Regression with an Imputed Dependent Variable

Stavros Poupakis (Essex and UCL)

with Thomas F. Crossley (Essex and IFS) and Peter Levell (IFS and UCL)

July 2017

7th Conference of the European Survey Research Association Lisbon, Portugal

Motivation

Estimate effect of income/wealth (X) on consumption (Y)With data on both and usual assumptions we can estimate

$$Y = X\beta + \epsilon$$

with OLS

$$\hat{\beta} = (X'X)^{-1}X'Y$$

No data on X'Y, BUT

- A dataset with food and consumption expenditure (Z₁, Y₁)
 e.g. Consumer Expenditure Survey (CE)
- A dataset with food and income/wealth (Z_2, X_2)
 - e.g. Panel Study of Income Dynamics (PSID)

Assume both random samples from population of interest

 \bullet With no assumptions/restrictions, the best we can get is the Fréchet bounds for $\rho_{\rm xy}$

$$\rho_{xz}\rho_{yz}\pm\sqrt{1-\rho_{xz}^2}\sqrt{1-\rho_{yz}^2}$$

• Thus, for β

$$\left[\frac{\sigma_y}{\sigma_x} LB, \frac{\sigma_y}{\sigma_x} UB\right]$$

• See survey in Handbook of Econometrics chapter (Ridder and Moffitt, 2007)

We can invert the inter-temporal budget constraint/impute internally (Ziliak, 1998)

But

$$x_{h,t} - [w_{h,t+1} - w_{h,t}]$$

is total spending, not consumption.

Distinctions between consumption and investment spending can be important.

- Case 1. Z is an instrument (for contrast)
 - Use Z to impute X

- Case 2. Z is a proxy (our interest)
 - Use Z to impute Y

Wish to estimate $Y = X\beta + \epsilon$ and have $(Y_1, Z_1), (X_2, Z_2)$

(e.g. Z is birth cohort, occupation, birth cohort \times education)

Angrist and Krueger (1992) Two Sample IV (2SIV):

$$\hat{\beta}_{TSIV} = \left(Z_2'X_2\right)^{-1} Z_1'Y_1$$

2SIV is not in general efficient

2S2SLS is, see Inoue and Solon (2010)

$$\hat{eta}_{TS2SLS} = \left(\hat{X}_1'\hat{X}_1
ight)^{-1}\hat{X}_1'Y_1$$

with $\hat{X}_1 = Z_1 (Z'_2 Z_2)^{-1} Z'_2 X_2$

2SIV is not in general efficient

2S2SLS is, see Inoue and Solon (2010)

$$\hat{\beta}_{TS2SLS} = \left(\hat{X}_1'\hat{X}_1\right)^{-1}\hat{X}_1'Y_1$$

 $= [X'_2 Z_2 (Z'_2 Z_2)^{-1} Z'_1 Z_1 (Z'_2 Z_2)^{-1} Z'_2 X_2]^{-1} X'_2 Z_2 (Z'_2 Z_2)^{-1} Z'_1 Y_1$

2SIV is not in general efficient

2S2SLS is, see Inoue and Solon (2010)

$$\hat{eta}_{TS2SLS} = \left(\hat{X}_1'\hat{X}_1
ight)^{-1}\hat{X}_1'Y_1$$

 $= [X_2'Z_2(Z_2'Z_2)^{-1}Z_1'Z_1(Z_2'Z_2)^{-1}Z_2'X_2]^{-1}X_2'Z_2(Z_2'Z_2)^{-1}Z_1'Y_1$

$$= (Z_{2}^{'}X_{2})^{-1}Z_{2}^{'}Z_{2}(Z_{1}^{'}Z_{1})^{-1}Z_{1}^{'}Y_{1}$$

2SIV is not in general efficient

2S2SLS is, see Inoue and Solon (2010)

$$\hat{\beta}_{TS2SLS} = \left(\hat{X}_1'\hat{X}_1\right)^{-1}\hat{X}_1'Y_1$$

 $= [X_2'Z_2(Z_2'Z_2)^{-1}Z_1'Z_1(Z_2'Z_2)^{-1}Z_2'X_2]^{-1}X_2'Z_2(Z_2'Z_2)^{-1}Z_1'Y_1$ $= (Z_2'X_2)^{-1}Z_2'Z_2(Z_1'Z_1)^{-1}Z_1'Y_1$

