vary 
randomly across individuals
Advantage:

Doesn’t assume all individuals have the same coefficients 
(panel data regression assumes no variation in αi , βi )

Disadvantage:
Purely descriptive: no theory of development
Crude dynamics (nothing changes the trend for an individual 
once it’s underway) 
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Related methods (2)
Structural equation modelling (SEM) is widely used in psychology and 
economics, but with differences in terminology.

In panel data applications, each year is described by a different equation: 

Period 1: yi1 =  ziα1 + xi1 β1 + ui + εi1
.
.

Period T: yiT =  ziαT + xiT βT + ui + εiT

Advantage:
general structure (e.g. panel regression is special case where the αt and βt
are the same in all periods)

Disadvatage:
No theory of how the parameters vary over time
Can’t predict outcomes in new periods
Difficult to use in long or very unbalanced panels
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Related methods (3)
Multi-level modelling is widely used throughout social 
statistics. It generalises ordinary panel data applications to 
multiple dimensions
Example: time periods (t) within individuals (i) within 
households (h):

yhit =  xhit β + uhi + wh + εiT
wh is the household effect, common to all individuals at all periods 
within household h
uhi is the individual effect, common to all time periods for the ith
individual in household h

Specialist software is available for latent growth curve, SEM and Multi-
level analysis (MLwin, Mplus, LISREL, etc).  See also xtmixed and 
GLLAMM in Stata
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Pooled regression for panel data
The “standard” panel data regression model is:

yit =  ziα + xitβ +  ui +  εit

We have observations indexed by t = 1 … Ti , i = 1 … n.
• A pooled regression of y on z and x using all the data together 

would assume that there is no correlation across individuals, 
nor across time periods for any individual

• This would ignore the individual effect u, which generates 
correlation between the values of (ui +  εi1) … (ui +  εiT) for each 
individual i

• So pooled regression doesn’t make best use of the data
Under favourable conditions (if ui is uncorrelated with zi and xit ), 
pooled regression gives unbiased but inefficient results, with 
incorrect standard errors, t-ratios, etc.
If ui is correlated with zi and xit , pooled regression is also biased
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Least-squares dummy variable (LSDV) regression

The panel data regression model is:

yit =  ziα + xitβ +  ui +  εit

We have observations indexed by t = 1 … Ti , i = 1 … n.
The ui can be captured using dummy variables. Construct a set of n
dummy variables D1i … Dni , where:

Dri =  1 if i = r and 0 otherwise,  for r = 1 … n
Thus Drit tells us whether observation i, t relates to person r.
The model is now:

yit =  ziα + xitβ +  u1 D1i + … + unDni +  εit

So u1 … un are now seen as the coefficients of a set of n dummy 
variables.
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Shortcut calculation of the LSDVregression
A multiple regression of y on (z , x) and (D1 … Dn) can be done in 

two stages:
Stage 1: Eliminate the effect of (D1 … Dn) on each of the variables  

(y, z , x) using the  “within-group” data transformation: 

(so zi is eliminated completely)

Stage 2: regress y* on (z* , x*) : in other words,             on   
[Intuition: think of regressing a variable on a constant. Estimate 
of constant is mean and residual is deviation from mean.]

This is exactly equivalent to regressing y on (z , x) and (D1 … Dn)
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Another interpretation of LSDV

Start differently, by thinking how we can cope with ui

We don’t know its statistical properties, so let’s try to 
eliminate it from the model. We can eliminate it in 
various ways, for example:

Time differencing:
or

Within-group transform:

The within-group approach is the most efficient in the 
least squares sense.

111 )( −−− −+−=− itititititit yy εεβxx

iitiitiit yy εε −+−=− βxx )(
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A note on terminology
Different names are commonly used for this one estimation method:
• Least squares dummy variables (LSDV)
• Within-group regression
• Fixed-effects regression
• Covariance analysis regression

⇒ “LSDV” refers to the method of derivation using explicit dummy 
variables; 

⇒ “within-group” refers to the type of data transform implied by the 
method; 

⇒ “fixed effects” is common but often poor terminology which 
suggests (wrongly, in the case of sample survey data) that the ui are 
fixed parameters

⇒ “covariance analysis” reflects the origins of the method as a 
generalisation of analysis of variance in agricultural experiments



01/02/2007 (21)

Between-group regression
Instead of eliminating ui from the regression, we can 
amplify it by averaging out all the within-individual 
variation, leaving only between-individual variation 
to analyse:
Between-group transform:

Then regress     on             in one of two ways:
Use one group-mean observation per individual
Use Ti copies of the group mean data for individual i

Note: The latter is equivalent to a weighted regression of     on     , 
with a weight of Ti for individual i. It is often desirable to give 
more weight to individuals with many time observations.

iy

iiiii uy ε+++= βxαz

( )ii xz ,

iy ix
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Within- & between-group estimates –
simple case 

Suppose that x (and therefore β) is a single variable 
(scalar), and panel is balanced (Ti = T).  Want to 
estimate: 
Within-group:
Between-group:
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Within-group estimate – simple case 

Can substitute for             in preceding formula, to obtain:

If xit and εit are uncorrelated, E(wxε ) = 0, so 
…which means, loosely speaking, that on average      is 
correct (unbiased).

Note: for unbiasedness of       , we need also that xit is 
uncorrelated with ui ⇒ so within-group regression is less 
“robust”
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Within- & between-group relationships:
correlated individual effects

1x 3x2x 4x
x

y

B-G

W-G

W-G

W-G
W-G

u1

u2

u3

In this example, individual effects are negatively correlated 
with     , so B-G & W-G relationships differix
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Within- & between-group relationships:
uncorrelated individual effects

1x 3x2x 4x
x

y
B-G



01/02/2007 (26)

Example of panel data estimation

The Stata command xtreg computes within-group  and 
between-group regressions

Example: within- and between-group regressions of log 
earnings on age, year of birth and time, allowing for 
unobserved individual effects:

gen age=year-cohort
gen lwage=ln(w_hr)
xtreg lwage age cohort, fe
xtreg lwage age cohort, be
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Stata output: within-group regression
. xtreg lwage age cohort , fe

Fixed-effects (within) regression               Number of obs =     61516
Group variable (i): pid Number of groups   =     10335

R-sq:  within  = 0.1217                         Obs per group: min =         1
between = 0.0312                                        avg =       6.0
overall = 0.0194                                        max =        14

F(1,51180)      =   7094.59
corr(u_i, Xb)  = -0.4880                        Prob > F           =    0.0000

------------------------------------------------------------------------------
lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |    .030061   .0003569    84.23   0.000     .0293615    .0307605

cohort |  (dropped)
_cons |   .8994719     .01369    65.70   0.000     .8726394    .9263045

-------------+----------------------------------------------------------------
sigma_u |  .60455798
sigma_e |  .28494801

rho |  .81822708   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0:     F(10334, 51180) =    18.19        Prob > F = 0.0000
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Stata output: between-group regression

. xtreg lwage age cohort , be

Between regression (regression on group means)  Number of obs =     61516
Group variable (i): pid Number of groups   =     10335

R-sq:  within  = 0.1217                         Obs per group: min =         1
between = 0.0356                                        avg =       6.0
overall = 0.0313                                        max =        14

F(2,10332)      =    190.55
sd(u_i + avg(e_i.))=  .5277749                  Prob > F           =    0.0000

------------------------------------------------------------------------------
lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   .0188575   .0017201    10.96   0.000     .0154858    .0222292

cohort |   .0105401   .0015325     6.88   0.000     .0075361    .0135442
_cons |  -19.39964   3.065617    -6.33   0.000    -25.40885   -13.39044

------------------------------------------------------------------------------
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Important points

• The within-group R2 is much higher than the 
between-group R2

⇒ the covariate age “explains” a reasonable amount 
of the pay variation over time for a given individual 
⇒ but pay differences between individuals are less
closely related to age and cohort in R2 terms

• The large coefficient differences between the within-
and between-group age coefficients suggest that a 
single regression model with classical assumptions 
doesn’t fit the evidence very well
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Technical appendix

The following slides can be safely ignored if you’re not 
interested in technical detail or if you aren’t familiar 
with vector-matrix notation and matrix algebra
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Coefficient estimates – general formula
In matrix form, the within-group multiple regression is:

where Wxx , wxy and wxε are within-group moment 
matrices:

If xit and εit are uncorrelated, E(wxε ) = 0, so:
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Residuals
There are two residuals for the within-group regression:

is an estimate of ziα + ui ;         is an estimate of εit

Since       is the residual from the LSDV multiple 
regression, its variance is an unbiased estimator of σε

2

under the classical assumptions of independent sampling 
of individuals and:

( ) ( ) iititiitiitit

iii

eyyy

ye

ˆˆˆˆ

ˆˆ

−−=−−−=

−=

βxβxx

βx

ε
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Estimation of α
The residual     can be written:

Since      is an estimate of ziα + ui , we could regress it on zi to 
estimate α. (Use Ti repeated observations on the group means 
for individual i, to weight individuals appropriately). This 
gives:

where Bxx etc. are between-group cross-product matrices:
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Estimation of 

Rewrite     as:

But     is unbiased and we assume zi is uncorrelated with 
εit , so:

Thus     is only unbiased if ui and zi are uncorrelated.
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Estimation of σu
2

One way is to use the between-group regression. Replace each 
observation by the individual mean:

Estimator:  

The residual variance, sB
2, is an estimate of                      so:

where sB
2 and sW

2 are the b-g and w-g residual variances and                          
is the mean no. of observations per individual.

Note that         may be negative! (If so, Stata sets it to zero!)
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Asymptotics for short panels
For panel data arising from repeated surveys, n is usually 
much larger than T = max (Ti ). This suggests using asymptotic 
theory based on n → ∞, with all Ti fixed.

Incidental parameters problem: If we regard the unobserved 
effects u1 ... un as parameters to be estimated, then the 
dimension of the parameter space → ∞ as n → ∞. Standard 
asymptotic theory doesn’t work in this case.

