DESIGN EFFECTS FOR MULTIPLE DESIGN SAMPLES

Siegfried Gabler, Sabine Häder and Peter Lynn

ISER Working Papers
Number 2005-12
The Institute for Social and Economic Research (ISER) specialises in the production and analysis of longitudinal data. ISER incorporates the following centres:

- ESRC Research Centre on Micro-social Change. Established in 1989 to identify, explain, model and forecast social change in Britain at the individual and household level, the Centre specialises in research using longitudinal data.

- ESRC UK Longitudinal Studies Centre. This national resource centre was established in October 1999 to promote the use of longitudinal data and to develop a strategy for the future of large-scale longitudinal surveys. It is responsible for the British Household Panel Survey (BHPS) and for the ESRC’s interest in the National Child Development Study and the 1970 British Cohort Study.

- European Centre for Analysis in the Social Sciences. ECASS is an interdisciplinary research centre which hosts major research programmes and helps researchers from the EU gain access to longitudinal data and cross-national data sets from all over Europe.

The British Household Panel Survey is one of the main instruments for measuring social change in Britain. The BHPS comprises a nationally representative sample of around 5,500 households and over 10,000 individuals who are reinterviewed each year. The questionnaire includes a constant core of items accompanied by a variable component in order to provide for the collection of initial conditions data and to allow for the subsequent inclusion of emerging research and policy concerns.

Among the main projects in ISER’s research programme are: the labour market and the division of domestic responsibilities; changes in families and households; modelling households’ labour force behaviour; wealth, well-being and socio-economic structure; resource distribution in the household; and modelling techniques and survey methodology.

BHPS data provide the academic community, policymakers and private sector with a unique national resource and allow for comparative research with similar studies in Europe, the United States and Canada.

BHPS data are available from the Data Archive at the University of Essex http://www.data-archive.ac.uk

Further information about the BHPS and other longitudinal surveys can be obtained by telephoning +44 (0) 1206 873543.

The support of both the Economic and Social Research Council (ESRC) and the University of Essex is gratefully acknowledged. The work reported in this paper is part of the scientific programme of the Institute for Social and Economic Research.
Acknowledgement: The first and second authors are statisticians at the Zentrum für Umfragen, Methoden und Analysen (ZUMA), Mannheim, Germany. The third author is grateful to ZUMA for a guest professorship which provided the time and stimulation to write this paper and for the support of the UK Longitudinal Studies Centre at the University of Essex, which is funded by grant number H562255004 of the UK Economic and Social Research Council.

Readers wishing to cite this document are asked to use the following form of words:

For an on-line version of this working paper and others in the series, please visit the Institute’s website at: http://www.iser.essex.ac.uk/pubs/workpaps/
ABSTRACT

In some situations the sample design of a survey is rather complex, consisting of fundamentally different designs in different domains. The design effect for estimates based upon the total sample is a weighted sum of the domain-specific design effects. We derive these weights under an appropriate model and illustrate their use with data from the European Social Survey (ESS).

Key words: Clustering, Intraclass correlation coefficient, Selection probabilities, Stratification, Variance component model
1. Introduction

In survey research complex sample designs are often applied. These designs have features such as stratification, clustering and/or unequal inclusion probabilities, that lead to “design effects”. The design effect is a measure that shows the effect of the design on the variance of an estimate. Design-based it is defined as follows (see Lohr 1999, p. 239):

\[
\text{deff(plan, statistic)} = \frac{V(\text{estimate from sampling plan})}{V(\text{estimate from an SRS with same number of observation units})}
\]

The use of clustering and/or unequal inclusion probabilities typically leads to design effects greater than 1.0; in other words the variance of an estimate is increased compared to the variance of the estimate from a simple random sample with the same number of observations. The consideration of design effects is very important when estimating the sample size of a survey in advance. For example, if a comparative survey with different countries is planned it is very useful to have estimates for the design effects of the different countries. Then it is possible to choose the net sample sizes in a way that the precision of the estimates will be approximately equal. For this, for a certain degree of precision the sample size that would be needed under simple random sampling (effective sample size) has to be multiplied by the predicted design effect.

