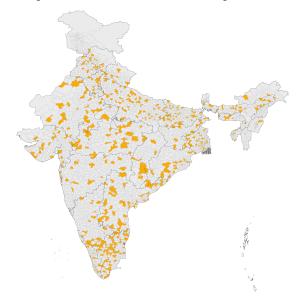
Women Legislators and Economic Performance

Thushyanthan Baskaran (University of Siegen)
Sonia Bhalotra (University of Essex)
Brian Min (University of Michigan)
Yogesh Uppal (Youngstown State University)

12 April 2018 EPCS, Rome


Women's Political Participation

Rising Share of Women in Political Office

- Substantial under-representation
 - Worldwide 23%, UK 32%, India 10%
- Phenomenal increase since 1990- doubling (global & India)
 - The feminization of politics is one of the most exciting political phenomena of our time.
 - Important to consider substantive impacts of widening representation.

Figure: Geographic Distribution of Female Legislators: 1992-2008.

Women Politicians Change Policy Choices

- Legislator gender affects composition of public spending
- Consistent with women & men having different preferences:
 lab experiments, voter surveys
- However, no evidence for economic activity, the rising tide thought to lift all boats.
- Lurking suspicion that women leaders may compromise growth given they favour redistribution.
 - Edlund and Pande 2002; British Election Survey 2011

Women on Corporate Boards

- Ambiguous/ mixed results for economic performance
 - Gagliadurci & Paserman 2014- Germany- no impact once sorting is accounted for
 - Ahern and Dittmar 2012-Norway quotas- deterioration of performance- women less experienced.
- Our approach avoids candidate selection, and the distortions introduced by quotas

Data

- Elections to India's state legislative assemblies
- Electoral data- 4265 constituencies, 1992-2012, spanning 4 elections
- Map satellite imagery of night luminosity to constituencies to measure economic performance (Henderson et al. 2012)

Figure: Level of luminosity in India in 1992.

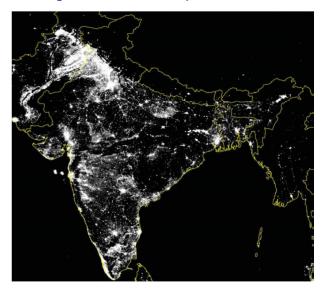
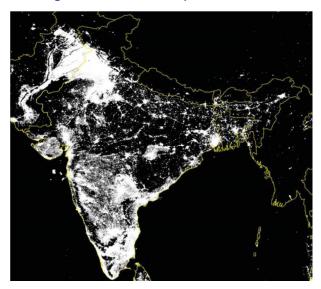



Figure: Level of luminosity in India in 2009.

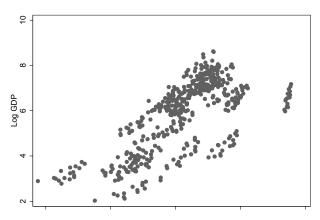
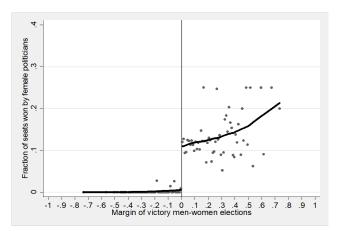


Figure: Scatter of GDP against Night Light Luminosity: State data Note: Log(Light/Area) is the natural log of total light output of a state in a given year divided by its geographical area. Data for 1992-2009.

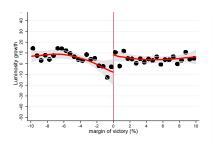
Empirical Strategy- RD

- Design challenge: Voter preferences are likely to be different in places where women win
- Need to isolate legislator preferences from voter preferences
- Use RD design on close elections between men and women- so gender of the winner is quasi-random (Lee 2008)
- Analyze mechanisms- corruption, public infrastructure, strategic vs intrinsic motivation

RD Estimator


• The estimated equation is

$$y_{ist} = \alpha + \tau WomanLegislator_{ist} + f(Margin_{ist}) + \epsilon_{ist}$$
 (1)


$$WomanLegislator_{ist} = \begin{cases} 1 & \text{if } Margin_{ist} > 0 \\ 0 & \text{if } Margin_{ist} \le 0 \end{cases}$$

- y_{ist} is the growth of light in constituency i in state s during election term t
- Local linear regressions (Imbens and Lemieux, 2007) restricting sample to an optimal bandwidth around the discontinuity (Imbens and Kalyanaraman, 2011).