Consistency of within-group estimator:
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Day 3: Linear regression analysis: 
random effects

• Random effects regression: Testing the FE and RE 
assumptions

The Hausman test 
The Mundlak approach

• Endogeneity issues
Forms of endogeneity
Endogenous regressors: the between and within-group IV 
estimator
Correlated individual effects: Hausman-Taylor estimation
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‘Random effects’ GLS & ML estimation
•In general, since individuals are sampled at random from the 
population, ui (and all other variables) are random: so “random 
effects” is tautological
•Extract the overall mean from ui :

yit =  α0 + ziα + xit β +  ui +  εit

•Use Xi as shorthand for the person i’s time series { xi1 … xiT }  
•We may choose to assume that ui is uncorrelated with zi and Xi :

E(ui | zi , Xi ) =  0 ⇒ cov(ui , zi ) = 0 & cov(ui , Xi ) = 0
•Assume also homoskedasticity and uncorrelatedness

E(ui
2 | zi , Xi ) =  σu

2 ;  E(ui εit | zi , Xi ) =  0    for all t
•Then write the composite random disturbance as:

vit = ui +  εit

•What is the covariance structure of the random process { vit }?
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Random effects covariance structure

Variances & covariances (conditional on zi , Xi ) :
var(vit)  = σu

2 + σε2 ;   cov(vit , vis)  = σu
2 for all s ≠ t

So the observations from different time periods (and the same 
individual) are not independent: they are equi-correlated.

The observations are clustered by individual, with non-zero 
intra-group correlations

The positive correlation between observations for any 
individual means that within-person variation is less than it 
would otherwise be. Consequently, whatever within-person 
variation we do have is particularly informative
⇒ give more weight to within- than between-group variation
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Generalised Least Squares 
Generalised least squares (GLS) does this weighting for us.

For simplicity, assume just one explanatory variable, xit . Then 
GLS is:

where:

etc.
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Estimators combining within & between-
group variation

0 1 ψ = ∞

B-G 
regression

pooled OLS 
regression

W-G 
regression

GLS (RE) 
regression

σε
2 /(σε

2+Tσu
2)

• If σε
2 is zero, then GLS is the same as w-g regression 

• If σu
2 is zero, then GLS is the same as pooled OLS

• GLS is never the same as b-g regression (since σε
2 /(σε

2+Tσu
2) can’t be 

greater than 1) ⇒ b-g regression is never an efficient method
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GLS properties
Note that :

• GLS uses the optimal (efficient) combination of within and 
between variation: OLS (i.e. with ψi = 1) is not generally the 
efficient estimator.

• ψi < 1, so less weight is given to between-group variation
• , so between-group variation is unimportant in a long 

panel, and the GLS estimator converges to the within estimator, 
i.e.                       as the panel lengthens

• If individual effects do not matter (σu
2 = 0) then ψi = 1 and it is 

easily shown that 

0lim =
∞→ iTi
ψ

WGLS ββ ˆˆ →

OLSGLS ββ ˆˆ =
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Feasible GLS 
We can only use GLS if we know the variance parameters σε2
and σu

2 . They can be estimated from the within-group and 
between-group regression residuals. 
Consider the full regression model involving both z and x. It can 
be shown that GLS is equivalent to the following procedure:
(1) Transform the data:

where: 

(2)   Regress          on                    , pooling all observations
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Maximum likelihood 
Speaking loosely, the likelihood function measures the degree 
to which our model is consistent with the data, at any 
particular choice of values for the model parameters. So we 
can estimate all the parameters (α , β , σε2 , σu

2) together by 
choosing their values to maximise the likelihood function (see 
appendix for details). 

ML and feasible GLS are statistically equivalent if n is very 
large.

In Stata, the command xtreg has various options: 
,fe for within-group
,be for between-group
,re for random effects (feasible GLS)
,mle for random effects (ML)
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Fixed effects or random effects? Concepts and 
interpretation

• Specification of model as FE or RE depends partly on the nature
of data. For example:

If individuals are randomly sampled from population then 
ui is random ( a ‘draw’ from the population distribution). 
But for an industry level analysis, where we observe a panel 
of all industries over several years, industry effect ui can be 
thought of as a fixed effect.

• RE implies unconditional inference (because we don’t want to be 
restricted to the particular individuals sampled), while FE 
implies inference conditional on the effects in the sample.

• In practice, with randomly sampled data, FE/RE choice is 
based on whether a further assumption holds: that ui is 
uncorrelated with the regressors: E(ui | zi , Xi ) =  0
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Testing the hypothesis of uncorrelated effects
The random effects estimator (and any estimator that uses 
between-group variation) is only unbiased (strictly, consistent
as n →∞) if the following hypothesis is true:

H0:   E(ui | zi , Xi ) =  0
It is important to test H0. There are various equivalent ways of 
doing so, including:
(1)Hausman test: is the difference                   large?
(2)Between-within comparison: is                   large?
(3) Mundlak approach: estimate the model 

by GLS and test H0: γ = 0. 
itiiitiity εηα +++++= γxβxαz0

GLSW ββ ˆ - ˆ

BW ββ ˆ - ˆ
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Hausman test 
The idea of the Hausman test is to compare two estimators which 
should be approximately the “same” if the zero-correlation
assumption holds (H0), but different if the assumption is false (H1).
Specifically, under H0 both estimators                 are unbiased 
(strictly, consistent), and is more efficient, (so                                   ).
It can be shown that the variance (matrix) of                 is:

Under H1 , is still unbiased but      is not. So the Hausman test 
statistic:

should take a large value and reject if H0 is not true. 
If H0 is true,  the statistic S is approximately distributed as χ2 with k
d.f. where k = number of variables in xit , so we use critical values for 
the χ2(k) distribution.

GLSW ββ ˆ and ˆ

Wβ̂

GLSβ̂

GLSβ̂
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BHPS example: feasible GLS estimates
. xtreg lwage age cohort , re

Random-effects GLS regression                   Number of obs =     61516
Group variable (i): pid Number of groups   =     10335

R-sq:  within  = 0.1217                         Obs per group: min =         1
between = 0.0335                                        avg =       6.0
overall = 0.0345                                        max =        14

Random effects u_i ~ Gaussian                   Wald chi2(2)       =   7405.63
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000

------------------------------------------------------------------------------
lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   .0295982   .0003497    84.63   0.000     .0289127    .0302836

cohort |   .0201181   .0004723    42.60   0.000     .0191924    .0210438
_cons |  -38.56221   .9343531   -41.27   0.000    -40.39351   -36.73091

-------------+----------------------------------------------------------------
sigma_u |  .49751772
sigma_e |  .28495079

rho |  .75299116   (fraction of variance due to u_i)
------------------------------------------------------------------------------
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BHPS example: within-group estimates
. xtreg lwage age cohort , fe

Fixed-effects (within) regression               Number of obs =     61516
Group variable (i): pid Number of groups   =     10335

R-sq:  within  = 0.1217                         Obs per group: min =         1
between = 0.0312                                        avg =       6.0
overall = 0.0194                                        max =        14

F(1,51180)      =   7094.59
corr(u_i, Xb)  = -0.4880                        Prob > F           =    0.0000

------------------------------------------------------------------------------
lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |    .030061   .0003569    84.23   0.000     .0293615    .0307605

cohort |  (dropped)
_cons |   .8994719     .01369    65.70   0.000     .8726394    .9263045

-------------+----------------------------------------------------------------
sigma_u |  .60455798
sigma_e |  .28494801

rho |  .81822708   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0:     F(10334, 51180) =    18.19        Prob > F = 0.0000
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Example: BHPS Hausman test
. hausman fixed random

---- Coefficients ----
|      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
|     fixed        random       Difference         S.E.

-------------+----------------------------------------------------------------
age |     .030061     .0295982        .0004628        .0000711

------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test:  Ho:  difference in coefficients not systematic

chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B)
=       42.34

Prob>chi2 =      0.0000

Conclusion: we reject H0 – there is correlation between ui and age, so the 
within-group regression is biased

But note: although the FE-RE difference is statistically significant, it is rather 
small
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The Mundlak approach
Mundlak (1978) suggested that a way to reconcile FE and RE 
models was to approximate the individual effect as a function of
the individual means of time-varying characteristics:

Substituting into the main model:

Estimating by GLS yields                     because the (linear) 
dependence of ui on xit is fully captured by the Mundlak
formulation [note this is not true for non-linear models, as we see
later].

A test of cov(ui , xit) = 0  is a test of H0: γ = 0.
If the test rejects H0, GLS using the un-augmented RE model (without      ) is 

biased ⇒ we should use the FE model.

If the test doesn’t reject H0, ⇒ we should use GLS on the original model.

itiiitiity εηα +++++= γxβxαz0

 iiiu η+= γx

WGLSM ββ ˆˆ
, ≡

 ix
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Example: Mundlak test
. xtreg lwage age cohort mage, re

Random-effects GLS regression                   Number of obs =     61516
Group variable (i): pid Number of groups   =     10335

R-sq:  within  = 0.1217                         Obs per group: min =         1
between = 0.0356                                        avg =       6.0
overall = 0.0370                                        max =        14

Random effects u_i ~ Gaussian                   Wald chi2(3)       =   7453.30
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000

------------------------------------------------------------------------------
lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |    .030061   .0003567    84.27   0.000     .0293618    .0307601

cohort |   .0103154   .0015734     6.56   0.000     .0072317    .0133992
mage |  -.0117292   .0017958    -6.53   0.000     -.015249   -.0082095

_cons |  -18.93191   3.147336    -6.02   0.000    -25.10057   -12.76324
-------------+----------------------------------------------------------------

sigma_u |  .49751772
sigma_e |  .28495079

rho |  .75299116   (fraction of variance due to u_i)
------------------------------------------------------------------------------
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Endogeneity

• Forms of endogeneity
• Endogenous regressors: the between and within-

group IV estimator
• Correlated individual effects: Hausman-Taylor 

estimation
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Endogeneity in static models
Example: an earnings model

yit =  α1 Educi + α2 Female + β1 Ageit + β2 Tenureit + ui + εit

Two forms of endogeneity:
Two-way causation:  experience is rewarded with high pay & workers tend 

to stay in high-paid jobs
Unobserved common factors:  ability is rewarded with high pay & high-ability 

people stay longer in education

Earnings Education

Unobserved 
ability

(a) unobserved common (b) 2-way causation
factor

Earnings

Tenure
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Example of endogeneity
Example: an earnings model

yit =  α1 Educi + α2 Female + β1 Ageit + β2 Tenureit + ui + εit

(1) Two-way causation:  workers tend to stay in high-paid jobs:
Tenure model:     Tenureit =  γ yit + υit (γ >  0)

