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Motivation

Estimate effect of income/wealth (X ) on consumption (Y )
With data on both and usual assumptions we can estimate

Y = Xβ + ϵ

with OLS

β̂ = (X ′X )−1X ′Y

No data on X ′Y , BUT

1 A dataset with food and consumption expenditure (Z1,Y1)

e.g. Consumer Expenditure Survey (CE)

2 A dataset with food and income/wealth (Z2,X2)

e.g. Panel Study of Income Dynamics (PSID)

Assume both random samples from population of interest

2 / 21



General Background

With no assumptions/restrictions, the best we can get is the Fréchet
bounds for ρxy

ρxzρyz

√
1− ρ2xz

√
1− ρ2yz

Thus, for β [
σy
σx

LB,
σy
σx

UB

]
See survey in Handbook of Econometrics chapter
(Ridder and Moffitt, 2007)
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Why bother?

We can invert the inter-temporal budget constraint/impute internally
(Ziliak, 1998)

But
xh,t − [wh,t+1 − wh,t ]

is total spending, not consumption.

Distinctions between consumption and investment spending can be
important.
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Combining Data

Case 1. Z is an instrument (for contrast)

Use Z to impute X

Case 2. Z is a proxy (our interest)

Use Z to impute Y
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Case 1: Z is an instrument (for contrast)

Wish to estimate Y = Xβ + ϵ and have (Y1,Z1), (X2,Z2)

(e.g. Z is birth cohort, occupation, birth cohort x education)

Angrist and Krueger (1992) Two Sample IV (2SIV):

β̂TSIV =
(
Z

′
2X2

)−1
Z

′
1Y1

6 / 21



Case 1: Z is an instrument (for contrast)

2SIV is not in general efficient

2S2SLS is, see Inoue and Solon (2010)

β̂TS2SLS =
(
X̂

′
1X̂1

)−1
X̂

′
1Y1

with X̂1 = Z1(Z
′
2Z2)

−1Z ′
2X2

= [X ′
2Z2(Z

′
2Z2)

−1Z ′
1Z1(Z

′
2Z2)

−1Z ′
2X2]

−1X ′
2Z2(Z

′
2Z2)

−1Z ′
1Y1

= (Z
′
2X2)

−1Z
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1

Thus
β̂TS2SLS = (Z

′
2X2)

−1 W Z
′
1Y1
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Case 2: Z is a Proxy (Our interest)

Example: Z is food spending (many surveys, well-measured)

Engel curve: Z = Y γ + u

Reduced form: Z = Xβγ + ϵγ + u

(vars usually in logs)
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Case 2: Z is a Proxy (Our interest)

1. Classic paper: Skinner (1987) - inverse Engel curve
Regress Y1 on Z1, then predict Ŷ2 = Z2γ̂r

2. Blundell, Pistaferri and Preston (2004, 2008) - Engel curve, then invert
Regress Z1 on Y1, then predict Ŷ2 = Z2

1
γ̂

3. Arellano and Meghir (1992) - Engel Curve + Reduced Form
Regress Z1 on Y1 to get γ̂

Regress Z2 on X2 to get β̂γ

Take ratio to estimate β
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Skinner (estimate inverse Engel curve)

Inconsistent
β̂Skinner = (X

′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1

plim(β̂Skinner ) = R2β

where R2 is from the (population) regression of Y on Z
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Suggestion: Modified Skinner

However, we can fix it

β̂SkinnerR2 = (X
′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1/R

2

β̂SkinnerR2 = (X
′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1[Y

′
1Z1(Z

′
1Z1)

−1Z
′
1Y1]

−1Y
′
1Y1

Where in the case of a single proxy, this reduces to

β̂SkinnerR2 = (X
′
2X2)

−1X
′
2Z2(Y

′
1Z1)

−1Y
′
1Y1

Consistent:

plimβ̂SkinnerR2 = β

Equivalent to rescaling ŷ2 by 1/R2 (or rescaling β̂ by 1/R2 )
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BPP (estimate Engel curve and invert)

Numerically identical to R2-rescaled Skinner if one proxy

β̂BPP = (X
′
2X2)

−1X
′
2Z2(Y

′
1Z1)

−1Y
′
1Y1

Intuition: In simple regression, product of coefficients from regression and
reverse regression is the R2.