Figure: Discontinuity [jump] in winning chances when the victory margin is small.

Main Result: Legislator Gender and Luminosity Growth

- Quasi-random assignment of a female (rather than a male) winner to a constituency increases economic growth by 2 ppt p.a.
- Given average growth in sample period of 7%, the growth premium associated with having a female legislator is 25%

Table: Legislator Gender and Luminosity Growth

	(1)	(2)	(3)	(4)	(5)
		Growth of Light _{t+1}			
	Local Linear				Local Quadratic
	IK (h)	h/2	2h	IK (h) with Covariates	IK (h)
Female MLA _t	15.25**	16.97*	8.52**	10.53**	17.11*
	[6.12]	[8.96]	[3.79]	[4.40]	[9.42]
R^2	0.03	0.03	0.02	0.75	0.03
N	584	316	980	428	584
Bandwidth	6.68	3.34	13.36	6.68	6.68

Specification Checks

- Pre-determined covariates do not jump at threshold
 - Electoral and demographic characteristics of constituency
 - Lagged outcomes
- McCrary density test for sorting at the zero victory margin
- Control for party of legislator
- Vary bandwidth, rank of women, remove outliers

Spillovers to neighbours

We have shown women are more effective than men at raising growth in their own constituencies.

- We tested for offsetting negative spillovers to contiguous constituencies
- Found none- hence women raise economic performance overall.
 - Dep variable changed to growth averaged over neighbours of constituency j (mean of 6).
 - Independent variable is gender of the legislator in j.
 - Imprecisely determined positive effect- consistent with yardstick competition between neighbours (Besley and Case, 1995) and infrastructure spillovers.

Mechanisms 1- Corruption tendencies

- Data: Candidates required to file affidavits which include pending criminal charges
 - 10% women legislators are 'criminal' vs 32% men.
 - This explains 25% of the estimated performance gap (cf Prakash et al. 2017)
- Women appear to have weaker preferences for criminal behaviour
 - Criminal behaviour is correlated with risk-aversion, patience, fairness which exhibit gender differences
 - Andreoni and Vesterlund, 2001; Eckel and Grossman, 2008;
 Fletschner et al., 2010

Mechanisms 2- Corruption in office

- Once elected, politicians are s.t. a re-election constraint
- Or office may ennoble (Brennan and Pettit, 2002; Benabou and Tirole, 2003)
- We estimate rent-seeking indicated by net asset growth in office (Fisman et al. 2014)
- We estimate that this is 10 ppt p.a. lower among women

Mechanisms 3- Public infrastructure provision

- Administrative data on federally funded but locally implemented village road building scheme from 2000
- No difference in number of road contracts won by women
- But share of incomplete road projects is 22 ppt lower for women
 - Road construction has higher returns for men (Asher and Novosad 2018)
 - Our result shows that women are not only good at serving the interests of women.

Mechanisms 4- Political opportunism

- Politicians can be opportunistic or intrinsically motivated
 - Mani and Mukand 2007; Cole 2009 vs Brennan and Pettit 2002: Benabou and Tirole 2003
- Opportunistic (electoral) incentives sharper in swing constituencies
- Define swing if previously won by a <5% margin
- Find women only more effective in non-swing constituencies

Conclusions

- Women raise economic performance in their constituencies, and overall
 - This result is not apparent in the raw data because of selection
- Mechanisms indicated are lower corruption, higher intrinsic motivation and efficacy in completing infrastructure projects
- To the extent that opportunities for corruption are greater in less developed countries, women may be especially effective relative to men in these countries

Cross-Country Scatter: Women in Parliament & Growth

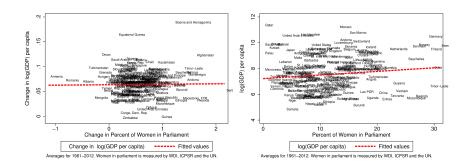
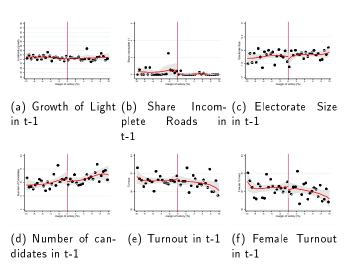