= γ (α1 Educi + . . .+ β1 Ageit + β2 Tenureit + ui + εit) + υit

=  [ γ (α1 Educi + . . .+ β1 Ageit + ui + εit) + υit ] / (1 - γ β2)
⇒ cov(Tenureit , ui )  = γ σu

2/ (1 - γ β2) 
cov(Tenureit , εit)  = γ σε

2/ (1 - γ β2)

(2) Unobserved common factors:  ui represents ability & high-
ability people stay longer in education:
Educi =  δui + other vars (δ >  0)
⇒ cov(Educi , ui )  = δ σu

2

cov(Educi , εit)   = 0
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Strategy for dealing with endogeneity

Within-group IV
(w-g to eliminate ui and IV 
to deal with  covariance 
with ε)

Cov(x,u) ≠ 0
Cov(x,ε) ≠ 0

2-way causation 
(e.g. tenure → wage & wage → tenure)

GLS random effects 
regression

Cov(x,u) = 0
Cov(x,ε) = 0

None

Random-effects IV, using as 
IVs variables which are 
correlated with risk of job 
loss but not wages; no need 
to use within-group, since ui
isn’t correlated with x

Cov(x,u) = 0
Cov(x,ε) ≠ 0

Common unobserved factor which 
does not persist over time 
(e.g. job loss → wage & job loss → 
tenure)

Within-group regression 
(eliminates ui) and 
Hausman-Taylor to 
estimate coefficients of zi

Cov(x,u) ≠ 0
Cov(x,ε) = 0

Common unobserved factor which 
persists over time 
(e.g. ability → wage,  ability → 
education & education → wage)

MethodConsequencesType of endogeneity
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The Instrumental Variables principle
Simple example – a cross-section regression model:

yi =   xi β +  εi

Problem: simultaneous causation 
⇒ cov(xi , εi) ≠ 0
⇒ OLS regression of yi on xi is biased

But assume there is another variable qi with two properties:
Validity: cov(qi , εi) = 0 
Relevance: cov(qi , xi) ≠ 0

The validity requirement says that the instrument must not 
suffer from the same endogeneity problem that xi does;

The relevance requirement says that the instrument must be
closely related to xi
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Motivation for the IV method
The assumption of instrument validity is a moment condition

which states that a particular moment, cov(q, ε), must be equal 
to zero

But the model tells us that:  εi = yi - xi β , so:
cov(qi , εi) = cov(qi , [ yi -xi β ] ) 

= cov(qi , yi) - β cov(qi , xi )  
=  0   (instrument validity requirement)

Solve for β:
β = cov(qi , yi) / cov(qi , xi ) 

So, if q is a valid instrument, β must be equal to the ratio of the 
population covariance between q and y and between q and x.
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The simple Instrumental Variable (IV) estimator

The sample analogue of this moment condition provides an 
estimator:

This can be generalised to:
• More than one explanatory variable in (zi , xit)
• More than one instrumental variable
• But we must have number of instruments ≥ number of 

explanatory variables
(See technical appendix)
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Simultaneity: Within-group IV estimation
Model:

yit =  ziα + xit β +  ui +  εit

Partition xit :
xit =  (x1it , x2it), 

Where x2it represents the endogenous covariates:
cov(x1it , εit) = 0 and  cov(x2it , εit) ≠ 0

Find a set of instruments q2it (at least as many as in x2it) 
where cov(q2it , εit) = 0

Full set of instruments: qit =  (x1it , q2it)

Within-group transformation:

Within-group IV estimator uses                   as instruments 
iitiitiit yy εε −+−=− βxx )(

)( iit qq −
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Other IV estimators 

• By applying the between-group transform or the random-effects 
GLS transform to the model and instruments, we can define 
between-group and random effects IV estimators analogous to the 
regression case.

• Like regression, these are  not robust with respect to correlation 
between ui and (zi , xit)

• So the Random Effects IV method should only be used if we think 
the endogeneity problem arises because of the presence of non-
persistent common unobserved factors (i.e. εit) influencing both y
and x. If there are also common persistent factors (i.e. ui), then RE-
IV will be biased 

• See the technical appendix for details of the RE and B-G IV 
methods
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Simultaneity involving only individual effects:
the Hausman-Taylor case

Model:
yit =  ziα + xit β +  ui +  εit

Partition xit and zi :
xit =  (x1it , x2it),    zi =  (z1i , z2i), 

where: 
E(ui | x1it) = 0, E(ui | z1i) = 0 ⇒ x1it , z1i are exogenous
E(ui | x2it) ≠ 0, E(ui | z2i) ≠ 0 ⇒ x1it , z1i are enogenous

But we must assume:
E(εit | xit) = 0, E(εit | zi) = 0    for all x- and z-variables

(no simultaneous determination of yit and (zi , xit) !!!! )

Identification condition:   no. of x1it ≥ no. of z2i

Method:   use x1it as instruments for z2i
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The Hausman-Taylor (1981) estimator
Step 1: compute the within-group estimator for β:

⇒ regress                on                 ⇒
Step 2: construct within-group residuals & estimate σε

2 :

Step 3: estimate model for                           :

use as IVs  qit =  [x1it , z1i ] 
Step 4: Construct                                      ; estimate σu

2 from                  
Step 5: Carry out the random effects transform and estimate:

using as IVs                                       

iit yy − iit xx − Wβ̂
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Endogeneity: BHPS examples
Model:

Ln wage = α0 + α1 Female + α2 Education beyond GCSE
+ β1 Age + β2 Job tenure + u  +  ε

(1) Is job tenure jointly determined with the wage?
• Use the standard IV/2SLS estimator in w-g form
• Possible instruments: Married, Spouse part-time, Spouse full-time, 

Dissatisfied with hours, 
• But are these valid instruments?

(2) Is educational attainment influenced by the same unobservable 
factors as labour market success?
• Use the Hausman-Taylor estimator
• Instruments come from within the model
• But is everything uncorrelated with ε ?
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Within-group regression
. xtreg logearn age postGCSE tenure, fe

Fixed-effects (within) regression               Number of obs =     38404
Group variable (i): pid Number of groups   =      7700

R-sq:  within  = 0.0983                         Obs per group: min =         1
between = 0.0024                                        avg =       5.0
overall = 0.0038                                        max =        11

F(3,30701)      =   1115.13
corr(u_i, Xb)  = -0.4195                        Prob > F           =    0.0000

------------------------------------------------------------------------------
logearn |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   .0249189   .0004778    52.16   0.000     .0239824    .0258554

postGCSE |   .0263467   .0089311     2.95   0.003     .0088413     .043852
tenure |   .0016804   .0004299     3.91   0.000     .0008377     .002523
_cons |   .9805382   .0174738    56.11   0.000     .9462889    1.014787

-------------+----------------------------------------------------------------
sigma_u |  .54846498
sigma_e |  .24922759

rho |  .82885214   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0:     F(7699, 30701) =    14.66         Prob > F = 0.0000
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Within-group IV estimates
. xtivreg logearn age postGCSE (tenure = dumm*), fe
note: dumm6 dropped due to collinearity
Fixed-effects (within) IV regression         Number of obs =        38404
Group variable: pid Number of groups   =         7700

R-sq:  within  = 0.0974                      Obs per group: min =            1
between = 0.0027                                     avg =          5.0
overall = 0.0040                                     max =           11

Wald chi2(3)       =  2.40e+06
corr(u_i, Xb)  = -0.4164                     Prob > chi2        =    0.0000

------------------------------------------------------------------------------
logearn |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
tenure |   .0039841    .007105     0.56   0.575    -.0099415    .0179097

age |   .0243511   .0018121    13.44   0.000     .0207995    .0279027
postGCSE |   .0279968   .0102783     2.72   0.006     .0078518    .0481418

_cons |   .9909042   .0363862    27.23   0.000     .9195886     1.06222
-------------+----------------------------------------------------------------

sigma_u |  .54731645
sigma_e |  .24934411

rho |  .82812356   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F  test that all u_i=0:     F(7699,30701) =    14.63      Prob > F    = 0.0000
------------------------------------------------------------------------------
Instrumented:   tenure
Instruments:    age postGCSE dumm1-dumm12
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Hausman test comparing w-g regression & w-g IV
. hausman ivfe olsfe 

---- Coefficients ----
|   (b)       (B)         (b-B)    sqrt(diag(V_b-V_B))
|   ivfe     olsfe     Difference       S.E.

-------------+--------------------------------------------------------
tenure | .0039841  .0016804    .0023038      .007092

age | .0243511  .0249189   -.0005678      .001748
postGCSE | .0279968  .0263467    .0016501      .005087

----------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtivreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test:  Ho:  difference in coefficients not systematic

chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B)
=        0.11

Prob>chi2 =      0.9912

⇒ No significant evidence of endogeneity in tenure 
(despite the large change in the tenure coefficient when we use IV !!!)
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Endogeneity of education: Hausman-Taylor
. xthtaylor logearn age tenure postGCSE2 female cohort, endog(tenure postGCSE2) 
Hausman-Taylor estimation                       Number of obs =     38404
Group variable (i): pid Number of groups   =      7700

Obs per group: min =         1
avg =       5.0
max =        11

Random effects u_i ~ i.i.d.                     Wald chi2(5)       =   4111.99
Prob > chi2        =    0.0000

------------------------------------------------------------------------------
logearn |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
TVexogenous |

age |   .0253258   .0004155    60.95   0.000     .0245115    .0261402
TVendogenous |

tenure |   .0016367   .0003903     4.19   0.000     .0008717    .0024016
TIexogenous |

female |  -.1749879   .0436307    -4.01   0.000    -.2605026   -.0894732
cohort |   .0115968   .0033232     3.49   0.000     .0050834    .0181102

TIendogenous |
postGCSE2 |   1.260647   .3184888     3.96   0.000     .6364202    1.884873

|
_cons |  -22.45571   6.338539    -3.54   0.000    -34.87902   -10.03241

-------------+----------------------------------------------------------------
sigma_u |  1.7227596
sigma_e |  .24925073

rho |  .97949657   (fraction of variance due to u_i)
------------------------------------------------------------------------------
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Technical appendix 1: random effects

The following slides can be safely ignored if you’re not 
interested in technical detail or if you aren’t familiar 
with vector-matrix notation and matrix algebra
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Random effects covariance structure

Variances & covariances (conditional on zi , Xi ) :
var(vit)  = σu

2 + σε2 ;   cov(vit , vis)  = σu
2 ∀ s ≠ t

Define the Ti × 1 vector vi with elements vi1 ... viT . Note that vi
and vj are independent for i≠j. The covariance matrix of vi is:

Ωi = σε2 I + σu
2 E

where I is the identity matrix and E is a matrix with each 
element equal to 1, both of order Ti × Ti .
Lemma:  the inverse of Ωi is:
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Within- and between-group transformations

The M-matrices are:

MW is the Ti × Ti idempotent matrix that transforms a Ti × 1 
vector of data to within-group mean deviation form; 
MB is the idempotent transformation to a Ti × 1 vector of 
repeated means (the between-group transform).
The scalar                                       reflects the relative size of 
Tiσu

2 and σε2 .  
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Generalised Least Squares
For simplicity, subsume zi within xit . Then GLS is:

where                                                           , etc.
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Maximum likelihood 
If we assume ui and εit have normal distributions, the log-
likelihood function is:

This can be maximised numerically to estimate all parameters 
simultaneously.