Thus

$$\hat{\beta}_{TS2SLS} = (Z'_2 X_2)^{-1} \ W \ Z'_1 Y_1$$

Example: Z is food spending (many surveys, well-measured)

Engel curve: $Z = Y\gamma + u$ Reduced form: $Z = X\beta\gamma + \epsilon\gamma + u$ (vars usually in logs) 1. Classic paper: Skinner (1987) - inverse Engel curve Regress Y_1 on Z_1 , then predict $\hat{Y}_2 = Z_2 \hat{\gamma}_r$

2. Blundell, Pistaferri and Preston (2004, 2008) - Engel curve, then invert Regress Z_1 on Y_1 , then predict $\hat{Y}_2 = Z_2 \frac{1}{\hat{\gamma}}$

3. Arellano and Meghir (1992) - Engel Curve + Reduced Form Regress Z_1 on Y_1 to get $\hat{\gamma}$ Regress Z_2 on X_2 to get $\widehat{\beta\gamma}$ Take ratio to estimate β Inconsistent

$$\hat{\beta}_{Skinner} = (X_2^{'}X_2)^{-1}X_2^{'}Z_2(Z_1^{'}Z_1)^{-1}Z_1^{'}Y_1$$

$$plim(\hat{\beta}_{Skinner}) = R^2 \beta$$

where R^2 is from the (population) regression of Y on Z

However, we can fix it

$$\hat{\beta}_{SkinnerR^2} = (X'_2 X_2)^{-1} X'_2 Z_2 (Z'_1 Z_1)^{-1} Z'_1 Y_1 / R^2 \hat{\beta}_{SkinnerR^2} = (X'_2 X_2)^{-1} X'_2 Z_2 (Z'_1 Z_1)^{-1} Z'_1 Y_1 [Y'_1 Z_1 (Z'_1 Z_1)^{-1} Z'_1 Y_1]^{-1} Y'_1 Y_1$$

However, we can fix it

$$\begin{aligned} \hat{\beta}_{SkinnerR^2} &= (X'_2 X_2)^{-1} X'_2 Z_2 (Z'_1 Z_1)^{-1} Z'_1 Y_1 / R^2 \\ \hat{\beta}_{SkinnerR^2} &= (X'_2 X_2)^{-1} X'_2 Z_2 (Z'_1 Z_1)^{-1} Z'_1 Y_1 [Y'_1 Z_1 (Z'_1 Z_1)^{-1} Z'_1 Y_1]^{-1} Y'_1 Y_1 \end{aligned}$$

Where in the case of a single proxy, this reduces to

$$\hat{\beta}_{SkinnerR^2} = (X_2^{'}X_2)^{-1}X_2^{'}Z_2(Y_1^{'}Z_1)^{-1}Y_1^{'}Y_1$$

Consistent:

$$\textit{plim} \hat{\beta}_{\textit{Skinner} \mathbb{R}^2} = \beta$$

Equivalent to rescaling \hat{y}_2 by $1/R^2$ (or rescaling $\hat{\beta}$ by $1/R^2$)

Numerically identical to R^2 -rescaled Skinner if one proxy

$$\hat{\beta}_{BPP} = (X_2^{'}X_2)^{-1}X_2^{'}Z_2(Y_1^{'}Z_1)^{-1}Y_1^{'}Y_1$$

Intuition: In simple regression, product of coefficients from regression and reverse regression is the R^2 .

$$\hat{\gamma} imes \hat{\gamma}_{r} = R^{2} \quad \Leftrightarrow \quad rac{1}{\hat{\gamma}} = rac{\hat{\gamma}_{r}}{R^{2}}$$

Reduced form: $Z = C\gamma + u = X\beta\gamma + \epsilon\gamma + u$

$$\hat{\beta\gamma} = (X_2'X_2)^{-1}X_2'Z_2$$

$$\hat{\gamma} = (Y_1'Y_1)^{-1}Y_1'Z_1$$

Ratio $\frac{\beta \gamma}{\gamma}$ identical to previous estimators

$$\frac{\hat{\beta\gamma}}{\hat{\gamma}} = (X_2'X_2)^{-1}X_2'Z_2(Y_1'Z_1)^{-1}Y_1'Y_1$$