The European Social Survey (ESS, see www.europeansocialsurvey.com) is a survey program where design effects are taken into consideration for calculating net sample sizes – aiming at the same effective sample size in all countries \((n_{\text{eff}} = 1,500) \). 22 countries participated in the first round of the ESS, only three of them with unclustered, equal probability designs (srs): Denmark, Finland and Sweden.
For all other countries there was the need to predict the design effect in advance of the study. For this, a model based approach (see Gabler et al. 1999) was used which distinguishes between a design effect due to unequal inclusion probabilities (term 1) and a design effect due to clustering (term 2):

\[deff = m \frac{\sum_{i=1}^{I} m_i w_i^2}{\left[\sum_{i=1}^{I} m_i w_i \right]^2} \left[1 + (\bar{b} - 1) \rho \right] = deff_p \cdot deff_c \]

where \(m_i \) are respondents in the \(i \)-th selection probability class, each receiving a weight of \(w_i \), \(\bar{b} \) is the mean number of respondents per cluster and \(\rho \) is the intraclass correlation coefficient. (This is of course a simplification that assumes no association between \(y \) and \(w_i \) or between \(w_i \) and \(\bar{b} \) and ignores any effects of stratification, that will tend to be beneficial and modest. See Lynn et al. (2004) and Park and Lee (2004) for discussion of the sensitivity of \(deff \) predictions to these assumptions; see Lynn and Gabler (2005) for discussion of alternative ways to predict \(deff_c \).)

In some countries the applied designs were even more complicated, consisting of fundamentally different designs in each of two independent domains. In the UK, e.g., the design was a mixture of a clustered design with unequal inclusion probabilities (in Great Britain) and an unclustered sample (in Northern Ireland). In Poland, simple random samples were selected in one domain (cities and large towns), while a two-stage clustered design was applied in the second domain (all other areas). In Germany, a clustered equal-probability sample was selected in each domain (West Germany including West Berlin; East Germany), but the sampling fractions differed between the domains.
The question arose how to predict design effects for these dual design samples. As we show below, it is not simply a convex combination of the design effects for the different domains – apart from in some special cases. A general solution for multiple design samples will be presented in section 2, with illustrations of the application of this solution to prediction of design effects prior to field work (section 3) and to estimation of design effects post-field work (section 4). Section 5 concludes with discussion.

2. Design Effects for Multiple Design Samples

Let \(b_c \) be the number of observations in the \(c \)th cluster \((c=1,...,C)\) and \(\{C_1,\ldots,C_K\} \) a partition of \(\{1,...,C\} \) into \(K \) domains. Then \(Cb = \sum_{c=1}^{C} b_c = \sum_{k=1}^{K} \sum_{c \in C_k} b_c = \sum_{k=1}^{K} m_k = m \), where \(m_k = \sum_{c \in C_k} b_c \) is the number of observations in the \(k \)-th domain of clusters. Let \(y_{cj} \) and \(w_{cj} \) be the observation and the design weight for the \(j \)th sampling unit in the \(c \)th cluster \((c=1,...,C; j=1,...,b_c)\). The usual design-based estimator for the population mean is defined as

\[
\bar{y}_w = \frac{\sum_{c=1}^{C} \sum_{j=1}^{b_c} W_{cj} y_{cj}}{c \sum_{c=1}^{C} \sum_{j=1}^{b_c} W_{cj}} = \frac{\sum_{k=1}^{K} \sum_{c \in C_k} \sum_{j=1}^{b_c} W_{cj} y_{cj}^{(k)}}{C \sum_{c=1}^{C} \sum_{j=1}^{b_c} W_{cj}}
\]

where
We assume the following model M1:

\[
E(y_{cj}) = \mu \quad \text{for} \quad c = 1, \ldots, C; \quad j = 1, \ldots, b_c
\]

\[
Var(y_{cj}) = \sigma^2
\]

\[
\text{Cov}(y_{cj}, y_{cj'}) = \begin{cases}
\rho_k \sigma^2 & \text{if} \quad c = c' \in C_k; \quad j \neq j' \\
0 & \text{otherwise}
\end{cases} \quad k = 1, \ldots, K.
\]

Model M1 is appropriate to account for the cluster effect with different kinds of clusters and generalises an earlier approach (see, e.g., Gabler et al. 1999). More general models can be found in Rao and Kleffe (1988, p. 62). We define the (model) design effect as

\[
\text{deff} = \frac{\text{Var}_{M1}(\bar{y}_w)}{\text{Var}_{M2}(\bar{y})},
\]

where \(\text{Var}_{M1}(\bar{y}_w) \) is the variance of \(\bar{y}_w \) under model M1 and \(\text{Var}_{M2}(\bar{y}) \) is the variance of the overall sample mean \(\bar{y} \), defined as \(\sum_{c=1}^{C} \sum_{j=1}^{b_c} y_{cj} / m \), computed under the following model M2:

\[
E(y_{cj}) = \mu \quad \text{for} \quad c = 1, \ldots, C; \quad j = 1, \ldots, b_c
\]

\[
Var(y_{cj}) = \sigma^2
\]

\[
\text{Cov}(y_{cj}, y_{cj'}) = 0 \quad \text{for all (c, j) \neq (c', j')}.\]