Maximisation is done using an iterative optimisation 
algorithm, in which an initial guess at the parameter values is 
improved sequentially, until a point is reached where the 
gradient of the likelihood with respect to the parameters is 
very close to zero. Stata gives a commentary on this 
optimisation process.
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Technical appendix 2: instrumental variables

The following slides can be safely ignored if you’re not 
interested in technical detail or if you aren’t familiar 
with vector-matrix notation and matrix algebra
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Simultaneity: Within-group IV estimation
Model:

yit =  ziα + xit β +  ui +  εit

Partition xit :
xit =  (x1it , x2it), 

where: cov(x1it , εit) = 0 and  cov(x2it , εit) ≠ 0
Instruments q2it (at least as many as in x2it) 

where cov(x1it , εit) = 0
Full IV vector qit =  (x1it , q2it)

Within-group transformation:

IV estimator:
iitiitiit yy εε −+−=− βxx )(
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Consistency

β

wWW

WWWββ

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=

∞→

−

∞→∞→

−

∞→

−

∞→∞→∞→

εq
n

qq
n

xq
n

qx
n

qq
n

xq
n

WIV
n

nnn

nnn

1plim1plim1plim

1plim1plim1plimˆplim

1

11

This consistency property holds because:
• The within-group transform removes ui , which may be 

correlated with x2it

• The instruments are uncorrelated with ε, so:
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Between-group IV estimator

If cov(qit , ui) = 0, which is a stronger requirement, then 
we can also use qit as instruments in a between 
regression:

where                                

And then we can derive estimates of the error term 
variances σu2 and σε2 to allow feasible GLS estimation using 
IV.
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The random-effects IV estimator

where                         

and

If cov(qit , ui) ≠ 0, then both           and                are 
inconsistent  ⇒ a stronger requirement for instrument 
validity  
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Day 4: Binary response models 

• Types of discrete variables 
• Linear regression 
• Latent linear regression
• Conditional (fixed-effects) logit
• Random effects logit and probit
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Forms of discreteness
Censoring/corner solutions generate variables which are mixed 
discrete/continuous 
(e.g. hours of work are 0 for non-employed, any positive value for employees)

Truncation involves discarding part of the population 
(e.g. low-income targeted samples, or earnings models for employees only)

Count variables are the outcome of some counting process 
(e.g. the number of durables owned, or the number of employees of a firm)

Binary variables reflect a distinction between two states 
(e.g. unemployed or not, married or not)

Ordinal variables are ordered variables, possibly  taking more 
than two values
(e.g. happiness on a scale 1=miserable … 5=ecstatic; rank in the army)

Unordered variables reflect outcomes which are discrete but with 
no natural ordering
(e.g. choice of occupation)
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Binary models (1)

Dependent variable is 
yit = 0 or 1

This describes:
• situations of choice between 2 alternatives
• sequences of events defining durations  

E.g. suppose:
• yi = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1) is a monthly panel observation
• 0 indicates unemployment, 1 indicates employment
Then yi represents a history of 4 months’ unemployment 
followed by 3 months’ employment, followed by 1 month’s 
unemployment then 2 months’ employment.
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Binary models (2)

An alternative to modelling the sequence yi is to model the 
set of durations: (U4, E3, U1, E2) ⇒ survival analysis

An important issue concerns dynamics – how does the 
length of time already spent out of work affect this month’s 
probability of finding work: duration dependence.

In this course, we instead focus on modelling this period’s 
state (0 or 1):
•as a function of explanatory variables and an individual 
effect (static model)
•as a function of explanatory variables, an individual effect 
and last period’s state (dynamic model). This allows for state 
dependence.
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Why are special methods needed ?

Consider the binary variable, yit = 0 or 1
Notice that the expected value of yit is:

E(yit) = Pr(yit = 1) × 1 + Pr(yit = 0) × 0 = Pr(yit = 1)
where Pr(yit = 1) is the probability that yit = 1
A simple way to model yit is to use a regression with  yit as 
dependent variable. Then the RHS will be the conditional 
probability that yit = 1, plus an error term.
This is called a linear probability model (LPM):

yit =  α0 + ziα + xit β +  ui +  εit

With panel data methods (e.g. within-group or random-effects), 
the linear model implies:

E(yit | zi , xit , ui)  ≡ Pr (yit = 1 | zi , xit , ui) = P(zi , xit , ui)
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Disadvantages of the LPM

The linear probability model requires:

P(zi , xit , ui)  ≈ α0 + ziα + xit β +  ui

But this may fall outside the admissible [0, 1] interval. 

Moreover, var(yit | zi , xit , ui ) = P(zi , xit , ui )[1-P(zi , xit , ui )]
which varies with zi and xit    ⇒ heteroskedasticity is a 
problem

[Despite its disadvantages, the panel LPM is simple to 
estimate and is often seen in applied work – but it’s not an 
ideal choice.]
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Why nonlinear models are needed

(α0+zi α + xit β + ui)

1

Pr(yit = 1)

LPM

P(zi , xit , ui)
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Latent regression models: the binary case
To overcome the disadvantages of the LPM, use non-linear 
methods.
Define a latent (unobservable) continuous counterpart, yit

*

Example from labour economics:
If yit=1 defines employment, then: 

yit
* = best available wage – minimum acceptable wage.

Let yit
* be generated by a linear regression structure:

yit
* =  α0 + ziα + xit β +  ui +  εit

Then employment is chosen whenever available wage - acceptable
wage is positive:

yit =  1     if and only if   yit
* > 0
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Latent regression models: the binary case (2)

⇒ Pr(yit = 1 | zi , xit , ui)  =  Pr(α0 + zi α + xit β +  ui   + εit > 0)
=  Pr(-εit < [α0 + zi α + xit β +  ui ] )
=  F(α0 + zi α + xit β +  ui)

where F(.) is the distribution function of the random variable  -εit

Probit model: assume εit has a normal distribution
F( . ) = Φ( . )  ⇒ df of the N(0,1) distribution

Logit (logistic regression) model: assume εit has a logistic distribution
F(ε)  =  eε/[ 1+eε ] ⇒ df of the logistic distribution
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An aside: understanding the results from 
binary latent regression models

In a linear regression model:
yit =  α0 + zi α + xit β +  ui +  εit

We can interpret the coefficients directly:
α =  (average) effect on y of increasing z by 1 unit
β= (average) effect on y of increasing x by 1 unit
These are known as the marginal effects of z, x on y

But in nonlinear models, things are more complicated. In:
Pr(yit = 1)  =  F(α0 + zi α + xit β +  ui)

α and β aren’t the effects on Pr(yit = 1) of changing z or x
by one unit  ⇒ so coefficients can’t be directly interpreted
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Some concepts for summarising results
Model: Pr(yit = 1)  =  F(α0 + zi α + xit β +  ui) 
(call this conditional probability Pit)

Coefficients = α0 , zi and β
Predicted probability = Pit

Odds  (Oit) = Pit / (1 – Pit )
For 2 people with different z and x –values, whose 
probabilities of y=1 are P0 and P1 :
Odds ratio = O1 /O0 

Relative risk = P1 /P0 

Relative risk and the odds ratio are often confused, but 
they are different
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Marginal effects, relative risk and the odds ratio
Suppose person 0 has observable characteristics z0 , x0 and 
unobservable characteristic u0 ; then:

P0 =  F(α0 + z0α + x0 β +  u0) 
Let’s consider the effect of making a 1-unit change in (say) z. This 
means inventing a new person with characteristics:
(z0+1 , x0 , u0), for whom Pr(y=1) is: 

P1= F(α0 + [z0+1]α + x0 β + u0)
We can summarise the effect of this change in various ways:

Marginal effect =  P1 – P0

Relative risk  =  P1 / P0

Odds ratio  =  [ P1 / ( 1 – P1) ] / [ P0 / ( 1 – P0) ]
=  [ P1 / P0 ] × [( 1 – P0) /( 1 – P1) ]

Other variables are “held constant” at their baseline values(x0 , u0)
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Logistic regression and the odds ratio
In the logit model:

P0 =  exp(α0 + z0α + x0 β+ u0) / [ 1 + exp(α0 + z0α + x0 β+ u0) ]
P1 =  exp(α0 + [z0 +1]α + x0 β+ u0) / [ 1 + exp(α0 + [z0+1]α + x0 β+ u0) ]

Odds ratio =  [ P1 / ( 1 – P1) ] / [ P0 / ( 1 – P0) ]

=  [ exp(α0 + [z0 +1]α + x0 β+ u0) ] / [ exp(α0 + z0α + x0 β+ u0) ]
=  [ exp(α0 + z0α + x0 β+ u0) × exp(1×α ) ] / [ exp(α0 + z0α + x0 β+ u0) ]
=  exp(α)
The odds ratio is usually only quoted in relation to logit results. It is  
hard to interpret and very often gets misinterpreted. It gives the 
proportionate effect of a 1-unit change in a variable on the odds , 
not the probability Pr(y=1).



01/02/2007 (14)

Misinterpretation of odds ratios
Check that you understand the error in the following quotation:

“The odds ratio of 1.3689 for females […] indicates that, controlling 
for the effects of the other explanatory variables, females are 37% 
more likely to be in poverty than males. Stated differently, the
probability of being in poverty is 1.37 times greater for females than 
for males.”
(W. H. Crown, Statistical Models for the Social and Behavioural Sciences: Multiple 
Regression and Limited Dependent Variable Models. London: Praeger, 1998)

It isn’t possible to calculate the relative risk or the marginal effect
on the response probability, from knowledge of the odds ratio 
alone.