Reduced form: $Z = C\gamma + u = X\beta\gamma + \epsilon\gamma + u$

$$\hat{\beta\gamma} = (X_2'X_2)^{-1}X_2'Z_2$$

$$\hat{\gamma} = (Y_1'Y_1)^{-1}Y_1'Z_1$$

Ratio $\frac{\beta \gamma}{\gamma}$ identical to previous estimators

$$\frac{\hat{\beta\gamma}}{\hat{\gamma}} = (X_2'X_2)^{-1}X_2'Z_2(Y_1'Z_1)^{-1}Y_1'Y_1$$

Reduced form: $Z = C\gamma + u = X\beta\gamma + \epsilon\gamma + u$

$$\hat{\beta\gamma} = (X_2'X_2)^{-1}X_2'Z_2$$

 $\hat{\gamma} = (Y_1'Y_1)^{-1}Y_1'Z_1$

Ratio $\frac{\hat{\beta\gamma}}{\hat{\gamma}}$ identical to previous estimators

$$\frac{\hat{\beta}\gamma}{\hat{\gamma}} = (X_2'X_2)^{-1}X_2'Z_2(Y_1'Z_1)^{-1}Y_1'Y_1$$

 $\hat{\beta}_{SkinnerR^2} = (X'_2 X_2)^{-1} X'_2 Z_2 (Z'_1 Z_1)^{-1} Z'_1 Y_1 / R^2_{Z,Y}$

$$\hat{\beta}_{SkinnerR^2} = (X_2^{'}X_2)^{-1}X_2^{'}Z_2(Z_1^{'}Z_1)^{-1}Z_1^{'}Y_1/R_{Z,Y}^2$$

 $= (X'_2X_2)^{-1}X'_2Z_2(Z'_2Z'_2)^{-1}Z'_2X_2[(Z'_2Z'_2)^{-1}Z'_2X_2]^{-1}(Z'_1Z_1)^{-1}Z'_1Y_1/R^2_{Z,Y}$

$$\hat{\beta}_{SkinnerR^2} = (X_2^{'}X_2)^{-1}X_2^{'}Z_2(Z_1^{'}Z_1)^{-1}Z_1^{'}Y_1/R_{Z,Y}^2$$

 $= (X'_2X_2)^{-1}X'_2Z_2(Z'_2Z'_2)^{-1}Z'_2X_2[(Z'_2Z'_2)^{-1}Z'_2X_2]^{-1}(Z'_1Z_1)^{-1}Z'_1Y_1/R^2_{Z,Y}$

$$= (Z_2'X_2)^{-1}Z_2'Z_2(Z_1'Z_1)^{-1}Z_1'Y_1R_{Z,X}^2/R_{Z,Y}^2$$

$$\hat{\beta}_{SkinnerR^2} = (X_2^{'}X_2)^{-1}X_2^{'}Z_2(Z_1^{'}Z_1)^{-1}Z_1^{'}Y_1/R_{Z,Y}^2$$

 $= (X_2^{'}X_2)^{-1}X_2^{'}Z_2(Z_2^{'}Z_2^{'})^{-1}Z_2^{'}X_2[(Z_2^{'}Z_2^{'})^{-1}Z_2^{'}X_2]^{-1}(Z_1^{'}Z_1)^{-1}Z_1^{'}Y_1/R_{Z,Y}^2$

$$= (Z_2'X_2)^{-1} Z_2'Z_2 (Z_1'Z_1)^{-1} Z_1'Y_1 R_{Z,X}^2 / R_{Z,Y}^2$$

$$\hat{\beta}_{SkinnerR^2} = \hat{\beta}_{TS2SLS} R_{Z,X}^2 / R_{Z,Y}^2$$

- Correcting for multiple samples
- **2** Using Multiple proxies

Just like Inoue and Solon (2010) refinement, account for the fact that Z_1 and Z_2 are different in finite samples

$$\hat{\beta} = (X_2'X_2)^{-1}X_2'Z_2W_{12}(Y_1'Z_1)^{-1}Y_1'Y_1$$

where $W_{12} = (Z'_2 Z_2)^{-1} (Z'_1 Z_1)$ is a correction matrix for differences between the two samples (just as in TS2SLS)