Figure: Raw scatter- does not account for selection

Balance in pre-determined covariates I

Balance in pre-determined covariates II

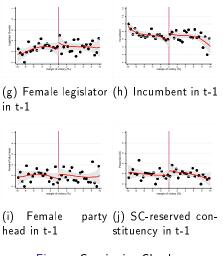


Figure: Continuity Checks

Balance in pre-determined covariates III

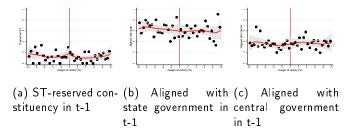
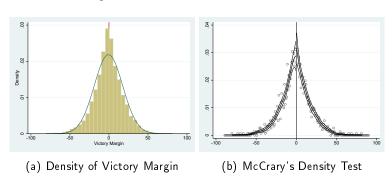



Figure: Continuity Checks

Distribution of running variable

Figure: Density of the Forcing Variable

Table: Robustness tests

	(1)	(2)	(3)	(4)		
		Growth of Light _{t+1}				
		Local Linear				
	Without outliers	With alternative margin	Neighbor sample	Party affilation		
Female MLA _t	7.18**	14.78***	15.52**	13.52**		
	[3.61]	[5.50]	[6.54]	[5.90]		
INC				6.32**		
				[2.69]		
BJP				1.79		
				[3.44]		
R^2	0.02	0.02	0.03	0.04		
N	568	685	553	584		
Bandwidth	6.61	7.55	7.4	6.68		

Legislator Gender and Asset Growth

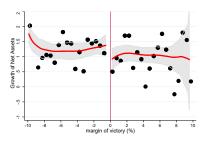
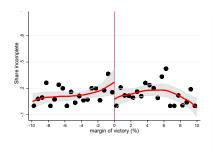



Table: Legislator Gender and Asset Growth

	(1)	(2)	(3)	(4)	(5)
		(Growth of	Assets	
	Local Linear			Local Quadratic	
	IK (h)	h/2	2h	IK (h) with Covariates	IK (h)
Female MLA _t	-0.50*	-0.61	-0.03	-0.48**	-0.76*
	[0.25]	[0.45]	[0.28]	[0.22]	[0.41]
R^2	0.01	0.01	0	0.12	0.01
N	383	176	734	340	383
Bandwidth	3.27	1.63	6.54	3.27	3.27

Legislator Gender and Road Completion

Table: Legislator Gender and Road Completion

	(1)	(2)	(3)	(4)	(5)
			Road Projec	ts	
	Local Linear				Local Quadratic
	IK (h)	h/2	2h	IK (h) with Covariates	IK (h)
		Panel A: Sh	are of Incomple	ete Road Projects	
Female MLA	-0.22*	-0.26*	-0.17*	-0.22**	-0.35*
	[0.12]	[0.15]	[0.08]	[0.09]	[0.18]
R^2	0.04	0.11	0.03	0.83	0.05
N	122	63	226	67	122
Bandwidth	3.29	1.64	6.58	3.29	3.29
	Panel B: Number of Road Projects Awarded				
Female MLA	-1.13	-1.38	-0.88	0.05	-1.08
	[0.85]	[1.12]	[0.69]	[0.94]	[1.25]
R^2	0.01	0.03	0.01	0.43	0.02
N	255	134	435	110	255
Bandwidth	6.11	3.05	12.21	6.11	6.11

Table: Probability of Winning as a Function of Criminality

	(1)	(2)	(3)		
		Probability of Winr	ing		
		Panel A: Full Sample			
	OLS	IK(h)	IK(h) with covariates		
Criminal	0.107***	-0.0424	-0.0855		
	(0.0189)	(0.0596)	(0.0669)		
N	2823	1227	977		
	P	anel B: Mixed Gender	Sample		
Criminal	0.180***	0.0142	-0.0833		
	(0.0534)	(0.175)	(0.204)		
N	342	142	111		

Table: RD Check for Road Completion- Constituency population thresholds

	(1)	(2)	(3)
	Average Village Population	Proportion of Villages with Population>=500	Proportion of Villages with Population>=1000
Female MLA _t	155.1	-0.0764	0.00707
	(500.10)	(0.10)	(0.12)
Bandwidth	10.7	2.27	3.23
N	281	72	104