What would be the relative risk and marginal effect if the predicted 
probability for males is 0.2? What if it’s 0.001? What if it’s 0.8?
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Options for presentation of results 
• Present marginal effects evaluated at sample mean values of x

and z, with individual effects u set at zero (i.e. the average in the 
population). But:

This represents a synthetic, hybrid person that doesn’t exist.
Technically, no-one has a zero individual effect (prob is 
zero)

• Present average partial effects (APE) which allow for the average 
effect of the unobserved individual effects. Evaluate at:

Mean x and z, or 
Selected x and z to represent typical person, or
Each person’s x and z, and then average the results.



01/02/2007 (16)

Other options for presentation of results 
• Present predicted probabilities for different 

combinations of x and z (representing different types 
of person). Can also evaluate at different values of 
the individual effect u, based on its estimated 
distribution. 

• All these methods are difficult with the fixed-effects
logit, as we don’t estimate the (distribution of) 
individual effects or the coefficients of time-invariant 
variables.

• Researcher should decide how to present results 
based on research question being asked.
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Fixed effects models – some issues

• To deal with individual effects in linear FE models, 
we can:

estimate individual effects ui (LSDV).  
difference out individual effects ui .

Estimates of β are unaffected in both cases and are 
unbiased

• But in non-linear FE models:
There’s no short-cut method of calculating the estimator 
without calculating the estimates of the ui ⇒ the “incidental 
parameters problem”
Estimated coefficients are biased
Can’t remove the individual effects ui by simple differencing 
as in within-group regression
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Conditional ML estimation

• CML (as applied here) is a way of condensing the 
likelihood function into a form which does not depend on 
ui but does depend on β.

• Then CML is consistent (loosely speaking, unbiased in a 
large sample) for β.

• But CML is very model specific as it is based on a 
technical “trick” that is only applicable in a few cases, e.g.:

logit models
Poisson model (for count data) – see later

• Details of conditional logit are given in the Technical 
Appendix
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Fixed effects (or conditional) logit
Model: Pr(yit = 1)  =  F(α0 + zi α + xit β +  ui)  ,
where F( . ) is the logistic form

Avoiding technicalities, the method works as follows:
• Work with the subsample of individuals for whom there is some 

change in yit during the observation period   ⇒ so we sacrifice 
information on any individuals displaying no change in y

• The changes in the covariates xit (i.e. variable differences like xit -
xit) are then used in a modified logit analysis to explain the 
changes in the observed sequence of outcomes yi1 … yiT .

• Note that differencing the covariates removes any variables that
are constant over time (e.g. gender, birth year, etc.), so α can’t be 
estimated

• But it also removes ui , so we don’t have to assume anything 
about ui ⇒ so FE logit is more robust than RE logit
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Random effects logit/probit

Appropriate if we want to:
• estimate the coefficients of zi

• use a non-logistic form 
• allow for dynamic adjustment (i.e. use the lagged value 
yit-1 as an explanatory variable)
then conditional likelihood is not available. The random 
effects approach is a natural solution.

[and, of course, RE is preferred if the individual effects are 
independent of the x – use a Hausman test to decide]
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Random effects logit/probit
Consider the basic model:

yit
* =  α0 + ziα + xit β +  ui +  εit

yit =  1     if and only if  yit
* > 0

Make standard random effects assumptions (including 
independence of (zi , xit ) and ui ).

Since the εit are independent, the joint probability of 
observing (yi1, yi1,…, yiTi) conditional on ui  (and zi , xit ) is 
just the product of the conditional probabilities for each 
time period:

Pr(yi1 , ... , yiT | ui )  =  Pr(yi1 | ui ) × ... × Pr( yiT | ui )
= F(α0+zi α + xi1 β + ui ) × ... × F(α0+zi α + xiT β + ui )
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Random effects logit/probit
Make an assumption about the distribution of ui (usually 
assumed to be N(0, σu

2)

Average out (marginalise with respect to) the unobservable ui to 
get the unconditional probability of the data for individual i :

Pr(yi1 , ... , yiT )  =  E [ Pr(yi1 , ... , yiT | ui ) ]
where “E[ . ]” refers to the expectation or mean with respect to 
the N(0, σu

2) distribution of ui .

This unconditional probability Pr(yi1 , ... , yiT ) is the likelihood 
for individual i. Repeated this for all individuals in the sample.

We then choose as our ML estimates the parameter values that 
maximise the likelihood over the whole sample. This is 
implemented in Stata, but computing run times are quite long.

This ML method works well only if cov(ui , [zi , xit]) = 0
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Is the zero-correlation assumption valid? 
The Hausman test 

• A Hausman test can be used to compare conditional logit estimates 
with the random-effects logit which assumes independence 
between ui and (zi , Xi ).

• Null hypothesis is H0: ui and (zi , Xi ) are independent.
• Alternative hypothesis is H1: ui and (zi , Xi ) are not independent 

(implies we should use CL).
• is consistent under H0 and H1, but inefficient under H0 (since 

only uses information on changers).
• is consistent and efficient under H0, but inconsistent under H1.
• Test statistic:

(distributed as χ2 if H0 is correct, with df equal to the no. of 
coefficients in β)

CLβ̂

REβ̂

( ) ( )( )RECLRECLRECLS ββββββ ˆˆ)ˆvar()ˆvar('ˆˆ −−−=
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Individual effects correlated with 
regressors (1)

• The RE probit/logit assumes that (zi , xit ) and ui are 
independent.

• Is there any way of relaxing the independence 
assumption? 

• One possibility is to allow ui to be correlated with 
elements of xit.

A very general formulation (due to Chamberlain) models ui
as a function of all values of xit from all time periods. 
A simplified version (based on the Mundlak model) is to 
model ui as a function of individual means.



01/02/2007 (25)

Individual effects correlated with 
regressors (2)

Using the Mundlak-style approach we have:
∼ N(0, ση2) (1)

This formulation still assumes that zi is not correlated 
with ui. If it is, it belongs in (1), and we can’t separate its 
correlation with ui from its true effect. Related to this, μ
absorbs the main regression constant α0. [Can’t have 
two constants!]

iiiiiu xx |  whereηηδμ ++=
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Individual effects correlated with 
regressors (3)

Important caveat: in linear regression, the Mundlak
approximation was innocuous (the estimates of β were 
identical to FE). But here, we assume ui really can be 
expressed as a linear function of     such that the error 
term ηi is independent of     with normal distribution. 
The  latent regression becomes:

Estimate by including individual means in list of 
regressors.

ix

itiiitiity εημ +++++= δxβxαz0*

ix
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Unobserved heterogeneity or state dependence?
• As seen in our data set, there is much persistence in and 

repetition of categorical states. Past experience of a given 
state is often a good predictor of future experience of that 
state. 

• Example: people who were unemployed in the past are 
more likely to be unemployed in the future.

• There are two possible mechanisms behind this 
persistence:

State dependence: experience of a given state alters behaviour 
in the future so as to make that state more likely to occur 
[see the appendix for dynamic random effects models]
Unobserved heterogeneity: individuals differ in their 
propensity to be in a given state and the factors explaining 
these differences persist over time and are unmeasured.
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Technical appendix

The following slides can be safely ignored if you’re not 
interested in technical detail or if you aren’t familiar 
with maximum likelihood and the maths of the logit 
model

Marginal effects
Conditional logit
Random effects likelihood function
Dynamic random effects model



01/02/2007 (29)

Marginal effects 
• In the LPM, the marginal effect of an increase in a 

variable on the conditional probability that yit = 1 is 
just its coefficient. Formally ∂ P(xit , ui) / ∂ xjit = βj
(where zi is absorbed into xit for brevity)

• Note the marginal effect in the LPM does not depend 
on the values of other covariates, or the individual 
effect. So the ME is the same for everyone.

• This is not generally true in non-linear models:
∂P(xit , ui) /∂xjit = ∂F(α0+xit β+ui) / ∂xjit

= f (α0+xit β+ui) βj
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Marginal effects (2)

• Marginal effect is coefficient multiplied by the 
density function (normal for probit, logistic for logit), 
evaluated at the base values of x.

• So marginal effects depend on covariates and 
individual effects. And usually we don’t estimate the 
individual effects directly!

• Note we can still compare the relative effects of 
variables (since f(.) cancels out). So the ratio of MEs
due to xj and xk is βj / βk . Doesn’t depend on value of 
latent variable.
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Conditional logit
Subsume zi in xit for notational simplicity.

If we try to estimate the ui using individual-specific dummy variables, 
there is no simplification analogous to within-group regression.
Moreover, the number of parameters →∞ with n, so the MLDV 
estimator is not consistent.
Log-likelihood for the logit model for individual i conditional on ui :

The statistic ∑t yit is a sufficient statistic for  ui : Pr(yi | ∑t yit) does not 
depend on ui .

Example Ti = 2; ∑t yit can take values 0, 1, 2. Conditional on ∑t yit =0, 
yi1 = yi2 = 0 and, conditional on ∑t yit =2, yi1 = yi2 = 1 with prob 1. So 
only cases with ∑t yit = 1 are of interest.
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Conditional logit (continued)
Probability of the conditioning event:

Pr(∑t yit = 1)  =  Pr(yi1 =1, yi2 = 0) + Pr(yi1 =0, yi2 = 1)
= Pi1(1-Pi2) + (1-Pi1)Pi2

Conditional probability:

⇒ ui is eliminated by conditioning on ∑t yit
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Conditional logit (continued)

With T = 2, the conditional log-likelihood is:

where di = 1 if yi1 =1, yi2 = 0 and 0 if yi1 =0, yi2 = 1.

Note that, if xit contains time-invariant covariates (i.e. zi), these 
disappear from (xi1-xi2)  ⇒ α cannot be estimated.

In general, conditional logit only uses data from individuals who 
experience change in yit over time. This sacrifices  sample variation.