- Precision can be improved with multiple Zs
- Numerical Equivalence breaks
- But we can still do R²-rescaled Skinner

$$\hat{\beta} = (X_{2}^{'}X_{2})^{-1}X_{2}^{'}Z_{2}(Z_{1}^{'}Z_{1})^{-1}Z_{1}^{'}Y_{1}[Y_{1}^{'}Z_{1}(Z_{1}^{'}Z_{1})^{-1}Z_{1}^{'}Y_{1}]^{-1}Y_{1}^{'}Y_{1}$$

• In essence, choose the proxies that have the higher partial R^2 , as with many instruments (Shea, 1997)

Design:

$$\begin{split} X_2 &\sim U(-2,2) \\ Y_1 &= 1.0X_2 + \epsilon \text{ with } \sigma_{\epsilon}^2 = 2, \\ Z_{A1} &= 0.5C_1 + u_1 \quad \& \quad Z_{B1} = 0.5C_1 + u_1 \text{ with } u_1 \sim MVN(0, \Sigma) \\ Z_{A2} &= 0.5C_1 + u_2 \quad \& \quad Z_{B2} = 0.5C_1 + u_2 \text{ with } u_2 \sim MVN(0, \Sigma) \\ \text{where } \Sigma &= \begin{bmatrix} \sigma_A^2 & \sigma_{AB} \\ \sigma_{AB} & \sigma_B^2 \end{bmatrix} \text{ with } \sigma_{AB} = 0.6, \ \sigma_B^2 = 3 \text{ and } \sigma_A^2 = 4. \end{split}$$

10,000 replications

Results:

n	250		1000	
	Mean	SD	Mean	SD
Full	1.000	(0.111)	1.000	(0.055)
Skinner1Z	0.250	(0.071)	0.250	(0.035)
Skinner2Zs	0.403	(0.092)	0.400	(0.045)
BPP1Z	1.010	(0.275)	1.002	(0.136)
Skinner 1 ZR 2	1.010	(0.275)	1.002	(0.136)
BPP1ZC	1.005	(0.256)	1.001	(0.127)
$Skinner1ZR^{2}C$	1.005	(0.256)	1.001	(0.127)
Skinner2ZsR ² C	1.002	(0.192)	1.001	(0.096)

Our method

- R²-rescaled method is easy to use
- Asymptotics and finite sample properties
- Include multiple proxies based on partial R^2
- Use Inoue and Solon (2010) correction.
- Standard Errors need correction (as usual in TS estimators)

Generalises to cases:

- with measurement error
- with additional covariates
- with panel data

References

- Angrist, J. D. and Krueger, A. B. (1992). The effect of age at school entry on educational attainment: an application of instrumental variables with moments from two samples. Journal of the American Statistical Association, 87(418):328–336.
- Arellano, M. and Meghir, C. (1992). Female labour supply and on-the-job search: an empirical model estimated using complementary data sets. <u>The Review of Economic Studies</u>, 59(3):537–559.
- Blundell, Pistaferri and Preston (2004). Imputing consumption in the PSID using food demand estimates from the CEX. IFS Working Papers.
- Blundell, Pistaferri and Preston (2008). Consumption inequality and partial insurance. <u>American</u> Economic Review, pages 1887–1921.
- Inoue, A. and Solon, G. (2010). Two-sample instrumental variables estimators. <u>The Review of</u> Economics and Statistics, 92(3):557–561.
- Ridder, G. and Moffitt, R. (2007). The econometrics of data combination. <u>Handbook of</u> Econometrics, 6:5469–5547.
- Shea, J. (1997). Instrument relevance in multivariate linear models: A simple measure. <u>The</u> Review of Economics and Statistics, 79(2):348–352.
- Skinner, J. (1987). A superior measure of consumption from the panel study of income dynamics. <u>Economics Letters</u>, 23(2):213–216.
- Ziliak, J. P. (1998). Does the choice of consumption measure matter? an application to the permanent-income hypothesis. Journal of Monetary Economics, 41(1):201–216.