Note that model M2 is appropriate under simple random sampling and provides the usual formula \(\sigma^2 / m \) for \(\text{Var}_{M2}(\bar{y}) \).
Quite analogous to Gabler et al. (1999) we note that

\[
Var_{\lambda_{1}}(\sum_{c=1}^{b_{c}} \sum_{j=1}^{b_{j}} w_{c,j} y_{c,j}) = \sigma^{2} \sum_{k=1}^{K} \sum_{c \in C_{k}}^{b_{c}} \{ \sum_{j=1}^{b_{j}} w_{c,j}^{2} + \rho_{k} \sum_{j=1}^{b_{j}} w_{c,j} w_{c,j} \}
\] (4)

Thus

\[
deff = \sum_{k=1}^{K} \left(\frac{\sum_{c \in C_{k}}^{b_{c}} \sum_{j=1}^{b_{j}} w_{c,j}}{\sum_{c \in C_{k}}^{b_{c}} \sum_{j=1}^{b_{j}} w_{c,j}} \right)^{2} \frac{m}{m_{k}} \det_{k}
\] (5)

where

\[
deff_{k} = m_{k} \left(\frac{\sum_{c \in C_{k}}^{b_{c}} \sum_{j=1}^{b_{j}} w_{c,j}^{2}}{\sum_{c \in C_{k}}^{b_{c}} \sum_{j=1}^{b_{j}} w_{c,j}} \right)^{2} \left[1 + (b_{k}^{*} - 1) \rho_{k} \right] \quad \text{with} \quad b_{k}^{*} = \frac{\sum_{c \in C_{k}}^{b_{c}} \sum_{j=1}^{b_{j}} w_{c,j}^{2}}{\sum_{c \in C_{k}}^{b_{c}} \sum_{j=1}^{b_{j}} w_{c,j}}
\]

It can be seen that \(\det \) is not a convex combination of the specific \(\{ \det_{k} \} \) except in some special cases. We consider here four realistic scenarios, each representing a simplification of the general case. Only in two of these scenarios (scenarios 1 and 4) does the combination become convex.

Scenario 1: Equal weights for all units

If \(w_{c,j} = 1 \) for all \(c, j \), then expression (5) simplifies to:

\[
deff = \sum_{k=1}^{K} \frac{m_{k}}{m} \det_{k}
\] (6)
Scenario 2: Equal weights within each domain

If \(w_{cj} = w_k \) for all \(c \in C_k, j \), then expression (5) becomes:

\[
deff = \sum_{k=1}^{K} \left(\frac{m_k w_k}{\sum_{k=1}^{K} m_k w_k} \right)^2 \frac{m}{m_k} \text{deff}_k
\]

(7)

Scenario 3: Equal response rates across domains

If \(\sum_{c \in C_k} \sum_{j=1}^{b_c} w_{cj} = \frac{N_k}{N} \), where \(N_k \) is population size in domain \(k \); \(N = \sum_{k=1}^{K} N_k \), then expression (5) becomes:

\[
deff = \sum_{k=1}^{K} \left(\frac{N_k}{N} \right)^2 \frac{m}{m_k} \text{deff}_k
\]

(8)

Scenario 4: Equal sampling/coverage rates and response rates across domains

If \(\frac{m}{m_k} = \frac{N}{N_k} \), then expression (8) becomes:

\[
deff = \sum_{k=1}^{K} \frac{N_k}{N} \text{deff}_k
\]

(9)
3. Application to Prediction of Deff

In round 1 of the ESS, the sample design was a combination of two different sample designs for 5 out of 22 countries: United Kingdom, Poland, Belgium, Norway and Germany. We can apply the general formula (5) for design effects for multiple design samples to each of these cases, where $K=2$. In some cases, we can equivalently use one of the simplified expressions (6) to (9). Here we illustrate how the formulae would be used in the prediction of design effects prior to fieldwork, for the purpose of establishing the required net sample size to achieve a prescribed precision of estimation. In each case, the approach is to predict $\{deff_1\}$ using (1) and then use (5) to predict $deff$. For a more detailed description of the sample designs see Häder et al. (2003). We use three of the ESS countries – Poland, UK and Germany - as illustrations as these designs differ between the domains in different ways. The designs of Norway and Belgium were similar to that of Poland, with equal probabilities for all units but one domain clustered and one unclustered.