•The same conditioning approach does not work with probit and other 
functional forms, nor with general dynamic models 
•But it can be generalised to:

unordered multinomial logit models 
ordered logit models with more than two outcomes.
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The random effects likelihood function 
(static model)

Let Pit(ui)  = Pr (yit | zi , xit , ui), where

Then the likelihood function for individual i, conditional 
on ui , is :

,

which tells us, for given values of α, β, σu
2 and σε

2, and 
given value of ui how well the model fits the data on 
individual i. 
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Integrating out the random effects
Including ui in the conditioning set greatly simplifies the likelihood 
function, because errors from different time periods are then 
independent (otherwise, we’d need to allow for dependence across 
periods).
But… we don’t know ui (also we have the incidental parameters 
problem). We do, however, know (by assumption!) its distribution. 
Therefore we can “average out ” or marginalise with respect to ui:

where g(u) is an assumed density for u, e.g. for probit, Gaussian: g(u) 
= σu

-1φ(u/σu). The full likelihood function is L =  Π Li

Evaluation of the likelihood function requires the integral to be 
approximated numerically by a quadrature algorithm.
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Day 5: Further topics

• Ordered response models
• Incomplete panels and sample selection in panel data 

models
• Dynamic fixed-effects regression models
• Dynamic binary logit/probit models
• Policy evaluation and panel data
• Count data models
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Topic 1: 

Ordered response models
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Ordered response models

• Ordered (or ordinal) variables take discrete values 
which have a natural ordering:

Happiness on a scale of 1-5
Not working, part-time, full-time
Want fewer, same, more work hours
No, part, full insurance
Credit rating

• Variables are ordinal but not (necessarily) cardinal, 
i.e. the “distance” between two categories has no 
meaning in the model. Only order matters.
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Latent regression (1)

• As in binary response models, assume there is an 
underlying latent variable yit

* determined as follows:
yit

* =  ziα + xit β +  ui +  εit

• ui is assumed to be a random effect distributed 
independently of (zi , Xi ) as N(0, σu

2).
• Note there is no constant (see later).
• The observed value of yit is {0, 1, …, J}, depending on 

where yit
* falls relative to a set of J cutpoints or 

thresholds, μ1 < μ2 <  … < μJ.
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Latent regression (2)
• The outcome yit is given as:

yit = 0 if yit
* ≤ μ1 

yit = 1 if μ1 < yit
* ≤ μ2 

.
yit = J if μJ < yit

*

• So, if J = 3, there are 2 cutpoints, μ1 and μ2.
• And if J = 2 (binary choice model), there is only one 

cutpoint, μ1.  
This is slightly different to the usual specification of the 
binary probit/logit. Usually, μ1 is normalised to zero and a 
constant included in the list of regressors. Here, we set the 
constant to zero and estimate μ1, as is done in Stata’s
oprobit and reoprob. The choice is arbitrary.
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Random effects ordered probit (1)
• Assume εit is normally distributed with unit variance.
Pr(yit = 0 | zi , xit , ui)  =  Pr(yit

* ≤ μ1 | zi , xit , ui) 
= Pr (ziα + xit β +  ui + εit ≤ μ1)
= Φ(μ1 - ziα - xit β - ui)

Pr(yit = 1 | zi , xit , ui)  =  Pr(μ1 < yit
* ≤ μ2 | zi , xit , ui) 

= Pr (μ1 < ziα + xit β +  ui + εit ≤ μ2)
= Φ(μ2 - ziα - xit β - ui) - Φ(μ1 - ziα - xit β - ui)

[which is just Pr (yit
* ≤ μ2) minus Pr (yit

* ≤ μ1)]
Etc…
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Random effects ordered probit (2)
• Finally:
Pr(yit = J | zi , xit , ui)  =  Pr(μJ < yit

* | zi , xit , ui) 
= 1 - Pr(yit

* ≤ μJ | zi , xit , ui) 
= 1- Φ(μJ - ziα - xit β - ui)

• Check that these probabilities sum to one!
• Predicting probabilities and calculating marginal 

effects is done analogously to the binary RE probit.
• But there is a complication in the intermediate 

categories 1, … J.
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Marginal effects
• For example (absorb zi into xit for brevity):

Pr(yit=1|xit ,ui) = Φ(μ2 - xitβ - ui) - Φ(μ1 - xitβ - ui)

• So the marginal effect of xjit on the probability that yit=1 is:
∂ Pr(yit=1|xit ,ui)/∂xjit = -βjφ(μ2 - xitβ - ui) + βjφ(μ1 - xitβ - ui)

• This can be either negative or positive (consider the φ(.) 
function). And in general, the sign will vary with xit and ui.

Intuitively, why does the marginal effect have an ambiguous sign?
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Topic 2: 

Incomplete panels and sample selection 
in panel data models
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Incomplete panels
• We have distinguished between balanced, 

unbalanced and non-compact panels. 
• Most techniques (Stata commands) can be used with 

all three types of panel.
• But…

We have implicitly assumed that missing observations only 
represent an efficiency loss (i.e. estimates are still unbiased).
In fact, the pattern of missing observations may not be 
random.
If observations are not missing at random, estimates may be 
biased. Thus unbalanced and non-compact panels may not 
be random samples. 
Equally, balanced (sub-)panels may not be random –
respondents present at every wave are unlikely to be 
representative of the population.
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Non-response
• Why might observations be missing?
• Unit non-response 

Attrition – respondents drop out of panel
Wave non-response - unavailable at particular waves

• Item non-response 
Respondents fail to answer particular questions, e.g. income.

• Types of missing-ness:
Missing completely at random (MCAR)  
Missing at random (MAR): conditional on observables (Xi, 
zi), response is random. Systematic differences in response 
are explained by observable characteristics.
Informative or non-ignorable non-response: systematic 
differences in response remain after controlling for (Xi, zi).



01/02/2007 (12)

Implications of incompleteness
• Implications depend on type of analysis (but this is a 

complex area with disagreements between 
econometricians and survey statisticians).

• Descriptive (i.e. unconditional) statistics will be 
unbiased if data are MCAR, but biased if data are 
MAR or non-response is informative. 

Example: if poor households are less likely to participate in 
surveys, we will underestimate the poverty rate.

• Conditional estimates (regressions) are unbiased if 
data are MCAR or MAR (conditional on observables 
in model). Biased if non-response is informative. 
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Weights?
• Data sets usually include weights which account for:

systematic non-response (as a function of particular 
observables);
non-representative sampling due to survey design.

• Use weights for descriptive stats (if want to make 
inferences about the population).

• Weighting is more problematic in regression analysis: 
General purpose weighting model may not be appropriate 
for a specific regression model
May be identification problems if same variables used for 
weights and in regression.
Weighting is not necessary if data are MAR, and inflates SEs.
In practice, Stata does not accept weights for linear FE and 
RE (GLS) analysis.
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Non-random selection in panels

• In the regression framework, non-random response 
can be represented as follows. Let the model of 
interest be:
yit =  ziα + xit β +  ui +  εit,    t = 1 … T , i = 1 … n

• Define a response indicator rit which equals 1 if (yit,  
zi, xit) is observed in the panel and 0 otherwise.

• If data are MCAR or MAR, then rit is independent of 
ui and εit. 

• If non-response is non-ignorable then rit is not 
independent of ui and εit. Also called non-random 
selection or selection on unobservables.



01/02/2007 (15)

Consequences for RE estimates

• We focus on the implications of missing observations 
for linear RE and FE estimates.

• RE is unbiased if:
E(ui +εit |Xi , zi , ri) = E(ui + εit | Xi , zi) = 0
where ri = (ri1, …, riT), a vector of selection outcomes 
in all periods.
This says that the composite error term is unrelated 
to selection conditioning on observable 
characteristics (MAR or selection on observables). 
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Consequences for FE estimates

• Unsurprisingly (why?), FE is more robust to non-
random selection into the panel.

• FE is consistent if:
E(εit |Xi , zi, ui , ri) = E(εit | Xi , zi, ui) = 0
This says that the transitory error term is unrelated to 
selection, conditioning on observable characteristics 
and the individual effect ui. But ri can be related to ui.

• As long as selection into the panel works through 
“levels”, i.e. time-invariant factors, then FE remains 
consistent.
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Testing for non-random selection in 
panels

• Some simple indicative tests for non-random selection involve:
1. checking whether ri helps explain the outcome yit after controlling 

for other characteristics
2. comparing results from the unbalanced panel with the balanced 

sub-panel.

• In the first type of test, functions of rit can be added to the 
equation and their significance tested [note rit can’t be added –
why not?]. For example:

lagged response indicator rit-1

indicator for present in all waves, ci = Π rit

number of waves present for, Ti = Σ rit

The last two can only be used with RE (why?).
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“Hausman” test
2. A second test compares RE or FE estimates from the 

unbalanced panel and its balanced sub-panel. If selection is 
random, the two estimates should be close. If selection is non-
random, and affects the estimators differently, we expect a 
statistically significant difference between the two.
For example, test the RE estimator by forming the statistic:

[Not a true Hausman test because neither estimator is 
consistent in presence of selection bias, and both 
may be affected similarly by selection. Thus the test may have 
low “power”]

If these tests suggest attrition bias, the situation is difficult: 
methods to correct for “endogenous” attrition are complicated 
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Topic 3: 

Dynamic fixed-effects regression models



01/02/2007 (20)

Dynamic models

Why model dynamics?
• Current outcomes might depend on past values of 

determinants include lagged xs (distributed lag 
model). Use similar techniques to those already 
discussed.

• Adjustment might be partial: this year’s outcome y
depends not only on x, but also on last year’s 
outcome include lagged y. We will focus on this 
case.

Notice (as we will see) that this amounts to including an 
infinite (or back to start of process) number of lagged x.
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Dynamic models for continuous dependent 
variables

Adjustment may be imperfect – how to model it? Any 
conventional time-series model can be used, e.g. AR(1):

yit =  ziα + xit β +  γ yit-1 +  ui +  εit (1)

or static model with AR(1) errors:
yit =  ziα + xit β +  ui +  εit (2)
εit =  ρ εit-1 + ηit

⇒ yit =  zi (1-ρ)α + (xit -ρ xit-1)β +  ρ yit-1 +  ui +  ηit (2’)
NB: model (1) implies gradual adjustment to change in x; 
model (2) implies a full immediate response.

