Contents

- Why bother?
- Meet the data
- Distributions
- Factors predicting adoption
- Summary
Contents

- Why bother?
- Meet the data
- Distributions
- Factors predicting adoption
- Summary
Why bother?

- **Equity:**
 - Uneven distribution of benefits

- **Regressive:**
 - Benefits may accrue to the well off

- **Uptake may asymptote**
 - To something...
Contents

- Why bother?
- Meet the Data
- Distributions (over time)
- Factors predicting adoption
- Summary
Meet the Data

- British Household Panel Survey
 - Wave 18 (2008-9)
 - N households = 6,500

- Understanding Society
 - Waves 1-4 (2009-2013)
 - Data for waves 1-3 available now
 - N households = 30,000

Eco-Tech & Behaviours/Attitudes
Meet the Data

BHPS W18
USOC W1
USOC W2
USOC W3
USOC W4

N households

BHPS Wave 18 USOC Wave 1

We are here!
What Energy-Tech?

- Energy ‘production’
 - Solar PV (electricity)
 - Wind Turbines (electricity)
 - Solar Thermal (hot water)

Key questions:
- Who is adopting?
- What factors predict this?
- What difference does it make?
Key variables:

- Energy Tech uptake

<table>
<thead>
<tr>
<th></th>
<th>Solar PV</th>
<th>Solar Thermal</th>
<th>Wind Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.53%</td>
<td>0.58%</td>
<td>0.04%</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>198</td>
<td>13</td>
</tr>
<tr>
<td>Considering</td>
<td>5.05%</td>
<td>4.33%</td>
<td>2.44%</td>
</tr>
<tr>
<td></td>
<td>1716</td>
<td>1471</td>
<td>828</td>
</tr>
<tr>
<td>No</td>
<td>88.51%</td>
<td>90.51%</td>
<td>94.86%</td>
</tr>
<tr>
<td></td>
<td>30095</td>
<td>30775</td>
<td>32254</td>
</tr>
<tr>
<td>Considered & rejected</td>
<td>5.91%</td>
<td>4.58%</td>
<td>2.66%</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1558</td>
<td>905</td>
</tr>
</tbody>
</table>

- Solar PV only: 35%
- Solar Thermal only: 35%
- Both: 30%
Key variables

- Energy Tech uptake

- ‘Environmentally friendly’
 - Mean individual level actions + household level behaviours

- Socio-economic
 - Tenure, Occupancy, Income, education levels, energy consumption

<table>
<thead>
<tr>
<th></th>
<th>Solar PV</th>
<th>Solar Thermal</th>
<th>Wind Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.53%</td>
<td>0.58%</td>
<td>0.04%</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>198</td>
<td>13</td>
</tr>
<tr>
<td>Considering</td>
<td>5.05%</td>
<td>4.33%</td>
<td>2.44%</td>
</tr>
<tr>
<td></td>
<td>1716</td>
<td>1471</td>
<td>828</td>
</tr>
<tr>
<td>No</td>
<td>88.51%</td>
<td>90.51%</td>
<td>94.86%</td>
</tr>
<tr>
<td></td>
<td>30095</td>
<td>30775</td>
<td>32254</td>
</tr>
<tr>
<td>Considered & rejected</td>
<td>5.91%</td>
<td>4.58%</td>
<td>2.66%</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1558</td>
<td>905</td>
</tr>
</tbody>
</table>
Contents

- Why bother?
- Meet the data
- Distributions
- Factors predicting adoption
- Summary
@dataknut: The Distribution of Domestic Energy-Tech in Great Britain: 2008 - 2011

Distributions

Over time…

Source: Own calculations of pooled BHPS (W18) & USOC (W1) GB sub-sample
Weighted for non response and correcting for survey design
Error bars = 95% Confidence intervals
Distributions

- Over equivalised income quartiles

Has energy tech

Considering energy tech

Equivalised income: controls for household size (persons, OECD approach)

Source: Own calculations of pooled BHPS (W18) & USOC (W1) GB sub-sample weighted for non response and correcting for survey design

Error bars = 95% Confidence intervals
@dataknut: The Distribution of Domestic Energy-Tech in Great Britain: 2008 - 2011

Distributions

- Over accommodation type

Has energy tech

Considering energy tech

Equivalised income: controls for household size (persons, OECD approach)