γ̂ × γ̂r = R2 ⇔ 1

γ̂
=

γ̂r
R2
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AM (Engel Curve + Reduced Form)

Reduced form: Z = Cγ + u = Xβγ + ϵγ + u

β̂γ = (X
′
2X2)

−1X
′
2Z2

γ̂ = (Y
′
1Y1)

−1Y
′
1Z1

Ratio β̂γ
γ̂ identical to previous estimators

β̂γ

γ̂
= (X

′
2X2)

−1X
′
2Z2(Y

′
1Z1)

−1Y
′
1Y1
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Link of Case 1 and Case 2

β̂SkinnerR2 = (X
′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (X
′
2X2)

−1X
′
2Z2(Z

′
2Z

′
2)

−1Z ′
2X2[(Z

′
2Z

′
2)

−1Z ′
2X2]

−1(Z
′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (Z
′
2X2)

−1Z
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1R

2
Z ,X/R

2
Z ,Y

β̂SkinnerR2 = β̂TS2SLSR
2
Z ,X/R

2
Z ,Y

14 / 21



Link of Case 1 and Case 2

β̂SkinnerR2 = (X
′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (X
′
2X2)

−1X
′
2Z2(Z

′
2Z

′
2)

−1Z ′
2X2[(Z

′
2Z

′
2)

−1Z ′
2X2]

−1(Z
′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (Z
′
2X2)

−1Z
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1R

2
Z ,X/R

2
Z ,Y

β̂SkinnerR2 = β̂TS2SLSR
2
Z ,X/R

2
Z ,Y

14 / 21



Link of Case 1 and Case 2

β̂SkinnerR2 = (X
′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (X
′
2X2)

−1X
′
2Z2(Z

′
2Z

′
2)

−1Z ′
2X2[(Z

′
2Z

′
2)

−1Z ′
2X2]

−1(Z
′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (Z
′
2X2)

−1Z
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1R

2
Z ,X/R

2
Z ,Y

β̂SkinnerR2 = β̂TS2SLSR
2
Z ,X/R

2
Z ,Y

14 / 21



Link of Case 1 and Case 2

β̂SkinnerR2 = (X
′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (X
′
2X2)

−1X
′
2Z2(Z

′
2Z

′
2)

−1Z ′
2X2[(Z

′
2Z

′
2)

−1Z ′
2X2]

−1(Z
′
1Z1)

−1Z
′
1Y1/R

2
Z ,Y

= (Z
′
2X2)

−1Z
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1R

2
Z ,X/R

2
Z ,Y

β̂SkinnerR2 = β̂TS2SLSR
2
Z ,X/R

2
Z ,Y

14 / 21



Ways to improve Precision

1 Correcting for multiple samples

2 Using Multiple proxies
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Precision: correcting for multiple samples

Just like Inoue and Solon (2010) refinement, account for the fact that Z1

and Z2 are different in finite samples

β̂ = (X
′
2X2)

−1X
′
2Z2W12(Y

′
1Z1)

−1Y
′
1Y1

where W12 = (Z
′
2Z2)

−1(Z
′
1Z1) is a correction matrix for differences

between the two samples (just as in TS2SLS)
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Precision: multiple proxies

Precision can be improved with multiple Z s

Numerical Equivalence breaks

But we can still do R2-rescaled Skinner

β̂ = (X
′
2X2)

−1X
′
2Z2(Z

′
1Z1)

−1Z
′
1Y1[Y

′
1Z1(Z

′
1Z1)

−1Z
′
1Y1]

−1Y
′
1Y1

In essence, choose the proxies that have the higher partial R2, as with
many instruments (Shea, 1997)
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Monte Carlo evidence

Design:

X2 ∼ U(−2, 2)

Y1 = 1.0X2 + ϵ with σ2
ϵ = 2,

ZA1 = 0.5C1 + u1 & ZB1 = 0.5C1 + u1 with u1 ∼ MVN(0,Σ)

ZA2 = 0.5C1 + u2 & ZB2 = 0.5C1 + u2 with u2 ∼ MVN(0,Σ)

where Σ =

[
σ2
A σAB

σAB σ2
B

]
with σAB = 0.6, σ2

B = 3 and σ2
A = 4.

10,000 replications
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Monte Carlo evidence

Results:

n 250 1000

Mean SD Mean SD

Full 1.000 (0.111) 1.000 (0.055 )

Skinner1Z 0.250 (0.071) 0.250 (0.035)

Skinner2Zs 0.403 (0.092) 0.400 (0.045)

BPP1Z 1.010 (0.275) 1.002 (0.136)

Skinner1ZR2 1.010 (0.275) 1.002 (0.136)

BPP1ZC 1.005 (0.256) 1.001 (0.127)

Skinner1ZR2C 1.005 (0.256) 1.001 (0.127)

Skinner2ZsR2C 1.002 (0.192) 1.001 (0.096)
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Conclusion

Our method

R2-rescaled method is easy to use

Asymptotics and finite sample properties

Include multiple proxies based on partial R2

Use Inoue and Solon (2010) correction.

Standard Errors need correction (as usual in TS estimators)

Generalises to cases:

with measurement error

with additional covariates

with panel data
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