More general distributed lag models can be used (e.g. ECMs, 
ARMA, etc.)
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Within-group estimation
Within-group transformed model (e.g. AR(1)):

where:

NB we assume a compact panel (why?) and an observable 
initial condition yi0

We have got rid of the individual effect. But what are the 
statistical properties of a regression of       

?
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Properties of the within-group estimator (1)
Find an expression for yit that only involves z, x, and yi0 (the 
starting value or “initial condition” of y).

yit =  ziα + xit β +  γ yit-1 +  ui +  εit

By substitution:
yit =  ziα + xit β +γ (ziα+xit-1 β+γ yit-2+ui+εit-1) +  ui +  εit

=  (1+γ) ziα + xit β +γ xit-1 β + γ2 yit-2+ ui + γui + γεit-1 +  εit

=  (1+γ) ziα + xit β +γ xit-1 β + γ2(zi α+xit-2 β+γ yit-3+ui+εit-2)
+ ui + γui + γεit-1 +  εit

=  (1+γ+γ2) ziα + xit β +γ xit-1 β + γ2xit-2 β +γ3 yit-3

+ ui + γui + γ2 ui +  εit + γεit-1 + γ2εit-2

And so on… Eventually we arrive at t=0.
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Properties of the within-group estimator (2)
Distributed lag form of (1):

⇒ yit-1 is a function of εit-1 … εi1

⇒ is a function of εiT-1 … εi1 and yi0

⇒ is correlated with                    
⇒ bias in within-group regression coefficients
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Properties of the within-group estimator (3)

• Bias of the within-groups estimator is caused by 
eliminating the individual effect ui from the equation. 
This causes a correlation between the transformed 
error term and the transformed lagged dep var.

• Bias is generally negative for small T (even if true γ is 
zero). 

• For large T, bias is small – but with panel data T is 
not usually large…

What about pooled OLS?
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Properties of the pooled OLS estimator
• Assume individual effects ui are random. In a static 

model, OLS is unbiased and consistent (though, 
recall, inefficient). 

• But this is not the case in a dynamic model:
yit =  ziα + xit β +  γ yit-1 +  ui +  εit

• We know from above that yit-1 is a function of ui and 
yi0. In general, correlation between yit-1 and ui +  εit is 
positive due to:

Positive contribution from ui.
Positive contribution from yi0 if yi0 generated by same 
process as any other yit

• So OLS is biased upward and is inconsistent
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Other estimators?

• GLS and ML estimators are also generally biased
They depend critically on assumptions about initial 
conditions yi0, and how they are generated

• There are several IV estimators which correct for 
endogeneity of the lagged dependent variable and 
are also independent of initial conditions. Like HT, 
instruments come from inside the model.

Anderson-Hsiao
Arellano-Bond
Blundell-Bond
…
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A simple IV estimator
The within-group transform complicates estimation with lagged 
endogenous variables. Consider time-differencing:

(1) 

The problem now is that the error term, Δεit = εit - εit-1 is a MA(1) 
process which contains εit-1 , which is correlated with Δyit-1 .
⇒ Find a set of instruments  correlated with Δyit-1 but 
uncorrelated with εit-1

⇒ All lagged xit and yit-2 … yi0 are valid instruments if {εit} is 
serially independent
⇒ Simplest IV estimator (Anderson Hsiao) estimates (1), using 
instruments (xit, xit-1, xit-2,yit-2).
⇒ We can only use observations t = 2 … Ti . Each extra lag used 
as an instrument loses us n observations.
⇒ Once        is found, estimate α by regressing                          on zi

iitititit Ttyy ...2,ΔΔΔ 1 =++=Δ − εγβx
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Problems with IV estimators
Suppose yit is a random walk (e.g. Hall’s (1978) form of the 
permanent income hypothesis: dynamic choice models 
based on Euler conditions).
⇒yit-2 is uncorrelated with Δyit-1 and is not a valid 
instrument
⇒IV methods based on a differenced model won’t work 
well if there is a near-unit root 

Any method based solely on the differenced equation 
ignores potentially valuable information contained in the 
initial condition yi0

What is the optimal point on the trade-off between the 
number of lags used as instruments and the number of time 
periods retained in the estimation sample?
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System estimators
The  time-differenced model:

(1)

This is a system of Ti-1 linear equations with cross-correlated 
errors (since Δεit is correlated with Δεit-1 and Δεit+1)

There is also some (related) process generating the initial 
conditions, yi0  and yi1, which could provide further equations.

A different number of instruments is available for each of the 
equations in (1): 

E.g. the equation for t = 2 has only (xi0 … xiT , yi0);
the equation for t = Ti has (xi0…xiT , yi0… yiT-2).

NB it’s assumed here that xi0 is observable

iitiititit Ttuyy ...2,ΔΔΔ 1 =+++=Δ − εγβx



01/02/2007 (31)

Digression: method of moments (1)
The method of moments is a way of getting consistent 

estimates of model parameters.
1. Specify moment conditions (e.g. means, covariances) 

implied by the model as a function of its parameters 
(population moments).

2. Write down the “sample analogues” of these 
moment conditions, i.e. expressions into which you 
can plug the sample data, as a function of parameter 
estimates.

3. Choose values for the parameter estimates which 
“solve” the sample moment conditions.
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Digression: method of moments (2)

Very simple example: mean of a random variable y.
1. Mean of y is defined as μ = E[y]. Rearrange as a 

moment condition: m(y; μ) = E[y - μ] = 0.

2. Sample analogue is

3. Solve to get MM estimator:  

( ) ( ) 01;ˆ
1

=−= ∑
=

n

i
iyn

m μμy

∑
=

=
n

i
iyn 1

1μ̂



01/02/2007 (33)

Digression: method of moments (3)

•Often there are more moment conditions than 
parameters to be estimated.  Then the moment 
conditions don’t have a unique solution.
•In this case, we minimise a (weighted) sum of the 
squares of the sample moments. In vector notation this 
is written in the general case as                               
where V is the weighting matrix.
•This is called the generalised method of moments 
(GMM).
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Generalised method of moments 
IV estimators are members of the class of GMM estimators
e.g. the 2SLS estimator, 
is the following M-estimator: 

where         is the “sample analogue”, n-1Q’(y-Xβ), of a moment, 
Eq’ε, assumed to be zero in the population.  

V is a weighting matrix proportional to the asymptotic 
covariance matrix of the moment condition (in this standard 
2SLS example σε 2Q’Q , where σε 2 is the residual variance).

GMM can be extended to any number of moment conditions
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Arellano-Bond GMM (1991)

m̂

We have Ti -2 differenced equations (1). 
The instruments for equation t are:

qit =  (xi0…xiT , yi0…yit-2)
Full set of moment conditions:

E qi2‘ Δεi2 = 0 (Ti+1)kx+1 conditions
E qi3‘ Δεi3 = 0 (Ti+1)kx+2 conditions

.

.
E qiT‘ ΔεiT = 0 (Ti+1)kx+Ti-1 conditions

is a [(Ti +1)(Ti -1)kx +Ti (Ti -1)/2] × 1 moment vector
The optimal choice for V is  
More conditions can be added (e.g. for zi and to impose the 
homoskedasticity assumption on εit). But GMM often works 
badly in finite samples with many moment conditions.

'ˆˆ iiE mm
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Specification testing
(1) Testing for over-identifying restrictions

The number of restrictions = the number of moment 
conditions for each individual (r) minus the number 
of parameters (kx).

Sargan test statistic:
The minimized optimal GMM criterion scaled by n is 

has an asymptotic chi-square distribution with r- kx
degrees of freedom.
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Specification testing
(2) Testing for residual serial correlation

If the εit are serially independent, then
E[Δ εit Δ εit-1]=E[(εit - εit-1)(εit -1- εit -2)]=-E[εit -1

2]=-σε 2

Also var(εit - εit-1)=var(εit-1- εit-2)=2 σε 2

Thus, the first order serial correlation coefficient is 
r1=E[Δ εit Δ εit-1]/[√var(Δεit)√varΔ εit-1)] = 0.5.

But E[Δ εit Δ εit-2]=0, and so the second order serial 
correlation coefficient r2=0.  

⇒ test for second order serial correlation.
Specification error if second order serial correlation is 

statistically significant. 
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Further developments: initial conditions

Arellano-Bond ignores the initial conditions yi0 and yi1  and 
only uses moment conditions for Δyi2…ΔyiT .
To progress further, we need additional assumptions about the 
initial conditions. One possibility is:

Equilibrium  initial values.   If the process is homogeneous and 
long-established:

⇒Coefficient of ui in equation for yi0 is (1-γ )-1

⇒But the quantity                  is unobserved
⇒Also, do people really have infinite pasts?

If lagged levels of yit are poor instruments for Δyit-1 , can we go 
back to using the equations in level form?
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Extended system methods
Arellano & Bover (1995) and Blundell & Bond (1998) (see also 
Bhargava & Sargan, 1983) suggested using the model in both
differenced and levels form to generate GMM moment conditions.
Question: in the levels model  

yit =  ziα + xit β +  γ yit-1 +  ui + εit , (1)
is there a good instrument for yit-1? This instrument must be 
uncorrelated with ui as well as εit .  

A&B suggested Δyit-1 , etc.. The instrument validity condition is       
E[Δyit-1 (ui + εit)] = 0, which requires (see B&B, 1998):

E ui [ yi0 – ui/(1-γ )]  =  0   (2)
E uiΔεit =  0 (3)

(2) Requires yi0 to be in stationary equilibrium. It then improves 
estimation precision in highly-persistent models (i.e. when γ ≈ 1)
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Topic 4: 

Dynamic binary logit/probit models
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Dynamic binary models

• Unobserved (time-invariant) heterogeneity will lead 
to persistence over time after controlling for all 
observable characteristics, even if there is no true 
state dependence.

• We often want to measure, or control for, true state 
dependence, e.g. does past experience of 
unemployment make future unemployment more 
likely? Implies long term effects of econ policy.

• Dynamic models using panel data allow both 
unobserved heterogeneity and state dependence.
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Dynamic random effects binary models

• We focus on the RE binary model (logit or probit) 
with a simple dynamic specification (one lag of the 
dependent variable).

• The latent regression is now:
yit

* =  α0 + ziα + xit β +  γ yit-1 + ui +  εit

yit =  1   if and only if  yit
* > 0

• True state dependence is measured by γ, and 
persistent unobserved heterogeneity is captured by ui

• Assume (as previously) that εit is serially 
uncorrelated 
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The random effects likelihood function
Construct a likelihood by sequential conditioning:

Pr(yi0 | zi , Xi , ui)  =  Pi0(ui) 
Pr(yi1 | yi0 , zi , xi1 , ui)  =  Pi1(yi0 , ui) 

.