3.1 Poland

In Poland, the first domain covered the population living in towns of 100,000 inhabitants or more. Within this domain, a simple random sample (srs) of persons was selected from the population register (PESEL data base) in each region, with slight variation between regions in the sampling fraction, reflecting anticipated differences in response rate. There were 42 towns in this domain and they accounted for about 31% of the target population.

The second domain corresponded to the rest of the population – people living in towns of 99,999 inhabitants or fewer and people living in rural areas. This part of the sample was stratified and clustered (158 clusters). The sampling of this second part
was based on a two-stage design: PSUs were selected with probability proportional to size. The definition of a PSU was different for urban vs. rural areas. For urban areas, a PSU was equivalent to a town, whereas for rural areas, it was equivalent to a village. In the second stage, a cluster of 12 respondents was selected in each PSU by srs.

In the first domain, $\rho = 0$ and $\text{deff}_1 = 1$. The modest variation in selection probabilities leads to $\text{deff}_{p1} = 1.005$ and, therefore, $\text{deff}_1 = \text{deff}_{c1} \cdot \text{deff}_{p1} = 1.005$. In the second domain, the design effect due to clustering was anticipated to be $\text{deff}_{c2} = 1.18$ and $\text{deff}_{p2} = 1.01$ which results in $\text{deff}_2 = \text{deff}_{c2} \cdot \text{deff}_{p2} = 1.19$.

Substituting these values of deff_k in (5) leads to a prediction of $\text{deff} = 1.17$.

The design for Poland differs only slightly from scenario 2 and it can be seen that in this case the simpler expression, (7), provides a reasonable prediction if we approximate the weights as follows. Domain 1 contains 37.3% of the gross sample and 31% of the target population. Thus

$$w_1 = \frac{N_1}{n_1} = \frac{0.310}{0.373} = 0.831 \quad \text{and} \quad w_2 = \frac{N_2}{n_2} = \frac{0.690}{0.627} = 1.100,$$

respectively, where n_k is gross sample size in domain k; $n = \sum_{k=1}^{K} n_k$

Now, we can apply expression (7) to find the predicted design effect for estimates for Poland: $\text{deff} = (0.194 \cdot 1.005) + (0.821 \cdot 1.19) = 1.17$.

8
3.2 United Kingdom

In the UK, the ESS sample design differed between Great Britain (England, Wales, Scotland) and Northern Ireland. In Great Britain a stratified three-stage design with unequal probabilities was applied. At the first stage 162 small areas known as “postcode sectors” were selected systematically with probability proportional to the number of addresses in the sector, after implicit stratification by region and population density. At stage 2, 24 addresses were selected in each sector, leading to an equal-probability sample of addresses. At the third stage, one person aged 15+ was selected at the selected address using a Kish grid.

For Northern Ireland a simple random sample of 125 addresses was drawn from the Valuation and Land Agency’s list of domestic properties. One person aged 15+ was selected at the selected address using a Kish grid. Thus, the UK sample is clustered in one domain but not in the other. In both domains, there are unequal selection probabilities.

In Great Britain we predicted $deff_{c1} = 1.20$ and $deff_{p1} = 1.22$, so $deff_1 = 1.46$. In Northern Ireland we have predictions of $deff_{c2} = 1$ and $deff_{p2} = 1.27$, so $deff_2 = 1.27$. From expression (5), $deff = 0.978 \cdot 1.46 + 0.023 \cdot 1.27 = 1.460$. It should also be noted that the gross sample sizes in the two domains were chosen to result in net sample sizes that would be approximately in proportion to the population sizes. In other words, the simplification of scenario 4 approximately holds. If we use expression (9), we get $deff = \frac{N_1}{N} deff_1 + \frac{N_2}{N} deff_2 = 0.97 \cdot 1.46 + 0.03 \cdot 1.27 = 1.457$, demonstrating that this provides a reasonable approximation to (5) in this case.
3.3 Germany

In Germany independent samples were selected in two domains, West Germany incl. West Berlin, and East Germany incl. East Berlin. In both domains, the sample was clustered and equal-probability, but a higher sampling fraction was used in East Germany.