Source: Own calculations of pooled BHPS (W18) & USOC (W1) GB sub-sample weighted for non response and correcting for survey design
Error bars = 95% Confidence intervals
Distributions

Over tenure

Has energy tech

Considering energy tech

Source: Own calculations of pooled BHPS (W18) & USOC (W1) GB sub-sample weighted for non response and correcting for survey design

Error bars = 95% Confidence intervals

Confirms: DECC (2012) Identifying trends in the deployment of domestic solar PV under the Feed-in Tariff scheme
Distributions

Over energy consumption quartiles

Has energy tech

Considering energy tech

Confirms: DECC (2012) Identifying trends in the deployment of domestic solar PV under the Feed-in Tariff scheme

Source: Own calculations of pooled BHPS (W18) & USOC (W1) GB sub-sample weighted for non response and correcting for survey design

Error bars = 95% Confidence intervals
Distributions

- Over ‘Environmentally friendly’ quartiles

Has energy tech

- Enviro Friendly HH Q4 (highest)
- Q3
- Q2
- Enviro Friendly HH Q1 (lowest)

Considering energy tech

- Enviro Friendly HH Q4 (highest)
- Q3
- Q2
- Enviro Friendly HH Q1 (lowest)

Index: Mean of individual level scores + recycling + green electricity tariff
Source: Own calculations of pooled BHPS (W18) & USOC (W1) GB sub-sample weighted for non-response and correcting for survey design
Error bars = 95% Confidence intervals
@dataknut: The Distribution of Domestic Energy-Tech in Great Britain: 2008 - 2011

Distributions

- Urban vs rural

<table>
<thead>
<tr>
<th>Has energy tech</th>
<th>Considering energy tech</th>
</tr>
</thead>
</table>

- Urban vs rural

- Has energy tech
- Considering energy tech

Source: Own calculations of USOC (W1) GB sub-sample weighted for non response and correcting for survey design
Error bars = 95% Confidence intervals

Confirms: DECC (2012) Identifying trends in the deployment of domestic solar PV under the Feed-in Tariff scheme
Contents

- Why bother?
- Meet the data
- Distributions
- Factors predicting adoption
- Summary
Adopted Energy Tech

Other effects: rural (positive)

But: low explanatory power => Lots of unexplained variance

Source: Logistic regression of BHPS (W18), USOC (W1) GB sub-sample. Error bars = 95% Confidence Intervals for coefficients
‘Seriously Considering’ Energy Tech

Other effects: rural (positive)

But: low explanatory power => Lots of unexplained variance

Source: Logistic regression of BHPS (W18), USOC (W1) GB sub-sample. Error bars = 95% Confidence Intervals for coefficients
‘Rejected’ all Energy Tech

Other effects: rural (negative)

But: low explanatory power => Lots of unexplained variance

Source: Logistic regression of BHPS (W18), USOC (W1) GB sub-sample. Error bars = 95% Confidence Intervals for coefficients
Adopted Solar PV/Solar Thermal

Other effects: rural (positive) for Solar Thermal but not Solar PV

High explanatory power => but much captured by intercept (not shown)
And small n for adoption groups

Source: Logistic regression of BHPS (W18), USOC (W1) GB sub-sample. Error bars = 95% Confidence Intervals for coefficients
Contents

- Why bother?
- Meet the data
- Distributions
- Factors predicting adoption
- Summary
Summary

- **Adopters generally:**
 - home-owning, (large) detached & rural
 - higher reported ‘enviro friendly’ views/actions

- **Those seriously considering generally:**
 - As above
 - Already have some form of energy tech
 - Highest energy spenders

- **Rejecters generally:**
 - Urban renters, not detached
 - Lower reported ‘enviro friendly’ views/actions
 - Lower energy spend
Contrasts:

- **Solar PV & Solar Thermal Adopters:**
 - Different housing type ‘effects’?
 - Different income ‘effects’?
 - Different ‘attitudinal’ effects

- Overall:
 - Emphasis on constraints over choice
 - Equity issues are clear…

Causality?
Thank you

- **Questions?**
 - b.anderson@soton.ac.uk
 - @dataknut

- http://www.energy.soton.ac.uk/esrc-sdai-attitudes