.
Pr(yiT | yiT-1 , zi , xiT , ui)  =  PiT(yiT-1 , ui)

The probabilities Pit (for t = 1, …, T) are of the form:
F(α0 + ziα + xitβ +  γ yit-1 +  ui)   for yit = 1

or   1 - F(α0 + ziα + xit β +  γ yit-1 +  ui)   for yit = 0. 

Likelihood function for individual i, conditional on ui:
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Initial conditions
• The Pi0(ui) term in the likelihood is the contribution 

of the initial condition – the first observed value y. 
• If yi0 is exogenous (unrelated to the individual effect) 

then effectively Pi0(ui) can be dropped from the 
likelihood

Just condition on yi0 in Pi1(yi0 , ui)
Possible efficiency loss since useful information about the 
starting point may be neglected.

• But yi0 is probably not exogenous:
It is probably not the true starting point of the “process”, just 
the start of our sample
In any case, yi0 is probably not randomly allocated, but 
related to ui as are the other  yit.
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Heckman’s method

• In practice, it is difficult to derive an exact expression 
for Pi0(ui), especially if we do not observe the process 
from the beginning.

• Heckman (1981) suggested approximating Pi0(ui) by a 
simple probit model, where regressors can include 
“pre-sample” information (e.g. family background).

• Can be complicated to estimate.
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Wooldridge’s method
Wooldridge suggested an alternative: condition on yi0, 
without specifying its probability. Instead, model the 
density of ui conditional on yi0, xi. This is related to the 
Chamberlain/Mundlak approach discussed earlier.
So ui could be specified as:

and the latent regression is now:

Can be estimated as standard RE probit – include        
and yi0 every period.
Again, though, note this is just an approximation.
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Topic 5: 

Policy evaluation and panel data
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Policy evaluation and panel data

• A specialised application of statistics is to evaluate 
the impact of various new policies, e.g. training 
schemes, changes to tax-benefit system, minimum 
wages.

• Policy evaluation often uses panel data.
• We look briefly at the parameters that policy 

evaluation methods try to measure and how they 
relate to panel data estimators seen earlier in the 
course.
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Potential outcomes and counterfactuals

• Aim is to evaluate impact of some policy ‘treatment’ 
(terminology originates in clinical trials). 

• Each individual has two potential outcomes, y1i (with 
treatment) and y0i (without treatment).

• The treatment effect is Δi = yi1 – yi0. Note that Δi
potentially differs over individuals (e.g. some people 
benefit more from training than others). 

• Problem is we only observe each individual in one 
state (treated or untreated). We don’t observe the 
counterfactual state, i.e. what would have happened 
to the treated person had they not been treated, and 
the untreated person had they been treated.
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Average treatment effects (1)
• Say we want to estimate the average effect of the 

treatment. The population average treatment effect 
(ATE) is E(Δi)= E(y1i – y0i) = E(y1i) – E(y0i). But, as 
already seen, we don’t observe y1i and y0i for all 
individuals in the sample.

• But, using available observations, we could estimate 
(naively): E(y1i|di = 1) – E(y0i|di = 0) 

= E(y1i|di = 1)–E(y0i|di = 1)+E(y0i|di = 1)–E(y0i|di=0)
= E(y1i –y0i|di = 1) + E(y0i|di = 1) – E(y0i|di=0)
= ATT + E(y0i|di = 1) – E(y0i|di = 0)
where di indicates treatment and ATT is the average effect 

of treatment on the treated.
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Average treatment effects (2)
• ATT will often differ from ATE. E.g. training may be 

given to those who benefit the most from it. But ATT 
is often the more relevant parameter for policy 
purposes – e.g. want to know the impact on those 
who will actually participate in a scheme.

• The naïve estimator includes a bias/selection term 
E(y0i|di = 1) – E(y0i|di = 0), which is the difference in 
untreated outcomes between those who got the 
treatment and those who didn’t. This term will not be 
zero if, e.g., trainees would have earned less (or 
more) than non-trainees even without training.
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Before-after estimator (1)
The bias term highlights the key problem in policy 
evaluation, which is making sure that the treated and 
untreated groups are very similar (ideally, identical). 
On average, the outcomes of the 2 groups should be the 
same in the absence of the treatment.
Consider a possible estimator using two waves of panel 
data (t and t+1), with treatment occurring after the first 
wave. Compare treated individuals with their 
“untreated selves” in the previous wave, i.e. estimate:

E(y1it+1|di = 1) – E(y0it|di = 1) 
by sindividual dfor treate outcomemean   theis   where,1
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Before-after estimator (2)

• The before-after estimator uses outcomes before 
treatment (at t) to proxy (non-observed) outcomes at 
t+1 without the treatment. It identifies ATT on the 
assumption that 
E(y0it+1|di = 1) = E(y0it|di = 1)

• However, even without the treatment, outcomes may 
have changed between t and t+1 because of macro 
factors or lifecycle effects.

• To control for these trends, we can include a control 
group who never receive the treatment but (are 
assumed to) experience the same trends.
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Difference-in-difference estimator
The difference-in-difference (DID) estimator takes the 
difference between the change in outcomes for treated 
individuals and the change for untreated (control) 
individuals. DID is estimated as: 

A weakness of DID is that the common trend 
assumption may be violated:

macro trends may affect the 2 groups differently
may be time-varying factors affecting only one group, e.g. 

“Ashenfelter’s dip”: often trainees had a temp drop in earnings 
before they took up training course.
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Regressions
Consider a regression model with a treatment dummy, 
time trend and interaction :
yit = α0 + γ di + θw2t + ρdi.w2t + ui + εit ,

t = 1, 2; i = 1 … n
where w2t equals 1 if t=2 and zero otherwise.
It is easily shown that in this simple case (2 waves and 
no other controls)     is identical to DID and so 
identifies ATT. Can estimate as RE, FE (in which case di
drops out) or by pooled OLS (adjust SEs).
Can add controls xit to account for differing trends -
though interpretation of     is less straightforward 
(unless treatment effect same for all, Δi= Δ).

ρ̂

ρ̂
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Other estimators

• Other estimators of treatment effects match treatment 
and control individuals based on observed 
characteristics x. A popular estimator of this type is 
propensity score matching.

• Matching estimators can be less restrictive (don’t 
assume linear functional form) and allow more 
flexible analysis of heterogeneous treatment effects.

• But they assume treatment is unrelated to potential 
outcomes conditional on x: selection on observables.

• Can also combine matching with DID.
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Topic 6: 

Count data models
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Count data
• Quantities are often inherently discreet, or are 

measured discreetly. Frequencies are inherently 
discreet.  Examples of count variables:

Number of visits to doctor
Number of organisations joined.
Number of arrests.
Number of patent applications.

• Counts cannot be negative, may be (are often?) zero 
and always take integer values.

• Modelling counts as continuous variables would not 
take account of this “lumpy” distribution (cf
problems with LPM for binary variables). 
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Modelling count data (1)
Counts are typically modelled as a Poisson distribution. 
The probability of individual i experiencing yit events in 
period t is:

Where does this come from? Imagine a simple 
experiment that would produce a distribution of counts. 
We toss a coin n=10 times and count the number of 
heads (probability p of a head from a toss = 0.5).
This would produce a binomial distribution, with mean 
number of heads = np = 5.
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Modelling count data (2)

• The Poisson distribution is the limiting form of the 
binomial distribution as the number of “trials” 
(tosses) goes to infinity, and p gets correspondingly 
smaller so as to keep constant the mean count np
(=λ). 

• The mean of the Poisson distribution is λit.
• The variance of the Poisson distribution is also λit

(often rejected in practice!).
• Allow for observed and unobserved characteristics 

by specifying λit = exp(ziα + xit β +  ui). Note the 
exponential form guarantees λit > 0.
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Poisson regression 

• The Poisson model is usually estimated by maximum 
likelihood (ML)

• The ML estimator is quite “robust”: provided the 
conditional mean is correctly specified, the estimates 
are consistent even if the true distribution is not 
Poisson.

• The conditional mean is: 
E(yit | zi, xit, ui) ≡ λit = exp(ziα + xit β +  ui)

= exp(ui) . exp(ziα + xit β)
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Marginal effects (1)

• So the individual effect ui affects the conditional 
mean multiplicatively. This turns out to be 
convenient.

• Since E(yit | zi, xit, ui) = exp(ui) . exp(ziα + xit β), if xjit
increases by 1 unit, holding all else constant, the ratio 
of the new to the old mean number of events is 
exp(βj). In Stata, using the irr option, this is reported 
as an “incident rate ratio”. 

• Notice the IRR is independent of ui.



01/02/2007 (63)

Marginal effects (2)

• Alternatively, the marginal effect of xjit on the 
expected count is:
∂ E(yit | zi , xit , ui) /∂xjit = βj  exp(ui).exp(ziα + xit β)

= βj E(yit | zi , xit , ui) 
• Semi-elasticity: a 1 unit increase in xjit has a 100 βj %

effect on the expected count, all else constant.
• Equivalently, βj is the marginal effect on the log of 

the expected count.
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Random effects Poisson model

• We still have to deal with ui. In the RE model, we 
assume that the multiplicative individual effect is 
independent of (zi , Xi ) and has a gamma distribution 
with a mean of one (analogous to mean zero in an 
additive model) and constant variance (=α in Stata).

• Stata also allows a normally distributed individual 
effect (but runs slower).
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Fixed effects Poisson model

•The Poisson regression can also be estimated as a fixed 
effects model, allowing arbritary dependence of ui on 
(zi, Xi ).
•As for the conditional (FE) logit, the method is to 
condition on a sufficient statistic. The sufficient statistic 
is the sum for each individual of the observed counts 
over the panel (            )

•As usual in FE models, the effects (α) of time-invariant 
variables zi cannot be identified.
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Over- (and under-) dispersion
• A restrictive feature of the Poisson model is that the 

mean and variance of yit are constrained to be the 
same.

• In practice, the variance is usually greater than the 
mean – overdispersion. One reason is unobserved 
heterogeneity (cf linear regression where individual 
effects increase the variance of the composite error 
term). 

• The negative binomial distribution allows for 
overdispersion.

• But, with panel data techniques we already allow 
explicitly for unobserved heterogeneity.

RE incorporates overdispersion
FE is consistent in presence of either under- or overdispersion.