At the first stage 100 communities (clusters) for West Germany, and 50 for East Germany were selected with probability proportional to the population size of the community (aged 15 years or older). The number of communities selected from each stratum was determined by a controlled rounding procedure. The number of sample points was 108 in the West, and 55 in the East (some larger communities have more than one sample point). At the second stage in each sample point there was drawn an equal number of individuals by a systematic random selection process. This was done using the local registers of residents’ registration offices.

Since the sampling design is self-weighting for both East and West Germany, but with disproportional allocation, scenario (2) applies and we can use expression (7), where

\[w_1 = w_{\text{EAST}} = \frac{N_{\text{EAST}}}{N} \frac{n}{n_{\text{EAST}}} = 0.567 \quad \text{and} \quad w_2 = w_{\text{WEST}} = \frac{N_{\text{WEST}}}{N} \frac{n}{n_{\text{WEST}}} = 1.257. \]

The design effect due to clustering for each domain was predicted as \(deff_{c1} = 1.39 \) and \(deff_{c2} = 1.35 \), respectively, so from (7) we have

\[deff = 0.120 \cdot 1.39 + 0.991 \cdot 1.35 = 1.51. \]
It should be noted that in this case any convex combination of the domain-specific design effects will lead to a prediction of $deff$ between 1.35 and 1.39. For example, (6) would give $deff=1.36$. This fails to take into account the differences in selection probabilities between the domains. With this particular design – where the only difference in design between domains is the difference in selection probabilities – $deff$ might alternatively be predicted by taking the convex combination and multiplying it by the prediction of $deff_y$ from the first term in expression (1), viz. $deff = 1.36 \cdot 1.09 = 1.49$. But this method is equivalent only in the special case where $\{deff_k\}$ are equal – and approximately equivalent in this case, where the variation is small.

4. Application to Estimation of $Deff$

Here we illustrate the use of expression (5) in the estimation of design effects post-fieldwork. We present estimates for 5 demographic/behavioural variables and a set of 24 attitude measures from round 1 of the European Social Survey, for the same three countries as in section 3 (Table 1). For comparison, we present also the estimates that would be obtained using the simpler expressions (6), (8) and (9). It can be seen that the estimates of $deff$ differ greatly between variables. This is to be expected, reflecting variation in the association of y with clusters and with selection probabilities. But here we are more interested in differences between estimation methods for the same variable.
Table 1: Estimates of *deff* for means under 4 estimators for 3 countries

<table>
<thead>
<tr>
<th>Estimator:</th>
<th>DE</th>
<th>GB</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic/behavioural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persons in household</td>
<td>1.87</td>
<td>1.85</td>
<td>1.87</td>
</tr>
<tr>
<td>Years of education</td>
<td>3.25</td>
<td>2.80</td>
<td>2.88</td>
</tr>
<tr>
<td>Net household income</td>
<td>2.46</td>
<td>2.15</td>
<td>2.19</td>
</tr>
<tr>
<td>Time watching TV</td>
<td>2.08</td>
<td>1.86</td>
<td>2.08</td>
</tr>
<tr>
<td>Time reading newspaper</td>
<td>1.79</td>
<td>1.62</td>
<td>1.79</td>
</tr>
<tr>
<td>Attitude measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discriminated by race</td>
<td>1.16</td>
<td>1.03</td>
<td>1.16</td>
</tr>
<tr>
<td>Discriminated by religion</td>
<td>1.22</td>
<td>1.05</td>
<td>1.22</td>
</tr>
<tr>
<td>General happiness</td>
<td>2.56</td>
<td>2.11</td>
<td>2.23</td>
</tr>
<tr>
<td>Trust in others</td>
<td>2.20</td>
<td>1.96</td>
<td>2.20</td>
</tr>
<tr>
<td>Trust in Euro Parliament</td>
<td>1.83</td>
<td>1.59</td>
<td>1.83</td>
</tr>
<tr>
<td>Trust in legal system</td>
<td>2.07</td>
<td>1.72</td>
<td>2.07</td>
</tr>
<tr>
<td>Trust in police</td>
<td>1.92</td>
<td>1.63</td>
<td>1.92</td>
</tr>
<tr>
<td>Trust in politicians</td>
<td>1.75</td>
<td>1.62</td>
<td>1.75</td>
</tr>
<tr>
<td>Trust in parliament</td>
<td>1.64</td>
<td>1.48</td>
<td>1.64</td>
</tr>
<tr>
<td>Left-right scale</td>
<td>1.70</td>
<td>1.65</td>
<td>1.70</td>
</tr>
<tr>
<td>Satisfaction with life</td>
<td>2.06</td>
<td>1.74</td>
<td>2.06</td>
</tr>
<tr>
<td>Satisfaction with education system</td>
<td>3.03</td>
<td>2.89</td>
<td>3.03</td>
</tr>
<tr>
<td>Satisfaction with health system</td>
<td>3.76</td>
<td>3.21</td>
<td>3.76</td>
</tr>
<tr>
<td>Religiosity</td>
<td>1.94</td>
<td>1.75</td>
<td>1.94</td>
</tr>
<tr>
<td>Attitudes to immigrants</td>
<td>2.77</td>
<td>2.68</td>
<td>2.77</td>
</tr>
<tr>
<td>Supports law against ethnic discrimination</td>
<td>2.82</td>
<td>2.85</td>
<td>2.82</td>
</tr>
<tr>
<td>Importance of family</td>
<td>2.17</td>
<td>1.99</td>
<td>2.17</td>
</tr>
<tr>
<td>Importance of friends</td>
<td>2.31</td>
<td>2.09</td>
<td>2.31</td>
</tr>
<tr>
<td>Importance of work</td>
<td>2.20</td>
<td>2.16</td>
<td>2.20</td>
</tr>
<tr>
<td>Support people worse off</td>
<td>2.70</td>
<td>2.47</td>
<td>2.70</td>
</tr>
<tr>
<td>Always obey law</td>
<td>2.43</td>
<td>2.21</td>
<td>2.43</td>
</tr>
<tr>
<td>Political activism</td>
<td>3.26</td>
<td>2.83</td>
<td>3.26</td>
</tr>
<tr>
<td>Liberalism</td>
<td>2.28</td>
<td>2.18</td>
<td>2.28</td>
</tr>
<tr>
<td>Participation in groups</td>
<td>3.75</td>
<td>3.04</td>
<td>3.75</td>
</tr>
</tbody>
</table>

Note: The complete wording of all questions can be found in the questionnaire documentation section of the ESS website: http://www.europeansocialsurvey.org/. The last three measures in the table are scales composed from a set of items; all other measures are single items.
For Germany, we see that estimators (6) and (9), which ignore variation in weights and in sampling rates between the two domains respectively, under-estimates deff for all variables. Estimator (8), which assumes only equal response rates in each domain, produces estimates very similar to (5). For Poland, all three simplified estimators under-estimate deff, though (6) perhaps performs marginally better than the other two. For UK, we observe the remarkable result that all four estimators produce almost identical estimates for every variable. The assumption in (9) (and therefore also that in (8)) holds for UK and while weights are by no means equal, the distribution of weights is very similar in each domain. It can be noted that (6) holds under a weaker assumption that

\[
\sum_{c=1}^{b_c} \sum_{j=1}^{b_{cj}} w_{cj} / \sum_{c=1}^{b_c} \sum_{j=1}^{b_{cj}} w_{cj} = m_c / m, \quad \text{i.e. that the share of the}
\]

weights in each stratum equals the share of sample units. It is striking that these relationships between the estimators are consistent across all the variables considered.

5. Discussion and Conclusion

Expression (5) provides an appropriate means of combining design effects for domains with fundamentally different designs. It can be applied in estimation by estimating deffs in the usual way for each domain and then combining them using knowledge of the weight and domain membership of sample units. Use of (5) in the prediction of deffs before a survey is carried out only slightly more demanding, requiring prediction of the share of the weights in the responding sample in each domain in addition to a method of predicting design-specific deffs.
We have shown in section 4 above that use of alternative, simpler, methods of combining the domain-specific *deffs* does not always result in good estimates. In particular, the use of a convex combination will tend to result in an under-estimation, the extent of which depends on the extent of departure from the assumptions underlying the simplified expressions. In our empirical illustration, departures were modest, but it is easy to imagine designs with greater variation between domains in mean selection probabilities or in the distribution of design weights. We would therefore recommend that estimators (6) – (9) are used only if the assumptions genuinely hold, or if the sample design data necessary to calculate (5) is not available, in which case the analyst should at least make arbitrary allowance for under-estimation based on his or her knowledge of the design.

References

